Закрыть

Емкость конденсатора измеряется в – В чем измеряются единицы емкости конденсаторов

Содержание

В чем измеряются единицы емкости конденсаторов

Конденсатор представляет собой электрическое устройство, которое обладает возможностью накапливать заряд, состоит из обкладок и слоя диэлектрика между ними. Одной из важнейших характеристик прибора является ёмкость.

Конденсатор

Конденсатор

Единица измерения емкости

В Международной системе СИ за единицу измерения ёмкости конденсатора принимают фарад:

[C] = Ф, где С – обозначение ёмкости устройства.

Международное обозначение – F. Названа в честь английского физика М.Фарадея и используется в Международной системе СИ с 1960г.

Формула для расчёта электроёмкости записывается следующим образом:

С = Dq / U (1), где:

  • Dq – заряд (измеряется в кулонах, или Кл),
  • U – разность потенциалов между обкладками (измеряется в вольтах или В).

Следовательно, 1Ф = 1Кл / 1В.

То есть конденсатор ёмкостью в 1 фарад накапливает на обкладках заряд, равный 1 кулон, создавая напряжение между ними, равное 1 вольт.

В фарадах измеряются электроёмкости проводников и конденсаторов.

Согласно правилам написания, принятых в СИ, если название происходит от фамилии учёного, то полное её название «фарад» пишется с маленькой (строчной) буквы, а её сокращённое название «Ф» – с прописной.

Единица измерения электроёмкости в других системах

Помимо СИ, есть ещё устаревшая система СГС, которой пользовались ранее. Первые три символа в названии обозначают:

  • С – сантиметр,
  • Г – грамм,
  • С – секунда.

Существует две разновидности системы: СГСЭ и СГСМ. Символ Э в СГСЭ обозначает электростатическую систему, а символ М – магнитную. В системе СГСЭ емкость конденсатора измеряется в сантиметрах, или см. Для пересчёта используют соотношение:

  • 1см » 1,1126 · 10-12Ф,
  • 1Ф » 8,99 · 1011 статФ.

Сантиметр по-другому может называться статфарад, или статФ.

В системе СГСМ единицей измерения является абфарад, или абФ. Абфарад связан с фарадом следующим образом:

1абф = 1·109 Ф = 1ГФ.

Для перевода из СГСЭ и СГСМ в СИ в сети Интернет имеются специальные сервисы, которые позволяют автоматизировать эти действия.

Онлайн переводчик из СГС в СИ

Онлайн переводчик из СГС в СИ

Фарады через основные единицы системы СИ

Для выражения фарады через основные единицы СИ воспользуемся следующими формулами.

Единица измерения заряда вычисляется как:

Dq = I · Dt (2), где:

  • I – сила тока (измеряется в амперах или А),
  • Dt – время прохождения заряда (измеряется в секундах или с).

В свою очередь, напряжение определяется как работа, которую нужно выполнить для перемещения заряда в электростатическом поле:

U = А / Dq (3), где А – работа по перемещению заряда, определяется в джоулях, или Дж.

Из механики известно, что:

А = F · s = m · a · s (4), где:

  • m – масса, измеряется в килограммах, или кг,
  • s – перемещение, рассчитывается в метрах, или м,
  • a – ускорение, определяется в м/с2.

Из формул 1-4 имеем:

Онлайн переводчик из СГС в СИ

Таким образом, 1 фарад через единицы СИ определяется как:

Онлайн переводчик из СГС в СИ

Кратные единицы ёмкости

При покупке радиодеталей невозможно купить конденсатор с электроёмкостью даже в несколько единиц фарад. Они выпускаются с гораздо меньшими параметрами. Это объясняется тем, что ёмкость в 1 фарад является очень большой величиной. Например, такую электроёмкость может иметь изолированный проводник в форме шара с радиусом в 13 раз больше радиуса Солнца.

Именно по этой причине для характеристики емкостных устройств применяют дольные единицы, которые рассчитываются как доля от определённого числа фарад. Для обозначения используют приставки, которые применяются для сокращения длины записываемого числа.

Таблица перевода дольных единиц

ПриставкаОбозначениеМножитель
децидФdF10^-1
сантисФsF10^-2
миллимФmF10^-3
микромкФF или uF10^-6
нанонФnF10^-9
пикопФpF, mmF, uuF10^-12
фемтофФfF10^-15
аттоаФaF10^-18
зептозФzF10^-21
йоктоиФyF10^-24

Таким образом, если параметр указывается равным 5 uF, то для перевода в фарады необходимо умножить цифру 5 на соответствующий множитель. Получаем 5 uF = 5 · 10-6 F.

В радиотехнике наиболее популярны модели, ёмкость которых измеряется в микрофарадах, нанофарадах (микромикрофарадах) или пикофарадах.

Также промышленность выпускает устройства ионисторы, которые представляют собой конденсаторы, имеющие двойной электрический слой. У некоторых ионисторов ёмкость может измеряться в килофарадах.

Ионистор с характеристикой в 1F

Ионистор с характеристикой в 1F

Маркировка конденсаторов в зависимости от ёмкости

Кодировка маленьких по размерам устройств

Существует специальная цифровая кодировка. Её используют для маркировки маленьких по размерам приборов. Кодировка электроёмкости выполняется согласно стандарту EIA.

Внимание! Ёмкость небольших конденсаторов, например, керамических или танталовых, обычно измеряется в пикофарадах, а больших, например, алюминиевых электролитических, в микрофарадах.

Существует специальная таблица таких обозначений, с помощью которой можно быстро подобрать такую же или аналогичную радиодеталь по соответствующему коду. Её можно свободно найти в Интернете.

В старых маркировках использовалась следующая кодировка. Если нанесено целое двузначное число, значит, значение ёмкость измеряется в пикофарадах, а если нанесена десятичная дробь, значит, параметр определяется в микрофарадах.

Например, радиодеталь с параметром 1000 nF =1 uF будет иметь маркировку 105, с параметрами 820 nF = 0, 82 uF – маркировку 824, а 0,27 uF = 270nF будет обозначено кодом 274.

В настоящее время, если на устройстве нанесено значение, не содержащее буквы, то оно обозначает ёмкость в пикофарадах. Если перед цифрами или после них стоит символ «н» («n»), то это означает, что значение даётся в нанофарадах, если «мк» («m», «u») – микрофарадах. В том случае, когда символ располагается перед числом, цифры в нём обозначают сотые доли. Например, n61 расшифровывается как 0,61нФ. Если символ располагается посередине значения, то на место символа нужно поставить запятую. Сам символ покажет единицы измерения. Например, 5u2 обозначает 5,2 мкФ.

Также в настоящее время используется цифровая кодировка, содержащая три числа. Первые две цифры являются числовыми характеристиками ёмкости. Параметр при этом измеряется в пикофарадах. Если значение меньше 1, то первая цифра – 0. Третья цифра определяет множитель, на который нужно умножить число, получаемое из первых двух цифр.

В случае, когда последнее число находится в диапазоне от 0 до 6, к значению дописывают количество нулей, равное третьей цифре. Например, если указано число 270, то устройство имеет параметр 27 пФ, если 271 – то на 270 пФ.

Трёхзначная кодировка

Трёхзначная кодировка

Если число равно 8, то в этом случае множитель равен 0,01. То есть если указано число 278, то ёмкость будет равна 27 · 10-2 = 0,27. Когда третье число равно 9, то множитель будет 0,1. Например, маркировка 109 указывает на электроёмкость в 1 пФ.

