Трёхфазное напряжение: концепция, преимущества, особенности
Содержание
- 1 Возникновение концепции трёхфазного напряжения
- 2 Преимущество трёх фаз
- 3 Причина проигрыша Эдисона
- 4 Почему постоянный ток безопаснее
Трёхфазное напряжение – это система электрического питания, где используются три фазные линии, со сдвигом по фазе 120 градусов. Это обеспечивает равномерные условия для многих приложений, повышается эффективность.
Возникновение концепции трёхфазного напряжения
Отцом трёхфазного напряжения считают Доливо-Добровольского в России и Николу Теслу – в остальном мире. События, относящиеся к эпохе возникновения предмета спора, происходили в 80-е годы XIX века. Никола Тесла продемонстрировал первый двухфазный двигатель, работая на компанию, где налаживал электрические установки разнообразного назначения. Заинтересованность явлением электризации шерсти домашнего кота привела учёного к великим открытиям. Прогуливаясь в парке с приятелем, Никола Тесла осознал, что сумеет реализовать на практике теорию Араго о вращающемся магнитном поле, причём понадобятся:
- Две фазы.
- Сдвиг между ними на угол 90 градусов.
Чтобы показать великое значение открытия, заметим, что трансформатор Яблочкова в указанное время не обрел массовой известности, а опыты Фарадея по магнитной индукции благополучно забыли, записав лишь формулу закона. Мир не хотел знать про:
- переменный ток;
- фазу;
- реактивная мощность.
Генераторы (альтернаторы) и динамо спрямляли напряжение при помощи механического коммутатора. Подобным образом прозябала вся скудная на тот момент отрасль электричества. Эдисон лишь начинал изобретать, никто пока толком не знал про лампочку накала. Кстати, в РФ считают, что устройство изобрёл Лодыгин.
Идея Теслы выглядела революционной, неизвестным оставалось, как получить две фазы с заданным межфазным сдвигом. Молодого учёного мало интересовал вопрос. Он читал про обратимость электрических машин и излучал уверенность, что легко построит генератор, соответствующим образом расположив обмотки. По приводу затруднений не возникало. На начало 80-х годов активно использовался пар, демонстрационную модель предполагалось питать от динамо.
Изображение 3 фаз
Тесла не задавался необходимостью получить определённую частоту. Исследования не проводились, требовалось просто заставить ротор вращаться. Идея реализовалась через токосъёмные кольца. На тот момент коллекторные двигатели постоянного тока снабжались подобными контактами, вывод Теслы неудивителен. Интереснее объяснить выбор количества фаз.
Преимущество трёх фаз
экспериментаторы в голос утверждают о преимуществе трёх фаз перед двумя, но требуется объяснение. Сразу лезут в голову мысли про КПД, вращающий момент и прочее. Но Тесла рисовал в блокнотике сотни конструкций, очевидно, сумел бы расставить полюса, чтобы добиться нужных параметров. Вывод – дело не в конструкции приборов.
Сейчас напряжение 380 В передаётся лишь по трём проводам. Этого нельзя было добиться в первоначальном варианте Николы Теслы. В 1883 году Эдисон массу сил потратил на попытки использовать трёхжильный провод. Очевидно, слышал о демонстрации, устроенной Николой Теслой, и понял опасность ситуации. В цивилизованном мире основную прибыль получает владелец патента, зачем известному изобретателю вытаскивать на свет способного инженера?
Логика Эдисона проста: пользователи увидят, что трёхжильные кабели более дешёвые, нежели четырёхжильные, и откажутся от использования новинок Николы Теслы. Несложно догадаться, что хитроумный план изобретателя цоколя для лампочек накала провалился. И с треском. А виной стал… Доливо-Добровольский. Система Николы Теслы для создания двух фаз требовала наличия четырёх проводов. Одновременно Доливо-Добровольский предлагал передать больше энергии посредством трёх.
Дело здесь в симметрии. Линейные напряжения 380 В в каждый момент оставляют альтернативу для выбора. К примеру, ток с первой фазы способен утечь на вторую или третью. В зависимости от присутствия подходящего потенциала. В результате получается баланс. Если объединить две фазы системы Николы Тесла, получится винегрет. Как следствие, нейтраль в системе Доливо-Добровольского допустимо убрать, если нагрузка симметричная – как часто происходит на практике.
