Энергия заряженного конденсатора. Калькулятор онлайн для любых конденсаторов.
0 | ||||
AC | +/- | ÷ | ||
7 | 8 | 9 | × | |
4 | 5 | 6 | — | |
1 | 2 | 3 | + | |
0 | 00 | , | = |
Онлайн калькулятор вычисления энергии электростатического поля заряженного конденсатора, позволит найти энергию заряженного конденсатора через напряжение, емкость и электрический заряд на одной из обкладок.
Калькулятор вычислит:
Энергию заряженного конденсатора через напряжение (разность потенциалов), до которого заряжен конденсатор и емкость.
Энергию заряженного конденсатора через напряжение (разность потенциалов), до которого заряжен конденсатор и электрический заряд на одной из обкладок
Энергию заряженного конденсатора через электрический заряд на одной из обкладок и емкость
Так же для вычисления энергии электростатического поля плоского, цилиндрического и сферического конденсаторов, можно воспользоваться калькулятором вычисления энергии заряженного конденсатора для плоского, цилиндрического и сферического конденсаторов.
Энергия заряженного конденсатора через напряжение (разность потенциалов), до которого заряжен конденсатор и емкость
Энергия заряженного конденсатора через напряжение (разность потенциалов), до которого заряжен конденсатор и емкость определяется формулой, где C — емкость конденсатора Единицей измерения энергии является — Джоуль (Дж, J). -24] Механика Оптика Электричество и магнетизм Конденсаторы Господа, всем приветище! Сегодня речь пойдет про энергию конденсаторов. Внимание, сейчас будет спойлер: конденсатор может накапливать в себе энергию. Причем иногда очень большую. Что? Это не спойлер, это и так было всем очевидно? Здорово если так! Тогда поехали в этом более подробно разбираться! В прошлой статье мы пришли к выводу, что заряженный конденсатор, отсоединенный от источника напряжения, может сам в течении некоторого времени (пока не разрядится) давать некоторый ток. Например, через какой-то резистор. По закону Джоуля-Ленца если через резистор течет ток, то на нем выделяется тепло. Тепло – значит, энергия. И берется эта самая энергия из конденсатора – больше, собственно, неоткуда. Значит, в конденсаторе может хранится некоторая энергия. Итак, физика процессов более-менее понятна, поэтому теперь давайте поговорим, как это все описать математически. Потому что одно дело все описать на словах – это круто, замечательно, это должно быть, но в жизни часто надо что-то рассчитать и тут уже обычных слов не достаточно. Для начала давайте вспомним определение работы из механики. Работа A силы F это произведение этой самой силы F на вектор перемещения s. Полагаю, что механику вы изучали когда-то и это знаете . Страшные значки векторов нужны только в случае, если направление силы не совпадает с перемещением: вроде случая, когда сила тянет строго прямо, а перемещение идет под каким-то углом к силе. Такое бывает, например, когда груз перемещается по наклонной плоскости. Если же направление силы и перемещения совпадают, то можно смело отбросить вектора и просто перемножать силу на длину пути, получая таким образом работу: Вспомним теперь статью про закон Кулона. Мы там получили замечательную формулу, которую сейчас самое время вспомнить: То есть, если у нас есть электрическое поле с напряженностью Е и мы в него помещаем некоторый заряд q, то на этот заряд будет действовать сила F, которую можно рассчитать по этой формуле. Нам никто не мешает подставить эту формулу в чуть выше написанную формулу для работы. И таким образом найти работу, которую совершает поле при перемещении в нем заряда q на расстояние s. Будем полагать, что мы перемещаем наш заряд q точно по направлению силовых линий поля. Это позволяет использовать формулу работы без векторов: Теперь, господа, внимание. Напоминаю одну важную штуку из той же механики. Есть такой особый класс сил, которые называются потенциальные. Если говорить упрощенным языком, то для них верно утверждение, что если эта сила на каком-то отрезке пути совершила работу А, то это значит, что в начале этого пути у тела, над которым совершалась работа, энергия была на это самое А больше, чем в конце. То есть на сколько поработали, на столько и изменилась потенциальная энергия. Работа потенциальных сил не зависит от траектрии и определяется только начальной и конечной точкой. А на замнкнутом пути она вообще