Если в кодировке присутствует символ «R», то параметр указывается в пикофарадах, а символ показывает место расположения запятой. Например, 4R1 расшифровывается как 4,1пФ.

Кодировка больших по размерам устройств

На больших по габаритным размерам конденсаторах маркировка наносится сверху на корпус, причём в данном случае будет присутствовать полная информация о параметрах устройства.

В обозначениях может встречаться значение MF. В приставках Международной системы единиц СИ если перед единицей измерения располагается большая буква М, то это обозначает, что должен использоваться множитель 106. В случае с конденсатором это всё равно будет обозначать микрофарады.

Также может встречаться обозначение МFD или mfd. В данном случае сочетание символов «fd» обозначает farad. Таким образом, если на корпусе написано 5 mfd, то значит, что конденсатор используется на 5 микрофарад.

Маркировка больших по размерам конденсаторов

Маркировка больших по размерам конденсаторов

Таким образом, при ремонте электросхемы, содержащей конденсатор, нужно правильно читать маркировку устройства и соответственно информации подбирать нужный прибор.

Видео

Оцените статью:

jelectro.ru

В чем измеряется емкость конденсатора?

Давайте начнем с предложенной Вами задачи. Основой для ее решения является формула, определяющая емкость:

   

Переведем данные из задачи в единицы системы СИ: нКл=Кл; кВ=В. Теперь можно вычислить емкость конденсатора:

   

Теперь разберемся, в чем измеряется емкость конденсатора. Емкость конденсатора, как и емкость любого другого проводящего тела, измеряется в фарадах. Обозначается фарада буквой (Ф). Название данная единица получила в честь М. Фарадея. 1Ф равен емкости конденсатора, если заряд его пластин равен 1 Кл, а напряжение между обкладками 1 В. Если фарад выражать через основные единицы системы СИ, то получим: Ф=Aкг м.
1 Ф – это очень большая емкость. Если рассматривать уединенный проводник в виде шара, то электроемкость проводника, радиус которого был бы равен радиусу Земли, составил бы всего около Ф.
Поэтому часто на практике используют пикофарады (пФ): 1 пФ=Ф; нанофарады: 1 нФ=Ф; микрофарфды 1 мкФ=Ф.

Тогда ответ в нашей задаче удобнее записать как пФ.
Подробнее о конденсаторах можно прочитать в ответах на вопросы: «Как работает конденсатор?», «Каково обозначение конденсаторов на схеме?», «Для чего нужен конденсатор?», «Как измерить емкость конденсатора?».

ru.solverbook.com

Электрическая емкость: определение, формулы, единицы измерения

В электротехнике часто встречается понятие ёмкости. При этом речь идёт не о ведре или другом сосуде, а об электрической ёмкости проводника, аккумулятора и конденсатора. Путать эти понятия нельзя. В этой статье мы разберемся, что такое электрическая ёмкость, от чего она зависит и в каких единицах измеряется.

Определение

Для проводников электрической ёмкостью называется величина, которая характеризует способность тела накапливать электрический заряд. Это и есть её физический смысл. Обозначается латинской буквой C. Она равна отношению заряда к потенциалу, если это записать в виде формулы, то получается следующее:

C=q/Ф

Электроемкость любого предмета зависит от его формы и геометрических размеров. Если рассмотреть проводник в форме шара, в качестве примера, то формула для расчета её величины будет иметь вид:

Электроемкость шара

Эта формула справедлива для уединенного проводника. Если расположить рядом два проводника и разделить их диэлектриком, тогда получится конденсатор. Об этом немного позже, сейчас давайте разберемся, в чем измеряется электроемкость.

Единица измерения электрической ёмкости — фарад. Если разложить её на составляющие согласно формуле то:

1 фарад =1 Кл/1 В

Исторически сложилось так, что размерность этой единицы выбрана не совсем верно. Дело в том, что на практике приходится работать с величинами электроемкости: мили-, микро-, нано- и пикофарад. Что равняется долям фарада, а именно:

1 мФ = 10^(-3) Ф

1 мкФ = 10^(-6) Ф

1 нФ = 10^(-9) Ф

1 пФ = 10^(-12) Ф

Конденсаторы

Конденсатор — это две пластины из проводящего материала, расположенные друг напротив друга, между которым находится слой диэлектрика. В заряженном состоянии обкладки имеют разные потенциалы: одна из них будет положительной, а вторая отрицательной. Электроемкость конденсатора зависит от величины заряда на его обкладках и разности потенциалов, напряжения между ними. Между пластинами возникает электростатическое поле, которое удерживает заряды на обкладках. Формула электрической емкости конденсатора в общем случае:

C=q/U

Если сказать простыми словами, то емкость конденсатора зависит от площади пластин и расстояния между ними, а также относительной диэлектрической проницаемости материала, расположенного между ними. Их различают по используемому диэлектрику:

  • керамические;
  • плёночные;
  • слюдяные;
  • металлобумажные;
  • электролитические;
  • танталовые и пр.

По форме обкладок:

  • плоские;
  • цилиндрические;
  • сферические и пр.

Так как формула площади фигуры зависит от её формы, то и формула ёмкости будет разной для каждого случая.

Для плоского конденсатора:

Емкость плоского конденсатора

Для двух концентрических сфер с общим центром:

Емкость двух концентрических сфер с общим центром

Для цилиндрического конденсатора:

Электроемкость цилиндрического конденсатора

Как и у других элементов электрической цепи и в этом случае есть два основных способа соединения конденсаторов: параллельное и последовательное.

От этого зависит итоговая электрическая емкость полученной цепи. Расчёты ёмкости нескольких конденсаторов напоминают расчёты сопротивления резисторов в разном включении, только формулы для способов соединения расположены наоборот, то есть:

  1. При параллельном соединении общая электроемкость цепи является суммой емкостей каждого из элементов. Каждый следующий подключенный увеличивает итоговую емкость

Cобщ=C1+C2+C3

  1. При последовательном подключении электроемкость цепи снижается, подобно снижение сопротивления в цепи параллельно включённых резисторов. То есть:

Cобщ=(1/С1)+ (1/С2)+ (1/С3)

Важно! В параллельной схеме соединения напряжения на обкладках каждого элемента одинаковы. Это используют для получения больших значений электроемкости. В последовательном включении двух элементов напряжения на обкладках каждого из конденсаторов составляют по половине общего напряжения. Для трёх – трети и так далее.

Аккумуляторы и электроемкость

Основными характеристиками аккумуляторных батарей является:

  • Номинальное напряжение.
  • Емкость.
  • Максимальный ток разряда.

В данном случае для определения количественной характеристики времени работы или, говоря простым языком, чтобы рассчитать, на какое время работы прибора хватит аккумулятора, используют величину ёмкости.

В аккумуляторных батареях для описания электрической ёмкости используют следующие размерности:

  • А*ч — ампер-часы для больших аккумуляторов, например автомобильных.
  • мА*ч — милиампер-часы, для аккумуляторов для носимых устройств, например смартфонов, квадрокопетров и электронных сигарет.
  • Вт*часы — ватт-часы.

Эти характеристики позволяют определить, сколько времени работы выдержит аккумулятор при конкретной нагрузке. Для определения электрическую емкость аккумулятора измеряют в кулонах (Кл). В свою очередь кулон равен количеству электричества, переданному аккумулятору при силе тока 1А за 1с. Тогда если перевести в часы, то при токе в 1А за 1 час передается 3600 Кл.