В результате между проводами получается больший вольтаж, что снижает по каждому проходящий ток при прежней мощности. Причём удаётся порой использовать лишь три линии, сказанное касается большинства предприятий. Очевидны выгоды и при создании местных подстанций: нейтраль вторичной обмотки заземляется тут же, не нужно тянуть лишний провод от гидроэлектростанции. Указанные причины стали преимуществами сетей трёхфазного напряжения, сегодня доминирующие. Провода Теслы легко модернизируются на три фазы.
Причина проигрыша Эдисона
Часто встречается мнение, что система Теслы оказалась лучше, поэтому Эдисон проиграл. Сложно сказать, сколько долларов потерял последний, но Николу обвёл по современным меркам на 4,5 млн. долларов. Инфляция! Авторы склонны считать, что Эдисон получил своё. Никола Тесла умел доказать преимущества постоянного тока. К примеру, последний меньше склонен коронировать на проводах, амплитуда не содержит резких выбросов.
Сегодня доказано, что постоянный ток на дальние расстояния передавать выгоднее. Это исключает из рассмотрения реактивные сопротивления сети – индуктивность и ёмкость. Что значительно снижает нестабильную реактивную мощность. XXI век способен стать вторым рождением постоянного тока для передачи его на дальние расстояния. Но смех вызывает неумение Эдисона передавать энергию. Тесла вправе был помочь, тогда приборы постоянного тока сегодня использовались бы наравне с потребителями переменного. Для коллекторных двигателей это лучше – растут КПД и крутящий момент.
Выходит, постоянный ток выгодно передавать. Эдисон попросту не смог найти правильного решения, пытался взять задачу нахрапом, не погружаясь в тылы. Эдисон был чистым практиком и не умел найти столь ухищрённых решений, как преобразователи. А ведь все генераторы середины XIX века имели встроенный коммутатор для спрямления. Оставалось лишь подключить к линии, а на приёмной стороне провести преобразование. И все! Никола блестяще наказал Эдисона, доказывая наличие в мире некой силы, управляющей ходом истории.
переменный ток избрали по причине наличия мощного средства для передачи. Речь о трансформаторе. Впервые сконструированный в 1831 году (либо раньше) Майклом Фарадеем, этот незаменимый элемент современной техники остался без заслуженного внимания. Интерес к устройству вернул Генрих Румкорф пятнадцатью годами позднее, использовав динамо для получения разряда в искровом промежутке. Повышающий трансформатор значительно усиливал эффект. Это прямиком открыло учёным путь к постановке опытов, но суть преобразования не получила заслуженного внимания.
Вместо этого учёные упорно бились над постоянным током. Создавая для него двигатели, приборы освещения и генераторы. Удивительно, зная об обратимости электрических машин, не придумали раньше, как создать униполярный мотор, стоящий сегодня в ручных миксерах и блендерах. Фактически двигатели бытового назначения однофазные. И лишь маленькая часть работает на постоянном токе.
Укажем неявное преимущество. У постоянного тока выше предел безопасности. Возможным видится сделать промышленные сети безвредным для людей. Рассмотрим утверждение подробнее, доводы не очевидны неискушённому читателю.
Смещение и генерация 3-фазного напряжения
Почему постоянный ток безопаснее
Прожжённые электрики говорят, что удар током 220 В не слишком опасен, главное – не попасть под линейное трёхфазное напряжение. Оно выше примерно в корень из трёх раз (в пределах 1,7). Линейным называется напряжение между двумя фазами. За счёт сдвига между ними в 120 градусов получается указанный любопытный эффект. Невежды спрашивают, какая разница при сдвиге 90 градусов. Ответ дан вначале – три фазы образуют симметричную систему. Со сдвигом 90 понадобилось бы четыре.
В результате каждым линейным напряжением питают по полюсу, что существенно упрощает их размножение, когда требуется достичь большой мощности. К примеру, в тяговых двигателях пароходов, где требуется чрезвычайно плавно изменять усилие и приходится применять регуляторы скорости вращения вала. Случается, трёх и даже шести полюсов оказывается мало. Лишь коллекторному двигателю пылесоса достаточно двух.
Итак, между фазами имеется 308 В. Безопасным выглядит, если повысить частоту линии передач до 700 Гц. Тесла установил, что с указанного значения ярко проявляется скин-эффект, ток не проникает глубоко в тело. Следовательно, не наносит существенных повреждений человеку. Учёный демонстрировал языки молний на теле при гораздо больших напряжениях и говорил, что это полезно для здоровья, здорово очищает кожу.