равна нулю. Как раз-таки сила электрического поля относится к этому классу сил. Вот мы помещаем наш зарядик q в поле. Он под действием этого поля перемещается на некоторое расстояние от точки С до точки D. Пусть для определенности в точке D энергия заряда будет равна 0. При этом перемещении поле совершает работу А. Из этого следует, что в начале пути (в точке C) наш зарядик обладал некоторой энергией W=A. То есть, мы можем записать Теперь самое время рисовать картинки. Взглянем на рисунок 1. Это немного упрощенная иллюстрация физики процессов плоского конденсатора. Более полное мы рассматривали это в прошлый раз. Рисунок 1 – Плоский конденсатор Давайте теперь чуть-чуть искривим свое сознание и глянем на наш конденсатор по-другому, чем раньше. Давайте предположим, что у нас за основу взята, например, синяя пластина. Она создает некоторое поле с некоторой напряженностью. Безусловно, и красная пластина тоже создает поле, но в данный момент это не интересно. Давайте смотреть на красную пластину, как на некоторый заряд +q, расположенный в поле синей пластины. И сейчас мы попробуем применить все вышеописанное к красной пластине как будто это и не пластина вовсе, а просто некоторый заряд +q. Вот так вот хитро. Почему, собственно, нет? Возможно, вы скажите – как же так, раньше мы везде исходили из того, что заряды у нас точечные, а тут – целая большая пластина. Она как-то на точку не совсем тянет. Спокойствие, господа. Никто нам не мешает разбить красную пластину на огромную кучу маленьких частичек, каждую из которых можно считать точечным зарядом Δq. Тогда уже можно без проблем применять все вышеописанное. И если мы выполним все расчеты сил, напряженностей, энергий и прочего для вот таких вот отдельных Δq и потом сложим результаты между собой, то получится, что мы зря так переусердствовали – результат будет ровно таким же, как если бы мы просто при расчетах брали заряд +q. Кто хочет – может проверить, я только за . Однако мы будем сразу работать по упрощенной схеме. Хотелось бы только отметить, что это верно для случая, когда поле у нас однородно и заряды по всем пластинам распределены равномерно. В действительности это не всегда так, однако такое упрощение позволяет существенно облегчить все расчеты и избежать всяких градиентов и интегралов без существенного вреда для практики. Итак, вернемся к рисунку 1. На нем показано, что между обкладками конденсатора существует поле с некоторой напряженностью Е. Но мы договорились сейчас разделить роли обкладок – синяя у нас источник поля, а красная – заряд в поле. Какое же поле создает одна синяя обкладка отдельно от красной? Какова его напряженность? Очевидно, что она в два раза меньше общей напряженности. Почема это так? Да потому, что если забыть про нашу абстракцию (типа красная пластина – и не пластина вовсе, а просто заряд), то в результирующую напряженность Е вносят одинаковый вклад обе обкладки – и красная, и синяя: каждая по Е/2. В результате суммы этих Е/2 как раз и получается та самая Е, которая у нас на картинке. Таким образом (отбрасывая вектора), можно записать Теперь посчитаем, если можно так выразиться, потенциальную энергию красной обкладки в поле синей обкладки. Заряд мы знаем, напряженность мы знаем, расстояние между обкладками тоже знаем. Поэтому смело записываем Идем дальше. На деле же никто не мешает поменять местами красную и синюю обкладки. Давайте рассуждать наоборот. Будем рассматривать теперь красную обкладку как источник поля, а синюю – как некоторый заряд –q в этом поле. Думаю, даже без проведения расчета будет очевидно, что результат будет точно такой же. То есть энергия красной пластины в поле синей пластины равна энергии синей пластины в поле красной пластины. И, как вы возможно уже догадались, это и есть энергия конденсатора. Да, вот по этой самой формуле можно произвести расчет энергии заряженного конденсатора: Слышу, как мне уже кричат: стоп, стоп, опять ты втираешь мне какую-то дичь! Ну ладно, расстояние между пластинами я еще как-то смогу измерить. Но меня почему-то опять заставляют считать заряд, что не понятно как сделать, да еще и напряженность надо знать, а чем я ее померяю?! Мультиметр вроде как не умеет это делать! Все верно, господа, сейчас мы займемся преобразованиями, которые позволят вам измерить энергию конденсатора всего лишь с применением