Одним из способов измерения емкости аккумулятора является его разряд заведомо известным током, при этом вы должны замерить время разряда. Допустим, если аккумулятор разрядился до минимального уровня напряжения за 10 часов током в 5А – значит его емкость 50 А*ч

Электроемкость – это важная величина в электронике и электротехнике. На практике конденсаторы применяются практически в каждой схеме электронного устройства. Например, в блоках питания – для сглаживания пульсаций, уменьшения влияния высоковольтных всплесков на силовые ключи. Во времязадающих цепях различных схем, а также в ШИМ-контроллерах для того, чтобы задать рабочую частоту. Аккумуляторы также применяются повсеместно. Вообще задачи накапливания энергии и сдвига фаз встречаются очень часто.

Более подробно изучить вопрос поможет предоставленное видео:

Кратко объяснение изложено в этом видео уроке:

Теперь вы знаете, что такое электрическая емкость, в каких единицах происходит ее измерение и от чего зависит данная величина. Надеемся, предоставленная информация была для вас полезной и понятной!

Материалы по теме:

samelectrik.ru

что это такое, виды и способы применения

На вопрос, что такое конденсатор, вкратце можно ответить следующим образом – это элемент, который накапливает заряд электрического тока, а в определенный момент передает его последующим компонентам цепи. Конденсатор – радиодеталь, без которой не обойтись ни в одной электронной схеме. Опытные мастера и специалисты в области электроники и радиолюбители ласково называет его “кондер” (кондюк).

Самый примитивный конденсатор состоит из электродов, имеющие пластинчатый вид. Эти электроды разделены друг от друга специальным диэлектриком. Он изготавливается из самых различных материалов, не пропускающих ток. На них и происходит непосредственно накопление заряда. Так как имеется два электрода, соответственно заряд имеет разные полярности. Одна пластина имеет положительный, другая отрицательный.

Величина электрического заряда в конденсаторе измеряется в фарадах. Есть производный от этой единицы измерения – микрофарада, нанофарада. Эти единицы измерения являются основными, так как одна фарада – огромная емкость, которая не используется на практике совсем.

В данной статье подробно описано что такое конденсатор. Читатель узнает, для чего нужна эта радиодеталь, посмотрит видеоролик, где вкратце расскажут о ее назначении. Те, кто дочитает до конца, в качестве бонуса могут скачать интересную статью по теме.

Конденсаторы

Конденсаторы.

Принцип работы и назначение

В электрических схемах данные устройства могут использоваться с различными целями, но их основной функцией является сохранение электрического заряда, то есть, конденсатор получает электрический ток, сохраняет его и впоследствии передает в цепь. При подключении конденсатора к электрической сети на электродах конденсатора начинает накапливаться электрический заряд. В начале зарядки конденсатор потребляет наибольшую величину электрического тока, по мере зарядки конденсатора электроток уменьшается и когда емкость конденсатора будет наполнена ток пропадет совсем.

Конденсатор - простыми словами о сложном

При отключении электрической цепи от источника питания и подключении нагрузки, конденсатор перестает получать заряд и отдает накопленный ток другим элементам, сам, как бы становится источником питания.

Основная техническая характеристика конденсатора, это емкость. Емкостью называется способность конденсатора накапливать электрический заряд. Чем больше емкость конденсатора, тем большее количество заряда он может накопить и соответственно отдать обратно в электрическую цепь. Емкость конденсатора измеряется в Фарадах. Конденсаторы различаются по конструкции, материалов из которых они изготовлены и области применения. Самый распространенный конденсатор это – конденсатор постоянной емкости.

Виды конденсаторов

Конденсаторы постоянной емкости изготавливаются из самых различных материалов и могут быть – металлобумажными, слюдяными, керамическими. Такие конденсаторы как электрокомпонент используются во всех электронных устройствах.

Для увеличения площади обкладок пластины некоторых конденсаторов изготавливают из полосок фольги, разделенных полоской диэлектрика и скрученных в рулон. Увеличить емкость также можно уменьшением толщины диэлектрика между обкладками и применением материалов с большей диэлектрической проницаемостью. Между обкладками конденсаторов располагают твердые, жидкие вещества и газы, в том числе и воздух.

Из формулы очевиден и такой факт: даже при небольших площадях обкладок и на любых расстояниях между обкладками емкость не равна нулю. Два проложенных рядом проводника тоже обладают емкостью. В связи с этим высоковольтная кабельная линия способна накапливать заряд, а на высоких частотах проводники вносят в устройства связи «паразитные» емкости, с которыми приходится бороться.

Конденсаторы небольшой емкости получают на печатных платах, располагая две дорожки напротив друг друга. Каким бы качественным не был диэлектрик в конденсаторе, он все равно имеет сопротивление. Его величина велика, но в заряженном состоянии конденсатора ток между обкладками все равно есть. Это приводит к явлению «саморазряда»: заряженный конденсатор со временем теряет свой заряд. В таблице ниже подробно рассмотрена маркировка и расшифровка конденсаторов по их основным свойствам.

Типовые обозначения и маркировка конденсаторов

Таблица типовых обозначений и маркировки конденсаторов.

Емкость конденсатора измеряется в Фарадах, 1 фарад – это огромная величина. Такую ёмкость будет иметь металлический шар размеры которого будут превышать размеры нашего солнца в 13 раз. Шар размером в планету Земля будет иметь иметь емкость всего 710 микрофарад. Обычно, емкость конденсаторов которые мы применяем в электротехнических устройствах обзначается в микрофарадах  (mF), пикофарадах  (nF), нанофарадах ( nF).

Следует знать что, 1 микрофарад равен 1000 нанофарад. Соответственно, 0.1 uF равен 100 nF.  Кроме главного параметра, на корпусе элементов отмечается допустимое отклонение реальной ёмкости от указанной и напряжение, на которое рассчитано устройство. При его превышении прибор может выйти из строя. Этих знаний тебе будет вполне достаточно для начала и для того чтобы самостоятельно продолжить изучение конденсаторов и их физических свойств в специальной технической литературе.

Как проверить деталь

Как проверить конденсатор Для проверки конденсаторов необходим прибор, тестер или иначе мультиметр. Существуют специальные приборы измеряющие емкость (С), но эти приборы стоят денег, и зачастую нет смысла их приобретать для домашней мастерской, тем более на рынке есть недорогие китайские мультиметры с функцией измерения емкости. Если на твоем тестере нет такой функции, ты можешь воспользоваться обычной функцией прозвонки – как прозванивать мультиметром, как и при проверке резисторов – что такое резистор.

Конденсатор можно проверить на “пробой” в этом случае сопротивление конденсатора очень большое, почти бесконечное (зависит от материала из которого изготовлен кондер). Необходимо включить тестер в режим прозвонки, подключить щупы прибора к электродам (ножкам) конденсатора и следить за показанием на индикаторе мультиметра, показание мультиметра будет изменяться в меньшую сторону, пока не остановится совсем.

После чего нужно щупы поменять местами, показания начнут уменьшаться почти до нуля. Если все произошло так как я описал, “кондер” исправен. Если нет изменений в показаниях или показания сразу становятся большими или прибор вовсе показывает ноль, конденсатор неисправен. Лично я предпочитаю проверять “кондюки” стрелочным прибором плавность движения стрелки легче отслеживать, чем мелькание цифр в окошке индикатора.

Интересно почитать: все об электролитических конденсаторах.