Частота 700 Гц (или выше) не пущена в обиход – при этом существенно увеличивались потери трансформаторов. На момент принятия решения о номиналах первой ГЭС переменного тока не существовало наработок по изготовлению электротехнических материалов. Подробнее предлагаем прочитать в теме электронных трансформаторов. Нет надобности дублировать информацию. По причине отсутствия нужных материалов потери на перемагничивание сильно росли с увеличением частоты. Сегодня подобное не вызывает затруднений на уровне технологии.
Встаёт сложность – экранирование. В годы первых попыток передачи энергии не знали об излучении. Радио делало первые шаги в 90-х годах XIX века. В действительности рост частоты сопровождается резким повышением выброса энергии в пространство. И провода требовалось экранировать, это дорого, требует наличия мощных диэлектриков. Не факт, что современные сети сумели бы решить задачу.
Тесла предлагал передавать энергию через эфир. Для чего построил башню Ворденклиф. Но… промышленники оказались заинтересованы в продаже меди на изготовление проводов и на этом основании отказали учёному в финансировании. Но главное – грядёт время, когда трёхфазное напряжение уйдёт в небытие или будет получаться из преобразователей, и сам Тесла даст ответ, как это сделать.
Точнее, ответ дадут многочисленные патенты и идеи изобретателя. Недаром записи были немедленно изъяты после смерти учёного и тщательно засекречены. Рекомендуем взяться за изучение кавитационных двигателей. Пора мечтать, что машины станут ездить на растительном масле, не загрязняя окружающую среду отвратительным дымом и гарью. Обратите внимание, что все секреты лежат на поверхности и ждут желающего их раскрыть. Возможно, кто-то из читателей сумеет сделать это первым?
Сравнение соединений «звезда» и «треугольник» :: информационная статья компании Полимернагрев
Соединения «звезда» и «треугольник» — это два типа соединений в трехфазных цепях. Соединение «звезда» — это 4-проводная система, а соединение «треугольник» — 3-проводная система.
Прежде чем вдаваться в подробности о соединении звездой, соединением треугольником и сравнивать их, давайте расскажем подробнее об однофазной и трехфазной электроэнергии.
Разница между однофазными и трехфазными источниками питания
Почти 90% электроэнергии, которую мы используем в повседневной жизни, поступает от переменного источника. Будь то наша бытовая техника, офисное оборудование или промышленное оборудование, мы используем источник переменного тока для питания этих устройств.
Если вы новичок, то переменный ток— это тип электроэнергии, в котором электрический ток периодически меняется, как по величине, так и по направлению. Кроме того, в зависимости от сферы использования, мощность переменного тока может подаваться либо в однофазной, либо в трехфазной системе.
Однофазная система питания переменного тока состоит из двух проводов, известных как фаза и нейтрального провода. В случае трехфазной системы вы используете либо три провода (нет нейтрали в трехпроводном трехфазном питании, и все три провода являются фазами), либо четыре провода для передачи питания.
Давайте теперь углубимся в детали однофазных и трехфазных систем, а также увидим разницу между однофазными и трехфазными источниками питания.
Что такое однофазный источник питания?
Как упоминалось ранее, в однофазном источнике питания мощность распределяется с использованием только двух проводов, называемых фазой и нейтралью. Поскольку мощность переменного тока принимает форму синусоидальной волны, напряжение в однофазной сети достигает максимума при 90 ° во время положительного цикла и снова при 270 ° во время отрицательного цикла.
Фазный провод несет ток к нагрузке, а нейтральный провод обеспечивает обратный путь тока. Обычно однофазное напряжение составляет 220 В, а частота — 50 Гц (это зависит от того, где вы живете).
Поскольку напряжение в однофазном источнике питания увеличивается и падает (пики и провалы), постоянная мощность не может подаваться на нагрузку.
Преимущества однофазного источника питания
- Это очень распространенная форма источника питания для самых малых требований к мощности. Почти все бытовые электросети являются однофазными, поскольку бытовым приборам требуется небольшое количество энергии для работы освещения, вентиляторов, охладителей, обогревателей, небольших кондиционеров и т.
- Конструкция и работа однофазной системы электроснабжения часто просты.
- В зависимости от региона однофазного питания достаточно для нагрузки до 2500 Вт.