обыкновенного мультиметра. Давайте сперва избавимся от напряженности. Для этого вспомним замечательную формулу, которая связывает напряженность с напряжение: Да, напряжение между двумя точками в поле равно произведению напряженности этого поля на расстояние между этими двумя точками. Итак, подставляя это полезнейшее выражение в формулу для энергии, получаем Уже легче, напряженность ушла. Но остался еще заряд, который не понятно как мерить. Что бы от него избавиться, давайте вспомним формулу емкости конденсатора из предыдущей статьи: Да, для тех, кто забыл, напоминаю, что емкость определяется как отношение этого злополучного заряда, накопленного конденсатором, к напряжению на конденсаторе. Давайте из этой формулы выразим заряд q и подставим его в формулу энергии конденсатора. Получаем Вот это уже дельная формула, для энергии заряженного конденсатора! Если нам нужно узнать, какая энергия запасена в конденсаторе с емкостью С, заряженного до напряжения U, мы вполне можем это сделать по вот этой вот формуле. Емкость С обычно пишется на самом конденсаторе или на его упаковке, а напряжение всегда можно измерить мультиметром. Из формулы видно, что энергии в конденсаторе тем больше, чем больше емкость самого конденсатора и напряжение на нем. Причем энергия растет прямо пропорционально квадрату напряжения. Это важно помнить. Увеличение напряжения гораздо быстрее приведет к росту энергии, запасенной в конденсаторе, чем увеличение его емкости. Для особых любителей зарядов можно из формулы определения емкости выразить не заряд, а напряжение и подставить его в формулу для энергии конденсатора. Таким образом, получаем еще одну формулу энергии Используется эта формула довольно редко, а на практике вообще не припомню, что б по ней что-то считал, но раз она есть, то путь тут тоже будет для полноты картины. Самая ходовая формула – это средняя. Давайте для интереса произведем некоторые расчеты. Пусть у нас есть вот такой вот конденсатор Рисунок 2 – Конденсатор И давайте мы его зарядим до напряжения, скажем, 8000 В. Какая энергия будет запасена в таком конденсаторе? Как мы видим из фотографии, емкость данного конденсатора составляет 130 мкФ. Теперь легко выполнить расчет энергии: Много это или мало? Безусловно, не мало! Даже очень не мало! Скажем так, разрешенная энергия электрошокеров составляет какие-то там смешные единицы джоулей, а тут их тысячи! Принимая во внимание высокое напряжение (8кВ) можно смело утверждать, что для человека контакт с таким заряженным конденсатором скорее всего закончится очень и очень печально. Следует соблюдать особую осторожность при больших напряжениях и энергиях! У нас был случай, когда произошло короткое замыкание нескольких таких вот конденсаторов, соединенных параллельно и заряженных до нескольких киловольт. Господа, это было зрелище не для слабонервных! Бабахнуло так, что у меня потом в ушах пол дня звенело! А на стенах лаборатории осела медь от расплавленных проводов! Спешу успокоить, никто не пострадал, но это стало хорошим поводом дополнительно подумать над способами отвода такой гигантской энергии в случае нештатных ситуаций. Кроме того, господа, важно всегда помнить, что конденсаторы блоков питания приборов тоже не могут мгновенно разрядиться после отключения прибора от сети, хотя там, безусловно, должно быть какие-то цепи, предназначенные для их разряда. Но должны быть, это не значит, что они там точно есть . Поэтому в любом случае после отключения любого прибора от сети, прежде чем лезть к нему внутрь, лучше подождать пару минут для разряда всех кондеров. И потом, после снятия крышки, прежде чем лапками хвататься за все подряд, следует сначала померить напряжение на силовых накопительных конденсаторах и при необходимости выполнить их принудительный разряд каким-нибудь резистором. Можно, конечно, просто отверткой замкнуть их выводы, если емкости не слишком большие, но такое делать крайне не рекомендуется! Итак, господа, сегодня мы познакомились с различными методами расчета энергии, запасенной в конденсаторе, а также обсудили, как эти расчеты можно выполнять на практике. На этом потихоньку закругляемся. Всем вам удачи, и до новых встреч! Вступайте в нашу группу Вконтакте Вопросы и предложения админу: This email address is being protected from spambots. You need JavaScript enabled to view it.