Область применения

Наряду с резисторами конденсаторы являются самыми распространенными компонентами. Ни одно электронное изделие не может без него обойтись. Вот краткий перечень направлений использования конденсаторов.

  • Блоки питания: в качестве сглаживающих фильтров при преобразовании пульсирующего тока в постоянный.
  • Звуковоспроизводящая техника: создание при помощи RC-цепочек элементов схем, пропускающих звуковые сигналы одних частот и задерживая остальные. За счет этого удается регулировать тембр и формировать амплитудно-частотные характеристики устройств.
  • Радио- и телевизионная техника: совместно с катушками индуктивности конденсаторы используются в составе устройств настройки на передающую станцию, выделения полезного сигнала, фильтрации помех.
  • Электротехника. Для создания фазовых сдвигов в обмотках однофазных электродвигателей или в схемах подключения трехфазных двигателей в однофазную сеть. Используются в установках, компенсирующих реактивную мощность.

При помощи конденсаторов можно накопить заряд, превышающий по мощности источник питания. Это используется для работы фотовспышек, а также в установках для отыскания повреждений в кабельных линиях, выдающих мощный высоковольтный импульс в место повреждения.

Применение конденсаторов

Применение конденсаторов.

Виды устройства

Виды конденсаторов Керамические конденсаторы применяются в разделительных цепях, электролитические конденсаторы используются также в разделительных цепях и сглаживающих фильтрах, а конденсаторы на основе металлизированной пленки применяются в высоковольтных источниках электропитания. Слюдяные конденсаторы используются в звуковоспроизводящих устройствах, фильтрах и осцилляторах. Конденсаторы на основе полиэстера – это конденсаторы общего назначения, а конденсаторы на основе полипропилена применяются в высоковольтных цепях постоянного тока.

Конденсаторы на основе поликарбоната используются в фильтрах, осцилляторах и времязадающих цепях. Конденсаторы на основе полистирена и тантала используются также во времязадающих и разделительных цепях. Они считаются конденсаторами общего назначения. Всегда нужно помнить, что рабочие напряжения конденсаторов следует уменьшать при возрастании температуры окружающей среды, а для обеспечения высокой надежности необходимо создавать большой запас по напряжению.

Если задано максимальное постоянное рабочее напряжение конденсатора, то это относится к максимальной температуре (при отсутствии дополнительных оговорок). Поэтому конденсаторы всегда работают с определенным запасом надежности. Тем не менее нужно обеспечивать их реальное рабочее напряжение на уровне 0,5—0,6 разрешенного значения. Если для конденсатора оговорено предельное значение переменного напряжения, то это относится к частоте (50-60) Гц. Для более высоких частот или в случае импульсных сигналов следует дополнительно снижать рабочие напряжения во избежание перегрева приборов из-за потерь в диэлектрике.

Виды конденсаторов Конденсаторы большой емкости с малыми токами утечки способны довольно долго сохранять накопленный заряд после выключения аппаратуры. Для обеспечения большей безопасности следует в цепь разряда подключить параллельно конденсатору резистор сопротивлением 1 МОм (0,5 Вт). В высоковольтных цепях часто используется последовательное включение конденсаторов. Для выравнивания напряжений на них нужно параллельно каждому конденсатору подключить резистор сопротивлением от 220 К0м до 1 МОм. Их устанавливают непосредственно на корпусе прибора или на металлическом экране.

Неполярные электролитические конденсаторы имеют емкость от 1 до 100 мкФ и рассчитаны на действующее значение напряжения 50 В. Кроме того, они дороже обычных (полярных) электролитических конденсаторов. При выборе конденсатора фильтра источника электропитания следует обращать внимание на амплитуду импульса зарядного тока, который может значительно превосходить допустимое значение. Например, для конденсатора емкостью 10 000 мкФ эта амплитуда не превышает 5 А.

При использовании электролитического конденсатора в качестве разделительного необходимо правильно определить полярность его включения. Ток утечки этого конденсатора может влиять на режим усилительного каскада. В большинстве случаев применения электролитические конденсаторы взаимозаменяемы. Следует лишь обращать внимание на значение их рабочего напряжения. Вывод от внешнего слоя фольги полистиреновых конденсаторов часто помечается цветным штрихом.

 

Алюминиевые электролитические конденсаторы

Алюминиевые электролитические конденсаторы

В качестве положительного электрода используется алюминий. Диэлектрик представляет собой тонкий слой триоксида алюминия (Al2O3). Свойства:

  • работают корректно только на малых частотах;
  • имеют большую емкость.

Характеризуются высоким соотношением емкости к размеру: электролитические конденсаторы обычно имеют большие размеры, но конденсаторы другого типа, одинаковой емкости и напряжением пробоя были бы гораздо больше по размеру. Характеризуются высокими токами утечки, имеют умеренно низкое сопротивление и индуктивность.

Танталовые электролитические конденсаторы

Танталовые электролитические конденсаторы Это вид электролитического конденсатора, в которых металлический электрод выполнен из тантала, а диэлектрический слой образован из пентаоксида тантала (Ta2O5).

Свойства:

  • высокая устойчивость к внешнему воздействию;
  • компактный размер: для небольших (от нескольких сотен микрофарад), размер сопоставим или меньше, чем у алюминиевых конденсаторов с таким же максимальным напряжением пробоя;
  • меньший ток утечки по сравнению с алюминиевыми конденсаторами.

Полимерные конденсаторы

В отличие от обычных электролитических конденсаторов, современные твердотельные конденсаторы вместо оксидной пленки, используемой в качестве разделителя обкладок, имеют диэлектрик из полимера. Такой вид конденсатора не подвержен раздуванию и утечке заряда. Физические свойства полимера способствуют тому, что такие конденсаторы отличаются большим импульсным током, низким эквивалентным сопротивлением и стабильным температурным коэффициентом даже при низких температурах.

Конденсатор - простыми словами о сложном

Полимерные конденсаторы могут заменять электролитические или танталовые конденсаторы во многих схемах, например, в фильтрах для импульсных блоков питания, или в преобразователях DC-DC.

Пленочные конденсаторы

Пленочные конденсаторы В данном виде конденсатора диэлектриком является пленка из пластика, например, полиэстер (KT, MKT, MFT), полипропилен (KP, MKP, MFP) или поликарбонат (KC, MKC). Электроды могут быть напыленными на эту пленку (MKT, MKP, MKC) или изготовлены в виде отдельной металлической фольги, сматывающейся в рулон или спрессованной вместе с пленкой диэлектрика (KT, KP, KC). Современным материалом для пленки конденсаторов является полифениленсульфид (PPS).

Общие свойства пленочных конденсаторов (для всех видов диэлектриков):

  • работают исправно при большом токе;
  • имеют высокую прочность на растяжение;
  • имеют относительно небольшую емкость;
  • минимальный ток утечки;
  • используется в резонансных цепях и в RC-снабберах.

Отдельные виды пленки отличаются:

  • температурными свойствами (в том числе со знаком температурного коэффициента емкости, который является отрицательным для полипропилена и полистирола, и положительным для полиэстера и поликарбоната)
  • максимальной рабочей температурой (от 125 °C, для полиэстера и поликарбоната, до 100 °C для полипропилена и 70 °С для полистирола)
  • устойчивостью к электрическому пробою, и следовательно максимальным напряжением, которое можно приложить к определенной толщине пленки без пробоя.

Материал в тему: все о переменном конденсаторе.