Недостатки
- Небольшие однофазные двигатели (обычно менее 1 кВт) не могут запускаться напрямую с помощью однофазного источника питания, так как для двигателя недостаточно начального крутящего момента. Таким образом, для правильной работы необходимы дополнительные схемы, такие как пускатели двигателей (например, пусковые конденсаторы в вентиляторах и насосах).
- Тяжелые нагрузки, такие как промышленные двигатели, некоторые мощные промышленные нагреватели и другое оборудование, не могут работать от однофазной сети.
Что такое трехфазное электропитание?
Трехфазный источник питания состоит из трех силовых проводов (или трех фаз). Кроме того, в зависимости от типа цепи (которых существует два типа: звезда и треугольник), у вас может быть или не быть нейтрального провода.
В трехфазной системе электропитания каждый сигнал мощности переменного тока находится в противофазе друг с другом на 120 0 .В трехфазном источнике питания в течение одного цикла 360 0 каждая фаза достигла бы пикового значения напряжения дважды. Кроме того, мощность никогда не падает до нуля. Этот постоянный поток мощности и способность выдерживать более высокие нагрузки делают трехфазное питание подходящим для промышленных и коммерческих сфер.
Как упоминалось ранее, в трехфазном источнике питания существует два типа конфигураций цепей. Это Треугольник и Звезда. В конфигурации треугольника нулевой провод отсутствует, и все системы высокого напряжения используют эту конфигурацию.
Что касается конфигурации «звезда», то есть нейтральный провод (общая клемма/точка цепи «звезда») и заземляющий провод (иногда).
Напряжение между двумя фазами в трехфазном источнике питания составляет 380 В, а между фазой и нейтралью — 220 В. Следовательно, вы можете обеспечить три однофазных источника питания, используя трехфазный источник питания (так это обычно делается для жилых помещений и малых предприятий).
ПРИМЕЧАНИЕ. Существует разница между прямым трехфазным питанием и трехфазным питанием, разделенным на три однофазных источника питания.
Преимущества трехфазного питания
- При одинаковой мощности трехфазный источник питания использует меньше проводов, чем однофазный источник питания.
- Трехфазное питание обычно является предпочтительной сетью для коммерческих и промышленных нагрузок. Хотя в некоторых странах (например, в большинстве европейских стран) даже бытовое электроснабжение является трехфазным.
- Вы можете очень легко запускать большие нагрузки.
- Большие трехфазные двигатели (обычно используемые в промышленности) не требуют пускателя, поскольку разность фаз в трехфазном источнике питания будет достаточной, чтобы обеспечить достаточный начальный крутящий момент для запуска двигателя.
- Почти вся мощность вырабатывается в трехфазном питании. Хотя существует концепция многофазного питания, исследования показали, что трехфазный источник питания более экономичен и прост в производстве.
- Общий КПД трехфазного источника питания выше по сравнению с однофазным источником питания при той же нагрузке.
Разница между однофазными и трехфазными источниками питания
-
Однофазная система
состоит всего из двух проводников (проводов): один называется фазным (иногда линейным, токоведущим или горячим), по которому протекает ток, а другой называется нейтральным, который действует как обратный путь для замыкания цепи. -
В трехфазной системе у нас есть как минимум три проводника или провода, несущие переменное напряжение. Более экономично передавать мощность с использованием трехфазного источника питания по сравнению с однофазным источником питания, поскольку трехфазный источник питания может передавать в три раза больше мощности всего с тремя проводниками по сравнению с двухпроводным однофазным источником питания.
Следовательно, большая часть вырабатываемой и распределяемой электроэнергии на самом деле является трехфазной (но большинство домохозяйств будет получать однофазное питание).
Давайте теперь выделим вкратце основные пункты различий между однофазными и трехфазными источниками питания.
- В однофазном источнике питания питание подается по двум проводам, называемым фазой и нейтралью. При трехфазном питании питание подается по трем проводам (четыре провода, если включен нейтральный провод).
- Напряжение однофазного питания составляет 220 В, а трехфазного — 380 В.
- Для одинаковой мощности однофазного источника питания требуется больше проводов, чем для трехфазного источника питания.
- КПД трехфазного источника питания значительно выше, чем у однофазного источника питания, и мощность передачи также больше.
- Поскольку в однофазном источнике питания используется только два провода, общая сложность сети меньше по сравнению с четырехпроводным трехфазным источником питания (включая нейтраль).