Social button for Joomla
К концу этого раздела вы сможете: Большинство из нас видели инсценировки, в которых медицинский персонал использует дефибриллятор для пропускания электрического тока через сердце пациента, чтобы заставить его нормально биться. (Рассмотрите рисунок 1.) Часто реалистично в деталях, человек, применяющий разряд, приказывает другому человеку «сделать на этот раз 400 джоулей». Энергия, подаваемая дефибриллятором, сохраняется в конденсаторе и может регулироваться в зависимости от ситуации. Часто используются единицы СИ – джоули. Менее драматично использование конденсаторов в микроэлектронике, например, в некоторых карманных калькуляторах, для подачи энергии при зарядке аккумуляторов. (См. рис. 1.) Конденсаторы также используются для питания ламп-вспышек на камерах. Рисунок 1. Энергия, запасенная в большом конденсаторе, используется для сохранения памяти электронного калькулятора, когда его батареи заряжаются. (кредит: Kucharek, Wikimedia Commons) Энергия, хранящаяся в конденсаторе, представляет собой электрическую потенциальную энергию и, таким образом, связана с зарядом Q и напряжением V на конденсаторе. Мы должны быть осторожны, применяя уравнение для электрической потенциальной энергии ΔPE = q Δ В к конденсатору. Помните, что ΔPE — это потенциальная энергия заряда q прохождение напряжения Δ В . Но конденсатор начинает с нулевого напряжения и постепенно достигает своего полного напряжения по мере зарядки. Первый заряд, помещенный на конденсатор, испытывает изменение напряжения Δ В = 0, поскольку в незаряженном состоянии конденсатор имеет нулевое напряжение. Окончательный заряд, помещенный на конденсатор, испытывает Δ В = В , поскольку на конденсаторе теперь есть полное напряжение В . Среднее напряжение на конденсаторе в процессе зарядки равно [latex]\frac{V}{2}\\[/latex], поэтому среднее напряжение при полной зарядке q это [латекс]\frac{V}{2}\\[/латекс]. Таким образом, энергия, запасенная в конденсаторе, E cap , равна [latex]E_{\text{cap}}=\frac{QV}{2}\\[/latex], где Q – заряд на конденсатор с напряжением В подается В. (Обратите внимание, что энергия равна не QV , а [латекс]\frac{QV}{2}\\[/латекс].) Заряд и напряжение связаны с емкостью C конденсатора как Q = CV , поэтому выражение для 92}{2C}\\[/latex], , где Q — заряд, V — напряжение, а C — емкость конденсатора. Энергия в джоулях для заряда в кулонах, напряжения в вольтах и емкости в фарадах. В дефибрилляторе доставка большого заряда коротким импульсом к набору пластин на груди человека может спасти жизнь. Сердечный приступ у человека мог возникнуть в результате быстрого, нерегулярного сокращения сердца — сердечной или желудочковой фибрилляции. Применение сильного разряда электрической энергии может остановить аритмию и позволить кардиостимулятору вернуться к нормальной работе. Сегодня в машинах скорой помощи обычно есть дефибриллятор, который также использует электрокардиограмму для анализа характера сердцебиения пациента. Автоматические наружные дефибрилляторы (АНД) можно найти во многих общественных местах (рис. 2). Они предназначены для использования мирянами. Устройство автоматически диагностирует состояние сердца пациента, а затем применяет разряд с соответствующей энергией и формой волны. СЛР рекомендуется во многих случаях перед использованием AED. Рисунок 2. Автоматические наружные дефибрилляторы можно найти во многих общественных местах. {2}}{2C}\\[/latex], где Q — заряд, В — напряжение, C — емкость конденсатора. Энергия выражается в джоулях, если заряд – в кулонах, напряжение – в вольтах, а емкость – в фарадах. дефибриллятор: устройство, используемое для подачи электрического разряда в сердце жертвы сердечного приступа с целью восстановления нормального ритма сердца 1. (a) 405 Дж; (б) 90,0 мКл 2. (а) 3,16 кВ; (б) 25,3 мКл 4. (а) 1,42×10 −5 Кл, 6,38×10 −5 Дж; (б) 8,46×10 −5 Кл, 3,81×10 −4 Дж 5. (а) 4,43×10 –12 F; (б) 452 В; (в) 4,52 × 10 –7 Дж 8. (а) 133 F; (b) Такой конденсатор будет слишком большим, чтобы его можно было перевозить на грузовике. Размер конденсатора был бы огромным; (c) Неразумно предполагать, что конденсатор может хранить необходимое количество энергии. К концу этого раздела вы сможете: Большинство из нас видели инсценировки, в которых медицинский персонал использует дефибриллятор для пропускания электрического тока через сердце пациента, чтобы заставить его нормально биться. (Рассмотрите рисунок 1.) Часто реалистично в деталях, человек, применяющий разряд, приказывает другому человеку «сделать на этот раз 400 джоулей». Энергия, подаваемая дефибриллятором, сохраняется в конденсаторе и может регулироваться в зависимости от ситуации. Часто используются единицы СИ – джоули. Менее драматично использование конденсаторов в микроэлектронике, например, в некоторых карманных калькуляторах, для подачи энергии при зарядке аккумуляторов. (См. рис. 1.) Конденсаторы также используются для питания ламп-вспышек на камерах. Рисунок 1. Энергия, запасенная в большом конденсаторе, используется для сохранения памяти электронного калькулятора, когда его батареи заряжаются. (кредит: Kucharek, Wikimedia Commons) Энергия, хранящаяся в конденсаторе, представляет собой электрическую потенциальную энергию и, таким образом, связана с зарядом Q и напряжением V на конденсаторе. Мы должны быть осторожны, применяя уравнение для электрической потенциальной энергии ΔPE = q Δ В к конденсатору. Помните, что ΔPE — это потенциальная энергия заряда q прохождение напряжения Δ В . Но конденсатор начинает с нулевого напряжения и постепенно достигает своего полного напряжения по мере зарядки. Первый заряд, помещенный на конденсатор, испытывает изменение напряжения Δ В = 0, поскольку в незаряженном состоянии конденсатор имеет нулевое напряжение. Окончательный заряд, помещенный на конденсатор, испытывает Δ В = В , поскольку на конденсаторе теперь есть полное напряжение В . Среднее напряжение на конденсаторе в процессе заряда 9 В.0005 V2\frac{V}{2}\\2V , поэтому среднее напряжение при полной зарядке q равно V2\frac{V}{2}\\2V . Таким образом, энергия, запасенная в конденсаторе, E cap , равна Ecap=QV2E _{\text{cap}}=\frac{QV}{2}\\Ecap=2QV , где Q — заряд конденсатора при напряжении В . (Обратите внимание, что энергия равна не QV , а QV2\frac{QV}{2}\\2QV 92}{2C}\\Ecap=2QV=2CV2=2CQ2 ,
где Ом — заряд, В — напряжение, а С — емкость конденсатора. Энергия в джоулях для заряда в кулонах, напряжения в вольтах и емкости в фарадах. В дефибрилляторе доставка большого заряда короткой очередью к набору пластин на груди человека может спасти жизнь. Сердечный приступ у человека мог возникнуть в результате быстрого, нерегулярного сокращения сердца — сердечной или желудочковой фибрилляции. Применение сильного разряда электрической энергии может остановить аритмию и позволить кардиостимулятору вернуться к нормальной работе. Сегодня в машинах скорой помощи обычно есть дефибриллятор, который также использует электрокардиограмму для анализа характера сердцебиения пациента. Автоматические наружные дефибрилляторы (АНД) можно найти во многих общественных местах (рис. 2). Они предназначены для использования мирянами. Устройство автоматически диагностирует состояние сердца пациента, а затем применяет разряд с соответствующей энергией и формой волны. СЛР рекомендуется во многих случаях перед использованием AED. Рис. 2. Автоматические наружные дефибрилляторы можно найти во многих общественных местах. Эти портативные устройства дают словесные инструкции по использованию в первые несколько важных минут для человека, страдающего сердечным приступом. (кредит: Owain Davies, Wikimedia Commons) Сердечный дефибриллятор выдает 4,00 × 10 2 Дж энергии, разряжая конденсатор первоначально при 1,00 × 10 4 В. Какова его емкость? 9{-6}\text{ F}\\\text{ }&=&8.00\mu\text{F}\end{массив}\\C ==V22Ecap=(1.00×104 В)22 (4,00×102 Дж)=8,00×10−6 F8,00 мкФ Это довольно большая, но управляемая емкость при 1,00 × 10 4 В.
U — напряжение (разность потенциалов), до которого заряжен конденсаторВам могут также быть полезны следующие сервисы Калькуляторы (физика) Калькулятор вычисления скорости, времени и расстояния Калькулятор вычисления ускорения, скорости и перемещения Калькулятор вычисления времени движения Калькулятор времени Второй закон Ньютона. Калькулятор вычисления силы, массы и ускорения. Закон всемирного тяготения. Калькулятор вычисления силы притяжения, массы и расстояния. Импульс тела. Калькулятор вычисления импульса, массы и скорости Импульс силы. Калькулятор вычисления импульса, силы и времени действия силы. Вес тела. Калькулятор вычисления веса тела, массы и ускорения свободного падения Калькулятор отражения и преломления света Калькулятор Закона Ома Калькулятор Закона Кулона Калькулятор напряженности E электрического поля Калькулятор нахождения точечного электрического заряда Q Калькулятор нахождения силы F действующей на заряд q Калькулятор вычисления расстояния r от заряда q Калькулятор вычисления потенциальной энергии W заряда q Калькулятор вычисления потенциала φ электростатического поля Калькулятор вычисления электроемкости C проводника и сферы Калькулятор вычисления электроемкости C плоского, цилиндрического и сферического конденсаторов Калькулятор вычисления напряженности E электрического поля плоского, цилиндрического и сферического конденсаторов Калькулятор вычисления напряжения U (разности потенциалов) плоского, цилиндрического и сферического конденсаторов Калькулятор вычисления расстояния d между пластинами в плоском конденсаторе Калькулятор вычисления площади пластины (обкладки) S в плоском конденсаторе Калькулятор вычисления энергии W заряженного конденсатора
Калькулятор вычисления энергии W заряженного конденсатора.
Калькулятор вычисления объемной плотности энергии w электрического поля для плоского, цилиндрического и сферического конденсаторов Калькуляторы по астрономии Вес тела на других планетах Ускорение свободного падения на планетах Солнечной системы и их спутниках Конвертеры величин Конвертер единиц длины Конвертер единиц скорости Конвертер единиц ускорения Цифры в текст Калькуляторы (Теория чисел) Калькулятор выражений Калькулятор упрощения выражений Калькулятор со скобками Калькулятор разложения числа на простые множители Калькулятор НОД и НОК Калькулятор НОД и НОК по алгоритму Евклида Калькулятор НОД и НОК для любого количества чисел Представление многозначных чисел в виде суммы разрядных слагаемых Калькулятор деления числа в данном отношении Калькулятор процентов Калькулятор перевода числа с Е в десятичное Калькулятор экспоненциальной записи чисел Калькулятор нахождения факториала числа Калькулятор нахождения логарифма числа Калькулятор квадратных уравнений Калькулятор остатка от деления Калькулятор корней с решением Калькулятор нахождения периода десятичной дроби Калькулятор больших чисел Калькулятор округления числа Калькулятор свойств корней и степеней Калькулятор комплексных чисел Калькулятор среднего арифметического Калькулятор арифметической прогрессии Калькулятор геометрической прогрессии Калькулятор модуля числа Калькулятор абсолютной погрешности приближения Калькулятор абсолютной погрешности Калькулятор относительной погрешности Дроби Калькулятор интервальных повторений Учим дроби наглядно Калькулятор сокращения дробей Калькулятор преобразования неправильной дроби в смешанную Калькулятор преобразования смешанной дроби в неправильную Калькулятор сложения, вычитания, умножения и деления дробей Калькулятор возведения дроби в степень Калькулятор перевода десятичной дроби в обыкновенную Калькулятор перевода обыкновенной дроби в десятичную Калькулятор сравнения дробей Калькулятор приведения дробей к общему знаменателю Калькуляторы (тригонометрия) Калькулятор синуса угла Калькулятор косинуса угла Калькулятор тангенса угла Калькулятор котангенса угла Калькулятор секанса угла Калькулятор косеканса угла Калькулятор арксинуса угла Калькулятор арккосинуса угла Калькулятор арктангенса угла Калькулятор арккотангенса угла Калькулятор арксеканса угла Калькулятор арккосеканса угла Калькулятор нахождения наименьшего угла Калькулятор определения вида угла Калькулятор смежных углов Калькуляторы систем счисления Калькулятор перевода чисел из арабских в римские и из римских в арабские Калькулятор перевода чисел в различные системы счисления Калькулятор сложения, вычитания, умножения и деления двоичных чисел Системы счисления теория N2 | Двоичная система счисления N3 | Троичная система счисления N4 | Четырехичная система счисления N5 | Пятеричная система счисления N6 | Шестеричная система счисления N7 | Семеричная система счисления N8 | Восьмеричная система счисления N9 | Девятеричная система счисления N11 | Одиннадцатиричная система счисления N12 | Двенадцатеричная система счисления N13 | Тринадцатеричная система счисления N14 | Четырнадцатеричная система счисления N15 | Пятнадцатеричная система счисления N16 | Шестнадцатеричная система счисления N17 | Семнадцатеричная система счисления N18 | Восемнадцатеричная система счисления N19 | Девятнадцатеричная система счисления N20 | Двадцатеричная система счисления N21 | Двадцатиодноричная система счисления N22 | Двадцатидвухричная система счисления N23 | Двадцатитрехричная система счисления N24 | Двадцатичетырехричная система счисления N25 | Двадцатипятеричная система счисления N26 | Двадцатишестеричная система счисления N27 | Двадцатисемеричная система счисления N28 | Двадцативосьмеричная система счисления N29 | Двадцатидевятиричная система счисления N30 | Тридцатиричная система счисления N32 | Тридцатидвухричная система счисления N33 | Тридцатитрехричная система счисления N34 | Тридцатичетырехричная система счисления N35 | Тридцатипятиричная система счисления N36 | Тридцатишестиричная система счисления Калькуляторы площади геометрических фигур Площадь квадрата Площадь прямоугольника КАЛЬКУЛЯТОРЫ ЗАДАЧ ПО ГЕОМЕТРИИ Калькуляторы (Комбинаторика) Калькулятор нахождения числа перестановок из n элементов Калькулятор нахождения числа сочетаний из n элементов Калькулятор нахождения числа размещений из n элементов Калькуляторы линейная алгебра и аналитическая геометрия Калькулятор сложения и вычитания матриц Калькулятор умножения матриц Калькулятор транспонирование матрицы Калькулятор нахождения определителя (детерминанта) матрицы Калькулятор нахождения обратной матрицы Длина отрезка. Онлайн калькулятор расстояния между точками Онлайн калькулятор нахождения координат вектора по двум точкам Калькулятор нахождения модуля (длины) вектора Калькулятор сложения и вычитания векторов Калькулятор скалярного произведения векторов через длину и косинус угла между векторами Калькулятор скалярного произведения векторов через координаты Калькулятор векторного произведения векторов через координаты Калькулятор смешанного произведения векторов Калькулятор умножения вектора на число Калькулятор нахождения угла между векторами Калькулятор проверки коллинеарности векторов Калькулятор проверки компланарности векторов Генератор Pdf с примерами Тренажёры решения примеров Тренажёр таблицы умножения Тренажер счета для дошкольников Тренажер счета на внимательность для дошкольников Тренажер решения примеров на сложение, вычитание, умножение, деление. Найди правильный ответ. Тренажер решения примеров с разными действиями Тренажёры решения столбиком Тренажёр сложения столбиком Тренажёр вычитания столбиком Тренажёр умножения столбиком Тренажёр деления столбиком с остатком Калькуляторы решения столбиком Калькулятор сложения, вычитания, умножения и деления столбиком Калькулятор деления столбиком с остатком Генераторы Генератор примеров по математике Генератор случайных чисел Генератор паролей Энергия конденсатора
Энергия, хранящаяся в конденсаторах | Физика
Цели обучения
Концептуальные вопросы
Задачи и упражнения
9,00 × 10 3 В? б) Найдите количество накопленного заряда. Глоссарий
Избранные решения задач и упражнений
Энергия, хранящаяся в конденсаторах | Физика |
Цели обучения
Пример 1. Емкость дефибриллятора сердца
Обсуждение
Резюме раздела
Концептуальные вопросы
- Как изменяется энергия, содержащаяся в заряженном конденсаторе, когда в него вставлен диэлектрик, если предположить, что конденсатор изолирован и его заряд постоянен? Означает ли это, что работа была сделана?
- Что происходит с энергией, запасенной в конденсаторе, подключенном к батарее, когда в него вставлен диэлектрик? Была ли работа выполнена в процессе?
Задачи и упражнения
- (a) Какая энергия хранится в конденсаторе 10,0 мкФ сердечного дефибриллятора, заряженного до
9,00 × 10 3 В? б) Найдите количество накопленного заряда.
- При операции на открытом сердце для дефибрилляции сердца требуется гораздо меньшее количество энергии. а) Какое напряжение приложено к конденсатору 8,00 мкФ сердечного дефибриллятора, хранящего 40,0 Дж энергии? б) Найдите количество накопленного заряда.
- Конденсатор емкостью 165 мкФ используется вместе с двигателем. Сколько энергии запасается в нем при подаче 119 В?
- Предположим, у вас есть батарея на 9,00 В, конденсатор на 2,00 мкФ и конденсатор на 7,40 мкФ. а) Найдите запасенный заряд и энергию, если конденсаторы соединены с батареей последовательно. (b) Сделайте то же самое для параллельного соединения.
- Нервный физик опасается, что две металлические полки его книжного шкафа с деревянной рамой могут получить высокое напряжение, если они будут заряжены статическим электричеством, возможно, вызванным трением. а) Какова вместимость пустых полок, если их площадь 1,00 × 10 2 м 2 и находятся на расстоянии 0,200 м друг от друга? б) Чему равно напряжение между ними, если на них поместить противоположные заряды величиной 2,00 нКл? (c) Чтобы показать, что это напряжение представляет небольшую опасность, рассчитайте накопленную энергию.
- Покажите, что для данного диэлектрического материала максимальная энергия, которую может хранить конденсатор с плоскими пластинами, прямо пропорциональна объему диэлектрика (объем = A · d ). Обратите внимание, что приложенное напряжение ограничено диэлектрической прочностью.
- Создайте свою собственную задачу. Рассмотрите дефибриллятор сердца, аналогичный описанному в примере 1. Постройте задачу, в которой вы исследуете заряд, хранящийся в конденсаторе дефибриллятора, как функцию накопленной энергии. Среди вещей, которые необходимо учитывать, — приложенное напряжение и должно ли оно меняться в зависимости от подаваемой энергии, диапазон вовлеченных энергий и емкость дефибриллятора. Вы также можете рассмотреть гораздо меньшую энергию, необходимую для дефибрилляции во время операции на открытом сердце, как вариант этой проблемы.
- Необоснованные результаты. (a) В определенный день для запуска двигателя грузовика требуется 9,60 × 10 3 Дж электроэнергии. Вычислите емкость конденсатора, способного хранить такое количество энергии при напряжении 12,0 В. (b) Что неразумного в этом результате? (c) Какие предположения ответственны?
Глоссарий
дефибриллятор: устройство, используемое для подачи электрического разряда в сердце жертвы сердечного приступа с целью восстановления нормального ритма сердца
Избранные решения задач и упражнений
1. (а) 405 Дж; (б) 90,0 мКл
2. (а) 3,16 кВ; (б) 25,3 мКл
4. (а) 1,42×10 −5 Кл, 6,38×10 −5 Дж; (б) 8,46×10 −5 Кл, 3,81×10 −4 Дж
5. (а) 4,43×10 –12 F; (б) 452 В; (в) 4,52 × 10 –7 Дж
8. (а) 133 F; (b) Такой конденсатор будет слишком большим, чтобы его можно было перевозить на грузовике. Размер конденсатора был бы огромным; (c) Неразумно предполагать, что конденсатор может хранить необходимое количество энергии.