Конденсаторы керамические

Этот вид конденсаторов изготавливают в виде одной пластины или пачки пластин из специального керамического материала. Металлические электроды напыляют на пластины и соединяют с выводами конденсатора. Используемые керамические материалы могут иметь очень разные свойства. Разнообразие включает в себя, прежде всего, широкий диапазон значений относительной электрической проницаемости (до десятков тысяч) и такая величина имеется только у керамических материалов.

Столь высокое значение проницаемости позволяет производить керамические конденсаторы (многослойные) небольших размеров, емкость которых может конкурировать с емкостью электролитических конденсаторов, и при этом работающих с любой поляризацией и характеризующихся меньшими утечками. Керамические материалы характеризуются сложной и нелинейной зависимостью параметров от температуры, частоты, напряжения. В виду малого размера корпуса — данный вид  конденсаторов имеет особую маркировку.

Конденсаторы керамические

Конденсаторы керамические.

Цветовая маркировка конденсаторов

На корпусе большинства конденсаторов написаны их номинальная емкость и рабочее напряжение. Однако встречается и цветовая маркировка. Некоторые конденсаторы маркируют надписью в две строки. На первой строке указаны их емкость (пФ или мкФ) и точность (К = 10%, М – 20%). На второй строке приведены допустимое постоянное напряжение и код материала диэлектрика.

Материал по теме: Как проверить варистор мультиметром.

Монолитные керамические конденсаторы маркируются кодом, состоящим из трех цифр. Третья цифра показывает, сколько нулей нужно подписать к первым двум, чтобы получить емкость в пикофарадах. Что означает код 103 на конденсаторе? Код 103 означает, что нужно приписать три нуля к числу 10, тогда получится емкость конденсатора – 10 000 пФ. Конденсатор маркирован 0,22/20 250. Это означает, что конденсатор имеет емкость 0,22 мкФ ± 20% и рассчитан на постоянное напряжение 250 В.

Более подробно о работе термисторов можно узнать, прочитав статью  что такое конденсатор.  Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов.

Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vк.coм/еlеctroinfonеt. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

www.slojno.net

www.electric-tolk.ru

www.joyta.ru

www.electricalschool.info

www.jelektro.ru

electroinfo.net

Электрическая емкость

Дата публикации: .
Категория: Электротехника.

Сообщение электрического разряда проводнику называется электризацией. Чем больший заряд принял проводник, тем больше его электризация, или, иначе говоря, тем выше его электрический потенциал.

Между количеством электричества и потенциалом данного уединенного проводника существует линейная зависимость: отношение заряда проводника к его потенциалу есть величина постоянная:

Для какого-либо другого проводника отношение заряда к потенциалу есть также величина постоянная, но отличная от этого отношения для первого проводника.

Одной из причин, влияющих на эту разницу, являются размеры самого проводника. Один и тот же заряд, сообщенный различным проводникам, может создать различные потенциалы. Чтобы повысить потенциал какого-либо проводника на одну единицу потенциала, необходим определенный заряд.

Электрическая емкость и ее единица измерения

Свойство проводящих тел накапливать и удерживать электрический заряд, измеряемое отношением заряда уединенного проводника к его потенциалу, называется электрической емкостью, или просто емкостью, и обозначается буквой С.

Приведенная формула электрической емкости позволяет установить единицу электрической емкости.

Практически заряд измеряется в кулонах, потенциал в вольтах, а емкость в фарадах:

Емкостью в 1 фараду обладает проводник, которому сообщают заряд в 1 кулон и при этом потенциал проводника увеличивается на 1 вольт.

Единица измерения электрической емкости – фарада (обозначается ф или F) очень велика. Поэтому чаще пользуются более мелкими единицами – микрофарадой (мкф или μF), составляющей миллионную часть фарады:

1 мкф = 10-6ф ,

и пикофарадой (пф), составляющей миллионную часть микрофарады:

1 пф = 10-6мкф = 10-12ф .

Найдем выражение практической единицы – фарады в абсолютных единицах:

Электрический конденсатор

Устройство, предназначенное для накопления электрических зарядов, называется электрическим конденсатором.

Модель простейшего конденсатора

Рисунок 1. Модель простейшего конденсатора

Конденсатор состоит из двух металлических пластин (обкладок), разделенных между собой слоем диэлектрика. Чтобы зарядить конденсатор, нужно его обкладки соединить с полюсами электрической машины. Разноименные заряды, скопившиеся на обкладках конденсатора, связаны между собой электрическим полем. Близко расположенные пластины конденсатора, влияя одна на другую, позволяют получить на обкладках большой электрический заряд при относительно невысокой разности потенциалов между обкладками. Электрическая емкость конденсатора есть отношение заряда конденсатора к разности потенциалов между его обкладками:

Модель простейшего конденсатора

Как показывают измерения, емкость конденсатора увеличится, если увеличить поверхность обкладок или приблизить их одну к другой. На емкость конденсатора оказывает влияние также материал диэлектрика. Чем больше электрическая проницаемость диэлектрика, тем больше емкость конденсатора по сравнению с емкостью того же конденсатора, диэлектриком в котором служит пустота (воздух). Выбирая диэлектрик для конденсатора, нужно стремиться к тому, чтобы диэлектрик обладал большой электрической прочностью (хорошими изолирующими качествами). Плохой диэлектрик приводит к пробою его и разряду конденсатора. Несовершенный диэлектрик повлечет за собой утечку тока через него и постепенный разряд конденсатора.

Длинные линии передачи высокого напряжения можно рассматривать как своеобразные обкладки конденсатора. Емкость провода нужно рассматривать не только относительно другого провода, но также относительно земли, стен помещений и окружающих предметов. Значительной емкостью обладают подводные и подземные кабели ввиду близкого расположения токоведущих жил между собой.

Конденсатор постоянной емкости

Конденсаторы, емкость которых изменять нельзя, называются конденсаторами постоянной емкости.

Схема устройства конденсатора постоянной емкости

Рисунок 2. Схема устройства конденсатора
постоянной емкости

Наиболее распространенные в настоящее время конденсаторы постоянной емкости состоят из очень тонких металлических (станиолевых) листов с парафинированной бумажной или слюдяной прослойкой между ними.

Для увеличения емкости (увеличения площади пластин конденсатора) чаще всего берут по нескольку станиолевых листов и соединяют их в две группы, входящие одна в другую и разделенные диэлектриком, как схематически показано на рисунке 2. Иногда также берут две длинные станиолевые пластины, прокладывают между ними и снаружи парафинированную бумагу и затем свертывают все в компактный пакет или трубку. Конденсаторы большой емкости во многих случаях помещают в металлическую коробку и заливают парафином.

Внешний вид современных конденсаторов постоянной емкости

Рисунок 3. Внешний вид современных конденсаторов постоянной емкости

Определим емкость плоского конденсатора. Возьмем произвольную замкнутую поверхность вокруг одной из пластин конденсатора. Тогда по теореме Гаусса поток вектора напряженности, проходящий через любую замкнутую поверхность, внутри которой находится электрический заряд, равен:

Внешний вид современных конденсаторов постоянной емкости (1)

Предполагая, что поле конденсатора однородно (пренебрегая искажением поля у краев пластин), получаем напряженность электрического поля в конденсаторе:

Внешний вид современных конденсаторов постоянной емкости (2)

где d – расстояние между пластинами или толщина диэлектрика. Подставив значение E из формулы (2) в формулу (1), получим:

Внешний вид современных конденсаторов постоянной емкости

откуда

Внешний вид современных конденсаторов постоянной емкости

Так как

Внешний вид современных конденсаторов постоянной емкости

то выражение емкости плоского конденсатора примет вид:

Внешний вид современных конденсаторов постоянной емкости

где S – площадь пластин в м²; d – толщина диэлектрика в м; ε – относительная электрическая проницаемость диэлектрика (диэлектрическая проницаемость).