Соединение Звезда и Треугольник
Трехфазная система электроснабжения может быть организована двумя способами. Это: звезда (также называемая Y) и треугольник (Δ) .
Соединение типа Звезда
При соединении звездой 3-фазные провода подключаются к общей точке или к точке звезды, а нейтраль берется из этой общей точки.
Если используются только трехфазные провода, то это называется трехфазной трехпроводной системой. Если также используется нейтральная точка (что часто бывает), то это называется 3-фазной 4-проводной системой. На следующем изображении показано типичное соединение звездой.
Соединение треугольником
В соединении треугольником есть только 3 провода для распределения, и все 3 провода являются фазами (в соединении треугольником нет нейтрали). На следующем изображении показано типичное соединение типа «Треугольник».
Сравнение соединений «звезда» и «треугольник»
Давайте узнаем больше об этих соединениях, используя следующее сравнение соединений «звезда» и «треугольник».
Соединение звездой (Y) |
Соединение треугольником (Δ) |
---|---|
Соединение «звезда» — это 4-проводное соединение (в некоторых случаях 4-й провод не является обязательным). |
Соединение треугольником представляет собой 3-проводное соединение. |
Возможны два типа систем соединения звездой: 4-проводная 3-фазная система и 3-проводная 3-фазная система. |
В соединении треугольником возможна только 3-х проводная 3-х фазная система. |
Из 4 проводов 3 провода являются фазами, а 1 провод — нейтралью (которая является общей точкой 3 проводов). |
Все 3 провода являются фазами соединения треугольником. |
При соединении звездой один конец всех трех проводов подключается к общей точке в форме буквы Y, так что все три открытых конца трех проводов образуют три фазы, а общая точка образует нейтраль. |
В соединении треугольником каждый провод соединяется с двумя соседними проводами в форме треугольника (Δ), и все три общие точки соединения образуют три фазы. |
Общая точка соединения звездой называется Нейтральной. |
В соединении треугольником нет нейтрали |
Линейное напряжение (напряжение между любыми двумя фазами) и фазное напряжение (напряжение между любой фазой и нейтралью) различаются. |
Линейное напряжение и фазное напряжение совпадают. |
Линейное напряжение равно трехкратному фазному напряжению, т.е. VL = √3 VP. Здесь VL — линейное напряжение, а VP — фазное напряжение. |
Линейное напряжение равно фазному напряжению, т.е. VL = VP. |
При соединении звездой вы можете использовать два разных напряжения, поскольку VL и VP различаются. Например, в системе 220/380 В напряжение между любым фазным проводом и нейтральным проводом составляет 220 В, а напряжение между любыми двумя фазами составляет 380 В. |
В соединении треугольником мы получаем только одну величину напряжения. |
Линейный ток и фазный ток одинаковы. |
Линейный ток в три раза больше фазного тока. |
В соединении звездой IL = IP. Здесь IL — линейный ток, а IP — фазный ток. |
В соединении треугольником IL = √3 IP |
Полную трехфазную мощность в соединении звездой можно рассчитать, используя следующие формулы. |
Общая трехфазная мощность в соединении треугольником может быть рассчитана с использованием следующих формул. |
Поскольку линейное напряжение и фазное напряжение различны (VL = √3 VP), изоляция, необходимая для каждой фазы, меньше при соединении звездой. |
При соединении треугольником линейное и фазное напряжения одинаковы, поэтому для отдельных фаз требуется дополнительная изоляция. |
Обычно соединение «Звезда» используется как в передающих, так и в распределительных сетях (либо с однофазным питанием, либо с трехфазным). |
Соединение Треугольник обычно используется в распределительных сетях. |
Поскольку требуется меньше изоляции, соединение звездой можно использовать на больших расстояниях. |
Соединения Треугольник используются для более коротких расстояний. |
Соединения «звезда» часто используются в случаях, требующих меньшего пускового тока. |
Соединения треугольником часто используются в случаях, требующих высокого пускового момента. |
Объяснение основных измерений трехфазной мощности — журнал IAEI
Хотя однофазное электричество используется для питания обычных бытовых и офисных электроприборов, трехфазные системы переменного тока почти повсеместно используются для распределения электроэнергии и подачи электроэнергии. непосредственно к более мощному оборудованию.
В этой технической статье описываются основные принципы трехфазных систем и различия между различными возможными измерительными соединениями.
- Трехфазные системы
- Соединение звездой или звездой
- Соединение треугольником
- Сравнение звезд и треугольников
- Измерение мощности
- Подключение однофазного ваттметра
- Однофазное трехпроводное соединение
- Трехфазное трехпроводное соединение (метод двух ваттметров)
- Трехфазное трехпроводное соединение (метод трех ваттметров)
- Теорема Блонделя: необходимое количество ваттметров
- Трехфазное, четырехпроводное подключение
- Настройка измерительного оборудования
Трехфазные системы
Трехфазное электричество состоит из трех переменных напряжений одинаковой частоты и одинаковой амплитуды. Каждая фаза переменного напряжения отделена от другой на 120° (рис. 1).
Рисунок 1. Трехфазная кривая напряженияЭта система может быть представлена схематически как в виде формы волны, так и в виде векторной диаграммы (Рисунок 2).
Рисунок 2. Векторы трехфазного напряженияЗачем использовать трехфазные системы? По двум причинам:
- Три разнесенных по вектору напряжения можно использовать для создания вращающегося поля в двигателе. Таким образом, двигатели можно запускать без дополнительных обмоток.
- Трехфазная система может быть подключена к нагрузке таким образом, что требуемое количество медных соединений (и, следовательно, потери при передаче) составляет половину того, что было бы в противном случае.
Рассмотрим три однофазные системы, каждая из которых подает на нагрузку 100 Вт (рис. 3). Общая нагрузка составляет 3 × 100 Вт = 300 Вт. Для подачи питания 1 ампер протекает по 6 проводам, и, таким образом, потери составляют 6 единиц.
Рисунок 3. Три однофазных источника питания – шесть единиц потерьВ качестве альтернативы, три источника питания могут быть подключены к общему возврату, как показано на рисунке 4. Когда ток нагрузки в каждой фазе одинаков, говорят, что нагрузка быть сбалансированным. При сбалансированной нагрузке и трех токах, сдвинутых по фазе на 120° друг от друга, сумма токов в любой момент времени равна нулю, и ток в обратной линии отсутствует.
Рисунок 4. Трехфазное питание, сбалансированная нагрузка — 3 единицы потерьВ трехфазной системе 120° требуется только 3 провода для передачи мощности, для которой в противном случае потребовалось бы 6 проводов. Требуется половина меди, и потери при передаче по проводам сократятся вдвое.
Соединение звездой или звездой
Трехфазная система с общим соединением обычно изображается, как показано на рис. 5, и известна как соединение звездой или звездой.
Рисунок 5. Соединение звездой или звездой — три фазы, четыре проводаОбщая точка называется нейтральной точкой. Эта точка часто заземляется на источник питания из соображений безопасности. На практике нагрузки не идеально сбалансированы, и для передачи результирующего тока используется четвертый нейтральный провод.
Нейтральный проводник может быть значительно меньше трех основных проводников, если это разрешено местными нормами и стандартами.
Рисунок 6. Сумма мгновенных напряжений в любой момент времени равна нулю.Соединение треугольником
Три однофазных источника питания, рассмотренные ранее, также могут быть соединены последовательно. Сумма трех напряжений, сдвинутых по фазе на 120°, в любой момент времени равна нулю. Если сумма равна нулю, то обе конечные точки имеют одинаковый потенциал и могут быть соединены вместе.
Соединение обычно рисуется, как показано на рис. 7, и называется соединением треугольником по форме греческой буквы дельта, Δ.
Рис. 7. Соединение треугольником — трехфазное, три проводаСравнение звезд и треугольников
Конфигурация звездой используется для распределения питания между повседневными однофазными приборами, установленными дома и в офисе. Однофазные нагрузки подключаются к одной стороне тройника между линией и нейтралью. Общая нагрузка на каждую фазу максимально распределяется, чтобы обеспечить сбалансированную нагрузку на первичную трехфазную сеть.
Конфигурация «звезда» может также подавать одно- или трехфазное питание на более мощные нагрузки при более высоком напряжении. Однофазные напряжения являются фазными напряжениями. Также доступно более высокое междуфазное напряжение, как показано черным вектором на рис. 8.
Рис. 8. Напряжение (фаза-фаза)Схема «треугольник» чаще всего используется для питания трехфазных промышленных нагрузок большей мощности. Однако от одного трехфазного питания треугольником можно получить различные комбинации напряжений, выполняя соединения или «отводы» вдоль обмоток питающих трансформаторов.
В США, например, система «треугольник» на 240 В может иметь обмотку с расщепленной фазой или с отводом от середины для обеспечения двух источников питания 120 В (рис. 9).
Рис. 9. Схема «треугольник» с «расщепленной фазой» или обмоткой с отводом от серединыЦентральный ответвитель может быть заземлен на трансформаторе из соображений безопасности. 208 В также имеется между центральным отводом и третьей «высокой ветвью» соединения треугольником.
Измерение мощности
Мощность измеряется в системах переменного тока с помощью ваттметров. Современный цифровой ваттметр с выборкой, такой как любой из анализаторов мощности Tektronix, умножает мгновенные выборки напряжения и тока вместе для расчета мгновенной мощности, а затем берет среднее значение мгновенной мощности за один цикл для отображения истинной мощности.
Ваттметр обеспечивает точные измерения истинной мощности, полной мощности, вольт-амперной реактивной мощности, коэффициента мощности, гармоник и многих других параметров в широком диапазоне форм волн, частот и коэффициента мощности.
Чтобы анализатор мощности давал хорошие результаты, необходимо уметь правильно определять конфигурацию проводки и правильно подключать ваттметры анализатора.
Подключение однофазного ваттметра
Рис. 10. Однофазные, двухпроводные измерения и измерения постоянного токаТребуется только один ваттметр, как показано на рис. 10. Системное подключение к клеммам напряжения и тока ваттметра не вызывает затруднений. Клеммы напряжения ваттметра подключены параллельно нагрузке, а ток проходит через клеммы тока, которые последовательно с нагрузкой.
Однофазное трехпроводное соединение
В этой системе, показанной на рис. 11, напряжение создается одной обмоткой трансформатора с отводом от середины, и все напряжения находятся в фазе. Эта система распространена в жилых домах Северной Америки, где доступны один источник питания 240 В и два источника 120 В, и на каждую ветвь могут быть разные нагрузки.
Для измерения общей мощности и других величин подключите два ваттметра, как показано на рис. 11 ниже.
Рисунок 11. Метод однофазного трехпроводного ваттметраТрехфазное трехпроводное соединение (метод двух ваттметров)
При наличии трех проводов для измерения общей мощности требуются два ваттметра. Подключите ваттметры, как показано на рисунке 12. Клеммы напряжения ваттметров соединены между фазами.
Рис. 12. Трехфазный, трехпроводной, метод двух ваттметровТрехфазный, трехпроводной метод (метод трех ваттметров)
Хотя для измерения общей мощности в трехпроводной системе требуется только два ваттметра, как показано ранее, иногда удобно пользоваться тремя ваттметрами. В соединении, показанном на рисунке 13, ложная нейтраль была создана путем соединения клемм низкого напряжения всех трех ваттметров вместе.
Рисунок 13. Трехфазное, трехпроводное (метод трех ваттметров: установите анализатор в трехфазный, четырехпроводный режим.)Трехпроводное, трехпроводное подключение имеет преимущества, заключающиеся в индикации мощности в каждой фазе ( невозможно при подключении двух ваттметров) и напряжения между фазой и нейтралью.
Теорема Блонделя: необходимое количество ваттметров
В однофазной системе всего два провода. Мощность измеряется одним ваттметром. В трехпроводной системе требуется два ваттметра, как показано на рис. 14.
Рисунок 14. Доказательство для трехпроводной системы «звезда»В общем случае необходимое количество ваттметров равно количеству проводов минус один.
Доказательство для трехпроводной системы «звезда»
Мгновенная мощность, измеренная ваттметром, является произведением мгновенных значений напряжения и тока.
- Показание ваттметра 1 = i1 (v1 – v3)
- Показания ваттметра 2 = i2 (v2 – v3)
- Сумма показаний W1 + W2 = i1v1 – i1v3 + i2v2 – i2v3 = i1v1 + i2v2 – (i1 + i2) v3
- (Из закона Кирхгофа: i1 + i2 + i3 = 0, поэтому i1 + i2 = -i3)
- 2 показания W1 + W2 = i1v1 + i2v2 + i3v3 = общая мгновенная мощность в ваттах.
Трехфазное, четырехпроводное подключение
Для измерения общей мощности в четырехпроводной системе требуются три ваттметра. Измеренные напряжения являются истинными фазными напряжениями. Линейные напряжения можно точно рассчитать по амплитуде и фазе фазных напряжений с помощью векторной математики.