Таким образом, для увеличения емкости плоского конденсатора нужно увеличить площадь его пластин (обкладок) S, уменьшить расстояние между ними d и в качестве диэлектрика поставить материал с большой относительной электрической проницаемостью (ε).

Видео об устройстве конденсатора постоянной емкости:

Конденсатор переменной емкости

Конденсаторы, емкость которых можно менять, называются конденсаторами переменной емкости.

Наиболее простой конденсатор переменной емкости имеет несколько (реже один) медных или алюминиевых полудисков, соединенных между собой электрически и укрепленных неподвижно. Другой ряд таких же полудисков собран на общей оси. При повороте этой оси каждый из укрепленных на ней полудисков входит меду двумя неподвижными полудисками. Поворачивая ось и меняя таким образом взаимное расположение подвижных и неподвижных полудисков, мы можем менять емкость конденсатора. На рисунке 3 показана схема устройства и на рисунке 4 – общий вид воздушного конденсатора переменной емкости.

Схема устройства конденсатора переменной емкости

Рисунок 3. Схема устройства конденсатора переменной емкости

Общий вид конденсатора переменной емкости

Рисунок 4. Общий вид конденсатора переменной емкости

Видео об устройстве серийного конденсатора переменной емкости:

Видео о том, как можно сделать самодельный конденсатор переменной емкости своими руками:

Электролитические конденсаторы

В радиотехнике применяются также электролитические конденсаторы. Эти конденсаторы изготовляются двух типов: жидкостные и сухие. В обоих типах конденсаторов употребляется оксидированный алюминий. Путем специальной электрохимической обработки на поверхности алюминия получают тонкий (порядка нескольких десятков микрон) слой оксида алюминия Al2O3, представляющий так называемую оксидную изоляцию алюминия. Оксидная изоляция обладает электроизолирующими свойствами, а также является механически прочной, нагревостойкой, но гигроскопичной.

В жидкостных электролитических конденсаторах алюминиевую оксидированную пластину помещают внутрь металлического корпуса, который служит второй пластиной. В корпус заливают электролит, состоящий из раствора борной кислоты с некоторыми примесями.

Сухие электролитические конденсаторы изготовляют путем сворачивания трех лент. Одна лента представляет собой алюминиевую оксидированную фольгу (тонко раскатанный лист металла). Другой пластиной является лента из алюминиевой фольги. Между двумя металлическими лентами помещается бумажная или марлевая лента, пропитанная вязким электролитом. Плотно свернутые ленты помещаются в алюминиевый корпус и заливаются битумом. Тонкий оксидный изолирующий слой с высокой электрической проницаемостью (ε = 9) позволяет получить дешевые конденсаторы с большой удельной емкостью.

Видео об устройстве электролитического конденсатора:

Параллельное соединение конденсаторов

Параллельное соединение конденсаторов

Рисунок 5. Параллельное
соединение конденсаторов

Когда емкость конденсатора мала, то соединяют несколько конденсаторов параллельно (рисунок 5).

При параллельном соединении конденсаторов напряжение на обкладках каждого конденсатора одно и то же. Поэтому можно написать:

U1 = U2 = U3 = U .

Количество электричества (заряд) каждого конденсатора:

q1 = C1 × U; q2 = C2 × U; q3 = C3 × U .

Общий заряд батареи конденсаторов:

q = q1 + q2 + q3 ;

q = C1 × U + C2 × U + C3 × U = U (C1 + C2 + C3) .

Обозначая емкость батареи конденсаторов через C, получаем:

q = C × U ,

тогда

C × U = U × (C1 + C2 + C3)

или окончательно формула емкости при параллельном соединении конденсаторов примет вид:

C = C1 + C2 + C3 .

Следовательно, при параллельном соединении конденсаторов общая емкость равна сумме емкостей отдельных конденсаторов. При параллельном соединении каждый конденсатор окажется включенным на полное напряжение сети.

Последовательное соединение конденсаторов

Последовательное соединение конденсаторов

Рисунок 6. Последовательное
соединение конденсаторов

Рассмотрим последовательное соединение конденсаторов (рисунок 6).

Если левая обкладка первого конденсатора заряжена положительно (+), то вследствие электростатической индукции правая обкладка этого конденсатора получит отрицательный заряд (–), перешедший с левой обкладки второго конденсатора, которая сама зарядится положительно, и так далее. Значит, при последовательном соединении каждый конденсатор независимо от величины его емкости получит один и тот же заряд, то есть

q1 = q2 = q3 = q .

Напряжение, приложенное ко всей батареи конденсаторов, равно сумме напряжений на обкладках каждого конденсатора:

U = U1 + U2 + U3 .

Так как

Последовательное соединение конденсаторов

для всей батареи

Последовательное соединение конденсаторов

теперь можно написать

Последовательное соединение конденсаторов

или, сокращая на q, получим окончательно, что емкость конденсаторов при последовательном соединении равна:

Последовательное соединение конденсаторов

Таким образом, при последовательном соединении конденсаторов обратная величина общей емкости равна сумме обратных величин емкостей отдельных конденсаторов. Каждый из конденсаторов включен на меньшее напряжение, чем напряжение сети.

Конденсаторы широко применяются в радиотехнике, рентгенотехнике, высокочастотной промышленной электротехнике, для увеличения коэффициента мощности электроустановок и так далее.

Источник: Кузнецов М.И., "Основы электротехники" - 9-е издание, исправленное - Москва: Высшая школа, 1964 - 560с.

www.electromechanics.ru

как найти, отчего зависит напряжение на этом элементе

В чем измеряется емкость конденсатораКонденсатор — это электротехнический элемент, позволяющий накапливать заряд. Самая простая его форма представляет две пластины, разделенные слоем диэлектрика. Если на пластины подать напряжение, то оно сохранится какое-то время после его снятия. Важно знать, в чем измеряется емкость конденсатора, для правильного построения схем с этими элементами.

Применение в технике

Как найти емкость конденсатораКонденсаторы применяются в различной электро- и радиоаппаратуре. Эти элементы способны накапливать заряд и поддерживать напряжение (например, сетевое) на должном уровне во время незначительных перебоев с питанием. Конденсаторы большой емкости сами используются как питающие элементы для малогабаритной мобильной аппаратуры. Они еще называются ионисторы. Их недостатком является необходимость частого подзаряда.

Большое значение имеют эти элементы и в фильтрующих устройствах, приборах, задача которых не пропустить помехи в полезный сигнал, или уловить нужный сигнал в постоянном напряжении повышенного уровня.

Без конденсаторов не обходится ни один генератор переменного сигнала. Их назначение — задать частоту генерации, период и другие временные параметры. Здесь используются очень точные элементы, с допуском по номиналу не более 1%.

Конденсаторы бывают как постоянной, так и переменной емкости. Элементы переменной емкости используются в аппаратуре, требующей настройки на разные частоты. Например, это широко используется в настройке радиочастот в FM -приемниках.

Формулы для расчета конденсаторов

Для решения задач техники и прикладных теоретических расчетов нужно знать законы, по которым электрические величины взаимодействуют друг с другом. Эти законы выражаются формулами. Например, напряжение на конденсаторе зависит от его емкости и заряда, накопленного им.

Формула конденсатора

Определение емкости

Это значение зависит от нескольких параметров. Чтобы его рассчитать, нужно знать, в чем измеряется емкость конденсатора. Эта величина эквивалентна тому, сколько кулон заряда накапливается элементом при напряжении в 1 вольт, приложенном к нему. Измеряется она в фарадах. Емкость этих элементов зависит также и от их формы.

  • Что такое конденсаторПлоские конденсаторы — самая простая разновидность накопителей заряда. Как найти емкость конденсатора, имеющего плоскую форму, можно узнать, если определить все параметры, влияющие на это. На его емкость влияет расстояние между его обкладками (токопроводящие пластины) d, площадь самих обкладок S, диэлектрическая проницаемость вещества между обкладками ε и электрическая постоянная ε0, которая равна 8,85 ⋅ 10-12 фарад на метр. Формула конденсатора такова:

С = ε ⋅ ε0 ⋅ S/d

  • Цилиндрический конденсатор также состоит из двух заряженных обкладок, обе они имеют форму цилиндров, расположенных один внутри другого. Внутренний цилиндр цельный, внешний — полый. Расстояние между обкладками равно разности радиусов этих цилиндров. Формулу емкости конденсатора можно представить такой же, как в предыдущем случае, с той разницей, что площадь обкладок рассчитывается исходя из их высоты и радиуса:

Емкость конденсатора

С = 2 ⋅ π ⋅ ε ⋅ ε0 ⋅ h ⋅ R вн /(R нар — R вн) = ε ⋅ ε0 ⋅ S / d

где h — высота обкладки,

Rвн — внутренний радиус, R нар — наружный радиус,

π = 3,14.

  • Зарядом может обладать не только тело с двумя обкладками, но и проводящий шарообразный объект. Если подать на него напряжение, а потом измерить потенциал между ним и землей, то потенциал будет ненулевым. Формула для расчета шарообразного накопителя заряда:

С = 4 ⋅ π ⋅ ε ⋅ ε0 ⋅ R

где R — радиус шара.

Формула емкости конденсатораЕсли в формулу подставить радиус Земли и диэлектрическую проницаемость воздуха, можно получить значение емкости Земли в фарадах. После расчетов:

С (Земли) = 700 микрофарад

Такую емкость могут иметь современные электролитические конденсаторы.

Если разместить один шар внутри другого и подать между ними напряжение, то полученная конструкция тоже будет накапливать заряд между поверхностями шаров. Определение емкости такой конструкции можно провести по формуле:

С = ε ⋅ ε0 ⋅4⋅π ⋅ R1 ⋅ R2 / (R2 — R1)

где R2 и R1 — радиусы соответствующих шарообразных поверхностей.

Емкость конденсатора зависит также и от типа используемого диэлектрика. Наиболее распространены керамические, электролитические, бумажные, воздушные и слюдяные наполнители.

Вычисление энергии

Накопители заряда обладают и другими параметрами. Один из них — это энергия. При зарядке конденсатора на его обкладках накапливается потенциальная энергия.

Она создаёт силу, притягивающую разноименно заряженные пластины, а также ток, который питает электроприборы, если использовать ионистор как источник питания. Энергию можно выразить как зависимость от напряжения обкладок и емкости:

W = C ⋅ U 2 /2

Ток утечки через диэлектрик

В чем измеряется ёмкость конденсатора: определение и формулыТок утечки появляется в элементе, если есть пути протекания электрического тока с одной обкладки на другую. Чем менее изолирующими свойствами обладает диэлектрик, тем больше будет ток утечки. Особенно это применимо к конденсаторам с диэлектриком в виде промасленной бумаги. Этот параметр зависит и от конструкции элемента, и от загрязненности его корпуса. Если элемент негерметичен, ток утечки может увеличиваться при проникании влаги внутрь корпуса. Этот ток можно рассчитать по закону Ома:

I ут = U/R d

где I ут — ток утечки,

U — напряжение на обкладках,

R d — сопротивление изоляции диэлектрика.

Соединение элементов

При создании схем применяется различное соединение элементов. Элементы схемы могут быть соединены:

  • Параллельно;
  • Последовательно;
  • Параллельно — последовательно (смешанно).

Как найти ёмкость параллельно соединенных элементов? Нужно понять, что является общим при таком типе соединения. Так как напряжение прикладывается одновременно ко всем обкладкам, то оно является общим. Заряд же будет для каждого своим. По формуле:

q = C ⋅ U, здесь q — суммарный заряд, то есть

q = ΣC i ⋅ U = U ⋅ ΣC i

С общее будет равняться сумме всех С.

При последовательном соединении элементов общим для всех них будет заряд. В то же время напряжение будет для каждого из них разным, и общее будет складываться из всех по отдельности.

U = q / C, здесь U — сумма напряжений на всех элементах

U общее = q ⋅ Σ (1/ C i)

1/С общее = 1/С 1 +1/С 2 +… +1/C i

При таком соединении значение общей емкости будет меньше самого маленького значения этой величины в группе.

В случае использования смешанного соединения необходимо вычислить отдельно общую емкость для параллельного и отдельно для последовательного соединения. После этого по формуле последовательного соединения найти общее для двух получившихся величин значение.

220v.guru

Конденсаторы для «чайников» / Habr

Если вы регулярно занимаетесь созданием электрических схем, вы наверняка использовали конденсаторы. Это стандартный компонент схем, такой же, как сопротивление, который вы просто берёте с полки без раздумий. Мы используем конденсаторы для сглаживания пульсаций напряжения/тока, для согласования нагрузок, в качестве источника энергии для маломощных устройств, и других применений.

Но конденсатор – это не просто пузырёк с двумя проводочками и парой параметров – рабочее напряжение и ёмкость. Существует огромный массив технологий и материалов с разными свойствами, применяемых для создания конденсаторов. И хотя в большинстве случаев для любой задачи сгодится практически любой конденсатор подходящей ёмкости, хорошее понимание работы этих устройств может помочь вам выбрать не просто нечто подходящее, а подходящее наилучшим образом. Если у вас когда-нибудь была проблема с температурной стабильностью или задача поиска источника дополнительных шумов – вы оцените информацию из этой статьи.

Начнём с простого

Лучше начать с простого и описать основные принципы работы конденсаторов, прежде чем переходить к настоящим устройствам. Идеальный конденсатор состоит из двух проводящих пластинок, разделённых диэлектриком. Заряд собирается на пластинах, но не может перетекать между ними – диэлектрик обладает изолирующими свойствами. Так конденсатор накапливает заряд.

Ёмкость измеряется в фарадах: конденсатор в один фарад выдаёт напряжение в один вольт, если в нём находится заряд в один кулон. Как и у многих других единиц системы СИ, у неё непрактичный размер, поэтому, если не брать в расчёт суперконденсаторы, о которых мы здесь говорить не будем, вы скорее всего встретитесь с микро-, нано- и пикофарадами. Ёмкость любого конденсатора можно вывести из его размеров и свойств диэлектрика – если интересно, формулу для этого можно посмотреть в Википедии. Запоминать её не нужно, если только вы не готовитесь к экзамену – но в ней содержится один полезный факт. Ёмкость пропорциональна диэлектрической проницаемости εr использованного диэлектрика, что в результате привело к появлению в продаже различных конденсаторов, использующих разные диэлектрические материалы для достижения больших ёмкостей или улучшения характеристик напряжения.