Современный анализатор мощности также будет использовать закон Кирхгофа для расчета тока, протекающего в нейтральной линии.
Настройка измерительного оборудования
Для заданного количества проводов требуется N, N-1 ваттметров для измерения общих величин, таких как мощность. Вы должны убедиться, что у вас достаточное количество каналов (метод 3-х ваттметров), и правильно их подключить.
Современные многоканальные анализаторы мощности вычисляют общие или суммарные величины, такие как мощность, вольт, ампер, вольт-ампер и коэффициент мощности, напрямую, используя соответствующие встроенные формулы. Формулы выбираются на основе конфигурации проводки, поэтому настройка проводки имеет решающее значение для получения хороших измерений общей мощности. Анализатор мощности с возможностями векторной математики также преобразует величины фаза-нейтраль (или звезда) в величины фаза-фаза (или треугольник).
Коэффициент √3 можно использовать только для преобразования между системами или масштабирования измерений только одного ваттметра в симметричных линейных системах.
Понимание конфигураций проводки и правильное подключение имеют решающее значение для выполнения измерений мощности. Знакомство с распространенными системами проводки и знание теоремы Блонделя помогут вам правильно выполнить соединения и получить результаты, на которые можно положиться.
Каталожные номера
Основы измерения трехфазной мощности – Замечания по применению от Tektronix
Ваттметр — это прибор для измерения электрической мощности (или скорости подачи электроэнергии) в ваттах любой заданной цепи. Электромагнитные ваттметры используются для измерения частоты сети и мощности звуковой частоты; другие типы требуются для радиочастотных измерений. Источник: Википедия
Источник: Электротехнический портал
Бумеранг, 3 фазы, только напряжение
1 230,00 $
Карманный корпус с защитой от непогоды для трехфазного мониторинга в любом месте. Небольшой размер дает максимальную гибкость для мониторинга практически в любом месте. Дополнительный интерфейс Power over Ethernet устраняет потребность в питании от входа напряжения канала 1 и позволяет использовать входы напряжения до 600 В.
Позвоните нам по телефону 800-296-4120, чтобы настроить для вашего продукта тарифный план сотовой связи или контракт DNP3.
Защита от непогоды
Данные ячейки
Перечислено UL
CVR
ДНП3
Бумеранг 3 фазы, только напряжение количество
- Обзор
- Спецификации
- Загрузки
- Белые бумаги
Обзор
Boomerang 3 Phase, Voltage Only — это трехфазный беспроводной монитор напряжения и мощности, который расширяет вашу SCADA-систему до любого места, где это необходимо: у основания счетчика в жилом доме, регулятора напряжения на столбе, в конце распределительной линии, или даже розетка на 120В. Каждый Boomerang включает в себя встроенный сотовый модем с внутренней антенной для незаметного мониторинга в режиме реального времени в любом месте.
Тонко настроенный для использования с недорогими планами данных телеметрии, полнофункциональный интерфейс DNP3 Boomerang оптимизирован для систем управления спросом и сохранения напряжения, включая несколько настраиваемых порогов, незапрошенный отчет по исключениям и режимам опроса, а также аналоговый и двоичный точки.
Boomerang также может взаимодействовать с Canvas, веб-базой данных PMI и пакетом анализа данных. Благодаря Canvas все исторические данные доступны в веб-браузере с помощью мощных графиков и отчетов. Используйте Canvas для анализа трендов напряжения и реакции регуляторов в географических регионах. Canvass также можно настроить для отправки электронной почты и текстовых сообщений на основе событий напряжения и питания Boomerang для немедленных действий за пределами вашей системы SCADA.
При использовании с облачной системой Canvas, Boomerang собирает данные каждую секунду. Каждые несколько минут односекундные среднеквадратичные значения отправляются в центр обработки данных PMI. В этой системе сбор всех данных осуществляется непрерывно; НИКАКИЕ данные не хранятся в Boomerang, и пользователю не требуется НИКАКАЯ операция загрузки записи.
Номера деталей:
НОМЕР ДЕТАЛИ | ОПИСАНИЕ | |
СТРЕЛА03RV | Boomerang, LTE, 3 фазы, напряжение, компактный/погодозащищенный корпус |
Спецификации
напряжение
Входной диапазон: 80-300 В.