Паразитные индуктивность и сопротивление реального конденсатора

С использованием диэлектриков в конденсаторах есть одна проблемка, наряду с тем, что диэлектрик с нужными характеристиками обладает неприятными побочными эффектами. У всех конденсаторов есть небольшие паразитные сопротивление и индуктивность, которые иногда могут влиять на его работу. Электрические постоянные меняются от температуры и напряжения, пьезоэлектричества или шума. Некоторые конденсаторы стоят слишком дорого, у некоторых существуют состояния отказа. И вот мы подошли к основной части статьи, в которой расскажем о разных типах конденсаторов, и об их свойствах, полезных и вредных. Мы не будем освещать все возможные технологии, хотя большинство обычных мы опишем.

Алюминиевые электролитические

Алюминиевые электролитические конденсаторы используют анодно-оксидированный слой на алюминиевом листе в качестве одной пластины-диэлектрика, и электролит из электрохимической ячейки в качестве другой пластины. Наличие электрохимической ячейки делает их полярными, то есть напряжение постоянного тока должно прикладываться в одном направлении, и анодированная пластина должна быть анодом, или плюсом.

На практике их пластины выполнены в виде сэндвича из алюминиевой фольги, завёрнутой в цилиндр и расположенной в алюминиевой банке. Рабочее напряжение зависит от глубины анодированного слоя.

У электролитических конденсаторов наибольшая среди распространённых ёмкость, от 0,1 до тысяч мкФ. Из-за плотной упаковки электрохимической ячейки у них наблюдается большая эквивалентная последовательная индуктивность (equivalent series inductance, ESI, или эффективная индуктивность), из-за чего их нельзя использовать на высоких частотах. Обычно они используются для сглаживания питания и развязывания, а также связывания на аудиочастотах.

Танталовые электролитические


Танталовый конденсатор поверхностного размещения

Танталовые электролитические конденсаторы изготавливаются в виде спечённого танталового анода с большой площадью поверхности, на которой выращивается толстый слой оксида, а затем в качестве катода размещается электролит из диоксида марганца. Комбинация большой площади поверхности и диэлектрических свойств оксида тантала приводит к высокой ёмкости в пересчёте на объём. В результате такие конденсаторы выходят гораздо меньше алюминиевых конденсаторов сравнимой ёмкости. Как и у последних, у танталовых конденсаторов есть полярность, поэтому постоянный ток должен идти в строго одном направлении.

Их доступная ёмкостью варьируется от 0,1 до нескольких сотен мкФ. У них гораздо меньше сопротивление утечки и эквивалентное последовательное сопротивление (ESR), в связи с чем они используются в тестировании, измерительных приборах и высококачественных аудиоустройствах – там, где эти свойства полезны.

В случае танталовых конденсаторов необходимо особенно следить за состоянием отказа, бывает, что они загораются. Аморфный оксид тантала – хороший диэлектрик, а в кристаллической форме он становится хорошим проводником. Неправильное использование танталового конденсатора – например, подача слишком большого пускового тока может привести к переходу диэлектрика в другую форму, что увеличит проходящий через него ток. Правда, репутация, связанная с возгораниями, появилась у более ранних поколений танталовых конденсаторов, и улучшенные методы производства привели к созданию более надёжной продукции.

Полимерные плёнки

Целое семейство конденсаторов использует полимерные плёнки в качестве диэлектриков, а плёнка либо находится между витыми или перемежающимися слоями металлической фольги, либо имеет металлизированный слой на поверхности. Их рабочее напряжение может доходить до 1000 В, но высокими ёмкостями они не обладают – это обычно от 100 пФ до единиц мкФ. У каждого вида плёнки есть свои плюсы и минусы, но в целом всё семейство отличается более низкими ёмкостью и индуктивностью, чем у электролитических. Посему они используются в высокочастотных устройствах и для развязывания в электрически шумных системах, а также в системах общего назначения.

Полипропиленовые конденсаторы используются в схемах, требующих хорошей тепловой и частотной стабильности. Также они используются в системах питания, для подавления ЭМП, в системах, использующих переменные токи высокого напряжения.

Полиэстеровые конденсаторы, хотя и не обладают такими температурными и частотными характеристиками, получаются дешёвыми и выдерживают большие температуры при пайке для поверхностного монтажа. В связи с этим они используются в схемах, предназначенных для использования в некритичных приложениях.

Полиэтилен-нафталатовые конденсаторы. Не обладают стабильными температурными и частотными характеристиками, но могут выдерживать гораздо большие температуры и напряжения по сравнению с полиэстеровыми.

Полиэтилен-сульфидовые конденсаторы обладают температурными и частотными характеристиками полипропиленовых, и в дополнение выдерживают высокие температуры.

В старом оборудовании можно наткнуться на поликарбонатные и полистиреновые конденсаторы, но сейчас они уже не используются.

Керамика

История керамических конденсаторов довольно длинная – они использовались с первых десятилетий прошлого века и по сей день. Ранние конденсаторы представляли собою один слой керамики, металлизированной с обеих сторон. Более поздние бывают и многослойными, где пластины с металлизацией и керамика перемежаются. В зависимости от диэлектрика их ёмкости варьируются от 1 пФ до десятков мкФ, а напряжения достигают киловольт. Во всех отраслях электроники, где требуется малая ёмкость, можно встретить как однослойные керамические диски, так и многослойные пакетные конденсаторы поверхностного монтажа.

Проще всего классифицировать керамические конденсаторы по диэлектрикам, поскольку именно они придают конденсатором все свойства. Диэлектрики классифицируют по трёхбуквенным кодам, где зашифрована их рабочая температура и стабильность.

C0G лучшая стабильность в ёмкости по отношению к температуре, частоте и напряжению. Используются в высокочастотных схемах и других контурах высокого быстродействия.

X7R не обладают такими хорошими характеристиками по температуре и напряжению, посему используются в менее критичных случаях. Обычно это развязывание и различные универсальные приложения.

Y5V обладают гораздо большей ёмкостью, но характеристики температуры и напряжения у них ещё ниже. Также используются для развязывания и в различных универсальных приложениях.

Поскольку керамика часто обладает и пьезоэлектрическими свойствами, некоторые керамические конденсаторы демонстрируют и микрофонный эффект. Если вы работали с высокими напряжениями и частотами в аудиодиапазоне, например, в случае ламповых усилителей или электростатики, вы могли услышать, как «поют» конденсаторы. Если вы использовали пьезоэлектрический конденсатор для обеспечения частотной стабилизации, вы могли обнаружить, что его звук модулируется вибрацией его окружения.

Как мы уже упоминали, статья не ставит целью охватить все технологии конденсаторов. Взглянув в каталог электроники вы обнаружите, что некоторые технологии, имеющиеся в наличии, здесь не освещены. Некоторые предложения из каталогов уже устарели, или же имеют такую узкую нишу, что с ними чаще всего и не встретишься. Мы надеялись лишь развеять некоторые тайны по поводу популярных моделей конденсаторов, и помочь вам в выборе подходящих компонентов при разработке собственных устройств. Если мы разогрели ваш аппетит, вы можете изучить нашу статью по катушкам индуктивности.

Об обнаруженных вами неточностях и ошибках прошу писать через личные сообщения сайта. Спасибо.

habr.com

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *