Закрыть

Фоторезисторы справочник – . . ,

Содержание

Основные характеристики фоторезисторов | Мастер Винтик. Всё своими руками!

Добавил: Chip,Дата: 13 Июн 2017

Фоторезистор — это неполярный прибор, изменяющий своё сопротивление под действием источника света.

Принцип работы фоторезистора основан на эффекте фотопроводимости полупроводников. Затемненный прибор имеет максимальное сопротивление, при засветке оно уменьшается в 20…150 раз!

Фоторезисторы имеют высокую чувствительность к излучению в самом широком диапазоне — от инфракрасной до рентгеновской области спектра, сопротивление их может меняться на несколько
порядков. Фоторезисторам присущи высокая стабильность во времени, они имеют небольшие габариты и выпускаются на различные номиналы сопротивлений. Приборы оформлены в корпус с прозрачным окном и двумя выводами, полярность подключения значения не имеет.

Обозначение фоторезистора на схемах

Основные параметры отечественных фоторезисторов 

Тип
ФР
Uраб,
В
Rт,
ом.
Iт,
мка
Iсв,
мка
dI=Iсв-Iт,
мка
Rт/Rсв
Удельная
чувств.,
мка/лм-в
Интегр.
чувств., а/лм
Мощность
рассеяния, Вт
12345678910
ФСА-04-10040*103-1061,2 5000,01
ФСА-14-10040*103-1061,25000,01
ФСА-Г14-4047*103-470*1031,25000,01
ФСА-Г24-4040*103-1061,2500
0,01
ФСА-65-3050-300*1031,25000,01
ФСК-0505*106102000199020070001,40,125
ФСК-1505*106102000199020070001,40,125
ФСК-2
100
10*106108007908015000,125
ФСК-4505*106102000199020070001,40,125
ФСК-5505*106101000199010060001,20,05
ФСК-6503,3*106152000188590001,80,2
ФСК-7а501065035030015000,35
ФСК-7б501055080075060001,20,35
ФСК-Г7505*1061020001990200
3500
0,70,35
ФСК-Г1505*106101500149015060001,20,12
ФСК-Г2505*1061040003990400120002,40,2
ФСК-П110010100,011000-20001000-20004000
0,1
СФ2-11530*1060,51000100020004000000,01
СФ2-22(10)4*1060,5150015003000750000,05
СФ2-4151,0>7500,01
СФ2-925>3,3*10
6
240-9000,125
СФ2-1215>15*106200-12000,01
ФСД-02020*1081200020002000400000,05
ФСД-12020*10612000
2000
2000400000,05
ФСД-Г12020*1061200020002000400000,05
СФ3-11515*1080.01150015001500006000000,01
СФ3-825<1750
0,025

В таблице приведены средние значения, определенные (кроме Iт) при освещенности 200 лк.

Rт – сопротивление затемненного прибора;
Rс – сопротивление освещенного прибора;

Iт – ток через затемненный прибор;

Uр – максимально возможное рабочее напряжение 

Тип

спектр приема, нм

Rт., МОм

Iт. мкА

Uр., В

Rт/Rс

габариты

ФСК-1300…9003,31550100
28×5
ФСК-2300…9003,315502028х12,5×5
ФСД-1300…9003102015018×5
ФР1-3300…9000,047…0,333201510,7×6
ФР-118400…7500,3…0,23067,8 х 4,5
ФР-121400…750101104,2 х 1,4
ФР-162А(Б)750…120052109.6×3.5
ФР-764300…9003.3155015010,7×6
ФР-765300…9002102015010,7×6
ФПФ7-1300…900166507,8 х 3,2
СФ2-1820…900100.0110010.3×5,8
СФ2-1920…9000.250.082010.3×5,8

При повышении температуры темновое сопротивление резисторов уменьшается.
Габаритные размеры даны для корпуса без учета длины выводов в виде диаметр х высота или высота х ширина х толщина.

Наибольшее распространение получили фоторезисторы, изготовленные из сернистого свинца, сернистого кадмия, селенистого кадмия. Название типа фоторезисторов слагается из букв и цифр, причем в старых обозначениях буквы А, К, Д обозначали тип использованного светочувствительного материала, в новом же обозначении эти буквы заменены цифрами. Буква, стоящая за дефисом, при старом обозначении, характеризовала конструктивное исполнение (Г-герметизированные, П-пленочные). В новой маркировке эти буквы также заменены цифрами. В таблице, ниже приведены наименования наиболее распространенных обозначений фоторезисторов.

ТИПОВЫЕ ОБОЗНАЧЕНИЯ ФОТОРЕЗИСТОРОВ 

Вид фоторезисторовСтарое обозначениеНовое обозначение
Сернисто-свинцовыеФСА-0, ФСА-1, ФСА-6, ФСА-Г1, ФСА-Г2
Сернисто-кадмиевыеФСК-0, 1, 2, 4, 5, 6, 7, ФСК-Г1,
ФСК-Г2, ФС’Р;-Г7, ФСК-П1
СФ2-1, 2, 4, 9, 12
Селенисто-кадмиевыеФСД-0, ФСД-1, ФСД-Г1СФ3-1, 8

 Чувствительность фоторезисторов меняется (уменьшается) в первые 50 часов работы, оставаясь в дальнейшем практически постоянной в течение всего срока службы, измеряемого несколькими тысячами часов. Интервал рабочих температур для сернисто-кадмиевых фоторезисторов составляет от -60 до +85°С для селенисто-кадмиевых — от -60 до +40°С и для сернисто-свинцовых — от -60 до +70°С.

Конструкция фоторезистора

Впервые фотопроводимость была обнаружена у Селена, впоследствии были обнаружены и другие материалы с аналогичными свойствами. Современные фоторезисторы выполнены из сульфида свинца, селенида свинца, антимонида индия, но чаще всего из сульфида кадмия и селенида кадмия. Популярные LDR из сульфида кадмия обозначаются как CDS фоторезистор.

Спектральная кривая отклика сульфида кадмия совпадает с человеческим глазом. Длина волны пиковой чувствительности составляет около 560-600 нм, что соответствует видимой части спектра.

Область применения фоторезисторов

Основной областью применения фоторезисторов является автоматика, где они в некоторых случаях с успехом заменяют вакуумные и газонаполненные фотоэлементы. Обладая повышенной допустимой мощностью рассеивания по сравнению с некоторыми типами фотоэлементов, фоторезисторы позволяют создавать простые и надежные фотореле без усилителей тока. Такие фотореле незаменимы в устройствах для телеуправления, контроля и регулирования, в автоматах для разбраковки, при сортировке и счете готовой продукции, для контроля качества и готовности самых различных деталей.

Широко используются фоторезисторы в полиграфической промышленности при обнаружении обрывов бумажной ленты, контроле за количеством листов, подаваемых в печатную машину.

В измерительной технике фоторезисторы применяются для измерения высоких температур, для регулировки температуры в различных технологических процессах.

Контроль уровня жидкости и сыпучих тел, защита персонала от входа в опасные зоны, контроль за запыленностью и задымленностью самых различных объектов, автоматические выключатели уличного освещения и т.д.

Применение фоторезисторов можно так же встретить в детских игрушках. Это далеко не полный перечень областей применения фоторезисторов. 

Практическое применение фоторезистора

Схема автоматического регулятора освещенности:




П О П У Л Я Р Н О Е:

  • Цветовая маркировка светодиодов
  • Цветовая маркировка светодиодов.

    Подробнее…

  • ВАРИСТОРЫ
  • Варисторы — полупроводниковые резисторы с нели­нейной ВАХ, отличительной особенностью которых яв­ляется резко выраженная зависимость электрического сопротивления от приложенного к ним напряжения. Их используют для стабилизации и защиты от пере­напряжений, преобразования частоты и напряжения, а также для регулирования усиления в системах авто­матики, различных измерительных устройствах, источ­никах вторичного питания, в телевизионных приемниках, для подстройки частоты гетеродинов, в генераторах переменного и импульсного пилообразного напряжения, в схемах размагничивания цветных кинескопов и др. (см.табл.). Подробнее…

  • Краткие характеристики зарубежных диодов
  • Примечания:

    • GE-D — германиевый диод;
    • SI-D — кремниевый диод;
    • SI-D-S — кремниевый диод Шоттки;
    • C-D — варикап. Подробнее…

— н а в и г а т о р —


Популярность: 3 835 просм.


ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ


www.mastervintik.ru

определение, виды, как работает и где используется

В статье расскажем про фоторезистор, его определение и виды, как он работает, преимущества и недостатки. А также познавательное видео, где подробно рассказывается про фоторезистор и где он используется.

Название фоторезистора представляет собой комбинацию слов: фотон (легкие частицы) и резистор. Фоторезистор — это тип резистора, сопротивление которого уменьшается при увеличении интенсивности света. Другими словами, поток электрического тока через фоторезистор увеличивается, когда интенсивность света увеличивается.

Фоторезисторы также иногда называют LDR (светозависимым резистором), полупроводниковым фоторезистором, фотопроводником или фотоэлементом. Фоторезистор меняет свое сопротивление только при воздействии света.

Как работает фоторезистор

Когда свет падает на фоторезистор, некоторые из валентных электронов поглощают энергию света и разрушают связь с атомами. Валентные электроны, которые разрушают связь с атомами, называются свободными электронами.

На рисунке показаны фотоны электроны и атомы

Когда энергия света, приложенная к фоторезистору, сильно увеличивается, большое количество валентных электронов получает достаточно энергии от фотонов и разрушает связь с родительскими атомами. Большое количество валентных электронов, которые нарушают связь с родительскими атомами, попадет в зону проводимости.

Электроны, присутствующие в зоне проводимости, не принадлежат ни одному атому. Следовательно, они свободно перемещаются из одного места в другое. Электроны, которые свободно перемещаются из одного места в другое, называются свободными электронами.

Когда валентный электрон покинул атом, в определенном месте атома, из которого вышел электрон, создается пустое место. Эта место называется дырой. Следовательно, свободные электроны и дырки генерируются в виде пар.

на картинке валентный электрон покинул атом

Свободные электроны, которые свободно перемещаются из одного места в другое, переносят электрический ток. Аналогичным образом, дырки, движущиеся в валентной зоне, переносят электрический ток. Аналогично, и свободные электроны, и дырки будут нести электрический ток. Количество электрического тока, протекающего через фоторезистор, зависит от количества генерируемых носителей заряда (свободных электронов и дырок).

Когда энергия света, приложенная к фоторезистору, увеличивается, число носителей заряда, генерируемых в фоторезисторе, также увеличивается. В результате электрический ток, протекающий через фоторезистор, увеличивается.

Увеличение электрического тока означает снижение сопротивления. Таким образом, сопротивление фоторезистора уменьшается, когда интенсивность приложенного света увеличивается.

Фоторезисторы делаются из полупроводника с высоким сопротивлением, такого как кремний или германий. Они также сделаны из других материалов, таких как сульфид кадмия или селенид кадмия.

При отсутствии света фоторезисторы действуют как материалы с высоким сопротивлением, тогда как при наличии света фоторезисторы действуют как материалы с низким сопротивлением.

Советуем вам посмотреть лучшее видео на тему фоторезистора, в котором вы узнаете очень подробно принцип работы фоторезистора:

Типы фоторезисторов

Фоторезисторы делятся на два типа в зависимости от материала, из которого они изготовлены:

  • Внутренний фотоэффект
  • Внешний фотоэффект

Фоторезистор с внутренним фотоэффектом

Собственные фоторезисторы изготавливаются из чистых полупроводниковых материалов, таких как кремний или германий. Внешняя оболочка любого атома способна содержать до восьми валентных электронов. Однако в кремнии или германии каждый атом состоит только из четырех валентных электронов. Эти четыре валентных электрона каждого атома образуют четыре ковалентных связей с соседними четырьмя атомами, чтобы полностью заполнить внешнюю оболочку. В результате ни один электрон не остается свободным.

На рисунке фоторезистор с внутренним фотоэффектом

Когда мы применяем световую энергию к фоторезистору с внутренним эффектом, только небольшое количество валентных электронов получает достаточно энергии и освобождается от родительского атома. Следовательно, генерируется небольшое количество носителей заряда. В результате через внутренний фоторезистор протекает только небольшой электрический ток.

Мы уже знали, что увеличение электрического тока означает снижение сопротивления. В фоторезисторах с внутренним фотоэффектом сопротивление несколько уменьшается с увеличением энергии света. Следовательно, внутренние фоторезисторы менее чувствительны к свету. Поэтому они не надежны для практического применения.

Фоторезистор с внешним фотоэффектом

Фоторезисторы с внешним фотоэффектом изготовлены из внешних полупроводниковых материалов. Рассмотрим пример внешнего фоторезистора, изготовленного из комбинации атомов кремния и примеси фосфора.

Каждый атом кремния состоит из четырех валентных электронов, а каждый атом фосфора состоит из пяти валентных электронов. Четыре валентных электрона атома фосфора образуют четыре ковалентные связи с соседними четырьмя атомами кремния. Однако пятый валентный электрон атома фосфора не может образовывать ковалентную связь с атомом кремния, поскольку атом кремния имеет только четыре валентных электрона. Следовательно, пятый валентный электрон каждого атома фосфора освобождается от атома. Таким образом, каждый атом фосфора генерирует свободный электрон.

на рисунке фоторезистор с внешним фотоэффектом

Свободный электрон, который генерируется, сталкивается с валентными электронами других атомов и делает их свободными. Аналогичным образом, один свободный электрон генерирует несколько свободных электронов. Следовательно, добавление небольшого количества примесных (фосфорных) атомов генерирует миллионы свободных электронов.

В внешних фоторезисторах у нас уже есть большое количество носителей заряда. Следовательно, обеспечение небольшого количества световой энергии генерирует еще большее количество носителей заряда. Таким образом, электрический ток быстро увеличивается.

Увеличение электрического тока означает снижение сопротивления. Следовательно, сопротивление внешнего фоторезистора быстро уменьшается с небольшим увеличением приложенной световой энергии. Внешние фоторезисторы надежны для практического применения.

Символ фоторезистора на схеме

Символ американского стандарта и символ международного фоторезистора показаны на рисунке ниже.

Символ фоторезистора на схеме

Преимущества и недостатки фоторезистора

Преимущества фоторезистора

  • Маленький по размеру
  • Бюджетный
  • Легко переносить из одного места в другое.

Недостатки фоторезистора

  • Точность фоторезистора очень низкая.

Применение фоторезисторов

Фоторезисторы используются в уличных фонарях для контроля, когда свет должен включаться и когда свет должен выключаться. Когда окружающий свет падает на фоторезистор, он выключает уличный свет. Когда света нет, фоторезистор вызывает включение уличного освещения. Это уменьшает потери электроэнергии.

Они также используются в различных устройствах, таких как сигнальные устройства, солнечные уличные фонари, ночники и радиочасы.

Пример схемы датчика освещенности
Пример схемы датчика освещенности

Световой датчик

Если требуется базовый датчик освещенности, можно использовать схему LDR, такую ​​как схема на рисунке. Светодиод загорается, когда интенсивность света, достигающего резистора LDR, достаточна. Переменный резистор 10K используется для установки порога, при котором светодиод включится. Если индикатор LDR ниже пороговой интенсивности, светодиод останется в выключенном состоянии. В реальных приложениях светодиод будет заменен реле или выход может быть подключен к микроконтроллеру или другому устройству. Если требуется датчик темноты, где светодиод будет светиться при отсутствии света, необходимо заменить LDR и два резистора 10К.

Аудио компрессоры

Аудио компрессоры — это устройства, которые уменьшают усиление аудио усилителя, когда амплитуда сигнала превышает установленное значение. Это сделано для усиления тихих звуков при одновременном предотвращении обрыва громких звуков. Некоторые компрессоры используют LDR и небольшую лампу (светодиод или электролюминесцентную панель), подключенную к источнику сигнала для создания изменений в усилении сигнала. Считается, что этот метод добавляет более плавные характеристики к сигналу, потому что время отклика света и резистора смягчает атаку и освобождение. Задержка времени отклика в этих приложениях составляет порядка 0,1 с.

meanders.ru

Резисторы, термисторы, фоторезисторы, варисторы. Справочник (Том 1)

Справочник является официальным подписным изданием Министерства электронной промышленности СССР. Справочник предназначен для предприятий, разрабатывающих, изготовляющих и эксплуатирующих радиотехническую и электронную аппаратуру. Помещенные в справочнике сведения взяты из соответствующих государственных стандартов, нормалей и технических условий и в ряде случаев дополнены рекомендациями по применению, схемами включения, пояснениями принятой терминологии и т. д. Справочник будет периодически пополняться вкладными листами на вновь разработанные изделия и корректироваться в соответствии с изменениями стандартов, нормалей и технических условий. Настоящий справочник не заменяет действующих стандартов, нормалей и технических условий и поэтому не является юридическим документом в случае предъявления рекламаций.

Общая часть

Резисторы постоянные


Ряды номинальных сопротивлений, ГОСТ 2825-67
Условные обозначения резисторов при заказе
Сопротивления (резисторы) постоянные Ряды номинальных величин сопротивлений. ГОСТ 2825-60
Перечень резисторов, помещенных в справочнике

Резисторы постоянные непроволочные


Резисторы постоянные бороуглеродистые БЛП ОЖ0.467.062 ТУ
Резисторы постоянные углеродистые ВС ГОСТ 6562—67
Резисторы постоянные непроволочные углеродистые ВСЕ ОЖ0.467.034 ТУ
Резисторы постоянные непроволочные тонкослойные углеродистые С1-4 ОЖ0.467.084 ТУ
Резисторы постоянные непроволочные тонкослойные углеродистые С1-4И УК0.467.027 ТУ
Сопротивления углеродистые лакированные импульсные ИВС ОЖ0.467.020 ТУ
Резисторы постоянные непроволочные композиционные КВМ, КЛМ ОЖ0.467.080 ТУ
Резисторы постоянные непроволочные КИМ-Е ОЖ0.467.027 ТУ
Сопротивления постоянные непроволочные КЭВ ОЖ0.467.077 ТУ
Резисторы постоянные металлопленочные мощностью рассеяния до 2 Вт МГП, МЛТ, МТ, МУН, ОМЛТ ГОСТ 7113-66
Резисторы постоянные металлопленочные МТЕ ОЖ0.467.023 ТУ
Резисторы постоянные металлопленочные ОМЛТЕ ОЖ0.467.022 ТУ
Резисторы постоянные металлопленочные ОМЛТ мощностью рассеяния 0,125 Вт ОЖ0.467.089 ТУ
Резисторы постоянные непроволочные МОН ОЖ0.467.038 ТУ
Сопротивления постоянные непроволочные МОУ ОЖ0.467.026 ТУ
Резисторы постоянные объемные С4-1 ОЖ0.467.030 ТУ
Резисторы постоянные объемные С4-2 ОЖ0.467.057 ТУ
Резисторы постоянные непроволочные С1-8, С2-8 ОЖ0.467.037 ТУ
Резисторы постоянные металлоокисные С2-1 ОЖ0.467.025 ТУ
Сопротивления постоянные непроволочные С2-6 ОЖ0.467.032 ТУ
Резисторы постоянные непроволочные С2-6 ОЖ0.467.075 ТУ
Резисторы постоянные металлоокисные С2-10 ОЖ0.467.072 ТУ
Резисторы постоянные металлопленочные С2-11 ОЖ0.467.046 ТУ
Резисторы постоянные непроволочные микромодульные С2-12, ССНМ ОЖ0.467.055 ТУ
Резисторы постоянные непроволочные С2-13, С2-14 С2-15 ОЖ0.467.036 ТУ
Резисторы постоянные металлопленочные С2-17 ОЖ0.467.040 ТУ
Резисторы постоянные металлопленочные С2-18, С2-19 ОЖ0.467.042 ТУ
Резисторы постоянные пластинчатые С2-20 металлопленочные ОЖ0.467.048 ТУ
Резисторы постоянные непроволочные С2-22 ОЖ0.467.073 ТУ
Резисторы постоянные непроволочные С2-23 ОЖ0.467.081 ТУ
Резисторы постоянные непроволочные С2-24 ОЖ0.467.086 ТУ
Резисторы постоянные непроволочные С2-25 ОЖ0.467.091 ТУ
Резисторы постоянные непроволочные С2-25а Дополнение № 1 к ОЖ0.467.091 ТУ
Резисторы постоянные непроволочные С2-26 ОЖ0.467.095 ТУ
Резисторы постоянные непроволочные С2-27 ОЖ0.467.096 ТУ
Резисторы постоянные непроволочные С2-29В ОЖ0.467.099 ТУ
Резисторы постоянные непроволочные С2-30 ОЖ0.467.102 ТУ
Резисторы постоянные непроволочные С2-31 ОЖ0.467.103 ТУ
Резисторы постоянные непроволочные С2-33И 0.467.027 ТУ
Резисторы постоянные непроволочные С3-2 ОЖ0.467.070 ТУ
Резисторы постоянные непроволочные микромодульные С3-З, СКНМ ОЖ0.467.056 ТУ
Резисторы постоянные непроволочные микромодульные С3-4 ОЖ0.467.028 ТУ
Резисторы постоянные непроволочные СЗ-5 ОЖ0.467.041 ТУ
Резисторы постоянные непроволочные СЗ-6 ОЖ0.467.079 ТУ
Резисторы постоянные непроволочные микромодульные СЗ-7 ОЖ0.467.094 ТУ
Резисторы постоянные непроволочные композиционные пленочные С3-9 ОЖ0.467.092 ТУ
Резисторы постоянные непроволочные тонкослойные металлизированные пластинчатые С6-1 ОЖ0.467.078 ТУ
Резисторы постоянные углеродистые воздухоохлаждаемые СОВ ОЖ0.467.054 ТУ
Резисторы постоянные объемные ТВО ГОСТ 11324-65
Резисторы постоянные объемные ТВО-0,125 ОЖ0.467.031 ТУ
Резисторы постоянные объемные ТВО-0,25—ТВО-60 ОЖ0.467.035 ТУ
Резисторы постоянные углеродистые водоохлаждаемые УВ ОЖ0.467.071 ТУ
Резисторы постоянные непроволочные УЛД ОЖ0.467.049 ТУ
Резисторы постоянные углеродистые УЛИ ОЖ0.467.013 ТУ
Резисторы постоянные углеродистые УНУ и УНУ-III ОЖ0.467.019 ТУ

Терморезисторы


Определение некоротых терминов, принятых в справочнике для терморезисторов
Терморезисторы КМТ-1, КМТ-4, КМТ-8, ММТ-1, ММТ-4, ММТ-8, ММТ-9, ММТ-13 ГОСТ 10688-63 ОЖ0.468.086 ТУ ОЖ0.468.075 ТУ
Термосопротивления КМТ-4Е, ММТ-4Е ОЖ0.468.014 ТУ
Терморезисторы ММТ-6 ОЖ0.468.062 ТУ
Термосопротивления КМТ-10, КМТ-10а, КМТ-11 УБ0.468.004 ТУ
Терморезисторы КМТ-12, ММТ-12, КМТ-17, СТ1-17, СТЗ-17 ОЖ0.468.032 ТУ
Терморезисторы КМТ-14, СТ1-18, СТЗ-18, СТ1-19, СТЗ-19 ОЖ0.468.031 ТУ
Терморезисторы КМТ-17в, СТ1-17, СТЗ-17 ОЖ0.468.096 ТУ
Терморезисторы СТ1-2 ОЖ0.468.052 ТУ
Термосопротивления СТ1-21, СТ3-21 ОЖ0.468.016 ТУ
Терморезисторы СТ1-27 ОЖ0.468.080 ТУ
Терморезисторы СТ1-30 ОЖ0.468.058 ТУ
Терморезисторы СТЗ-1 ОЖ0.468.098 ТУ
Терморезисторы СТЗ-6 ОЖ0.468.067 ТУ
Терморезисторы СТЗ-14 ОЖ0.468.103 ТУ
Терморезисторы СТЗ-23 ОЖ0.468.043 ТУ
Терморезисторы СТЗ-25 ОЖ0.468.063 ТУ
Терморезисторы СТЗ-27 ОЖ0.468.026 ТУ
Терморезисторы СТЗ-29 ОЖ0.468.064 ТУ
Терморезисторы СТЗ-31 ОЖ0.468.082 ТУ
Терморезисторы СТ4-15 ОЖ0.468.053 ТУ
Терморезисторы СТ5-1 ОЖ0.468.028 ТУ 419
Терморезисторы СТ6-1А, СТ6-1Б, СТ6-2Б, СТ6-ЗБ ОЖ0.468.070 ТУ
Терморезисторы СТ6-4Б ОЖ0.468.105 ТУ
Терморезисторы СТ7-1 ОЖ0.468.104 ТУ
Терморезисторы СТ8-1 ОЖ0.468.101 ТУ
Терморезисторы СТ9-1 ОЖ0.468.102 ТУ
Терморезисторы ТИ-1 Ав0.336.002 ТУ

Термисторы


Термисторы Т8Д, Т8Е, Т8М, Т8Р, Т8С1, Т8С2, Т8СЗ, Т8С1М, Т8С2М, Т8СЗМ, Т9 НОД0.336.000 ТУ Ав4.681.006/016 ТУ
Термисторы ТК-2-50, ТК-2-50А, ТК-2-75, ТК-2-75А, ТВ-2-250, ТВ-2-250А НОД0.336.000 ТУ Ав4.681.000/006 ТУ
Термисторы ТВ-2-350А НОД0.336.000 ТУ Ав4.681.035 ТУ
Термисторы ТКП-20, ТКП-20Б, ТКП-50, ТКП-300, ТКП-300А НОД0.336.000 ТУ 020 Ав4.681.020/023 ТУ
Термисторы ТП2/0,5; ТП2/2; ТП6/2 НОД0.336.000 ТУ Ав4.681.017/019 ТУ
Термисторы ТПМ2/0,5 ТПМ2/0,5Б, ТПМ2/2, ТПМ6/2 НОД0.336.000 ТУ Ав4.681.032/034 ТУ
Термисторы ТПМ2/0,5А; ТПМ6/2Б НОД0.336.000 ТУ Ав4.681. 041/042 ТУ
Термисторы ТОС-3, ТОС-М, ТОС-МБ, ТОС-МД НОД0.336.000 ТУ Ав4.б81. 025/028 ТУ
Термисторы ТШ-1 НОД0.336.000 ТУ Ав4.681.036 ТУ
Термисторы ТШ-2 НОД0.336.000 ТУ Ав4.681.024 ТУ

Фоторезисторы


Определение некоротых терминов, принятых в справочнике для Фотосопротивлений
Фотосопротивления СФ2-1 СФЗ-1 УБ0.468.023 ТУ
Фоторезисторы СФ2-1А, СФЗ-1А ОЖ0.468.029 ТУ
Фотосопротивления СФ2-2 УБ4.681.128 ТУ
Фоторезисторы СФ2-4 СЩ0.468.068 ТУ
Фоторезисторы СФ2-5 ОЖ0.468.077 ТУ
Фоторезисторы СФ2-8, СФЗ-5, СФЗ-8 ОЖ0.468.095 ТУ
Фоторезисторы СФ2-12 ОЖ0.468.071 ТУ
Фоторезисторы СФ2-16 ОЖ0.468.091 ТУ
СФЗ-2А, СФЗ-4А, СФЗ-7А, СФЗ-9А, СФЗ-2Б, СФЗ-4Б, СФЗ-7Б, СФЗ-9Б, СФЗ-16 ОЖ0.468.129 ТУ
Фоторезисторы ФСА-1А; ФСК-1 А; ФСД-1А; ФСА-1А; ФСА-Г1; ФСА-Г2; ФСК-1; ФСК-Г1; ФСК-Г2; ФСД-1; ФСД-Г1; ФСД-Г2 ОЖ0.468.126 ТУ
Фоторезисторы ФСК-2, ФСК-2а, ФСА-6, ФСК-6 ОЖ0.468.055 ТУ
Фоторезисторы ФСК-5 ОЖ0.468.050 ТУ
Фотосопротивления ФСК-7, ФСК-Г7 ОЖ0.468.013 ТУ
Фоторезисторы ФСК-ОГ ОЖ0.468.048 ТУ
Фоторезисторы ФСК-П1 ОЖ0.468.065 ТУ

Варисторы (резисторы нелинейные)


Варисторы (резисторы нелинейные) СН1-1, СН1-2 ОЖ0.468.042 ТУ
Варисторы СН1-6 ОЖ0.468.079 ТУ
Варисторы СН1-7 ОЖ0.468.089 ТУ
Варисторы СН1-8 ОЖ0.468.094 ТУ
Варисторы СН1-9 ОЖ0.468.092 ТУ
Варисторы СН1-10 ОЖ0.468.111 ТУ
Варисторы СН1-11 ОЖ0.468.115 ТУ
Варисторы СН1-12 ОЖ0.468.127 ТУ
Варисторы СН1-14 ОЖ0.468.179 ТУ

Название: Справочник. Резисторы, термисторы, фоторезисторы, варисторы
Автор: РНИИ Электронстандарт
Издательство: СПб:, РНИИ Электронстандарт
Год: 1966-1977
Страниц: 630
Формат: DJVU
Размер: 110,74 МБ
Качество: Отличное

radiohata.ru

Дельта

  • Новые поступления

06.11.2019

НИХРОМ-
НИХРОМ-0.4 / -0.8 Х20Н80 бухта 10м.
Обращаться в маг. по адресу: — пр. Курако, 20 или по тел.+7-906-926-1066
НИХРОМ….
Схема проезда

 

23.10.2019

Спирт изопропиловый
Спирт изопропиловый ОСЧ SNR-IPN (1л/0,8кг) — осуществляет мягкую очистку любого электронного, механического и оптического оборудования. При подготовке оптических волокон к сварке спирт используется для их очистки (обезжиривания). ТУ 2632-064-44493179-01.
Производитель: SNR
Спирт изопропиловый абсолютированный, 1л SNR-IPN-ABS — Состав: изопропиловый спирт 96% (изопропанол).
Производитель: SNR .
Обращаться в маг. по адресу:
пр. Курако, 20 или по тел.+7-906-926-1066
Спирт изопропиловый…

Схема проезда

 

 

14.10.2019

Новые наборы для детского творчества
BB2024 арт HL004 Динамический фонарик. Французские опыты Науки с Буки — Собери динамический фонарик самостоятельно, используя схему в инструкции. Пойми как он работает.Габариты : 27×6.5×22.5; Рекомендуемый возраст: от 6 лет
Производитель: Bondibon
BB2872 арт. 38810 Робот динозавр, Французские опыты Науки с Буки — Собери модель двигающегося динозавра Он будет качать головой и двигать хвостом. Узнай как работают электродвигатели и электрические цепи. 8+.
Производитель: Bondibon .
Обращаться в маг. по адресу:
пр. Курако, 20 или по тел.+7-906-926-1066
BB2024 арт…

Схема проезда

 

 

30.09.2019

Новые неодимовые магниты
Большое поступление неодимовых магнитов: диски, призмы, кольца и т.д.
Сила сцепления от 0,8 до 110 кГ.
Рекомендуем ознакомиться с правилами техники безопасности при работе с неодимовыми магнитами:
Техника безопасности

БЕРЕЧЬ ОТ ДЕТЕЙ!
Обращаться в маг. по адресу: — пр. Курако, 20 или по тел.+7-906-926-1066
Неодимовый магнит

 

23.09.2019

Plastik 71 500мл
Лак акриловый изоляционный для защиты печатных плат, обмоток двигателей от коррозий и атмосферных явлений. Время полного высыхания 24 часа при темп. 18-24С.
Производитель: Solins
Обращаться в маг. по адресу: — пр. Курако, 20 или по тел.+7-906-926-1066
Plastik 71 500мл
Схема проезда

 

23.09.2019

ФЛЮС
Флюс ФИМ ПЭТ — Для пайки Меди и ее сплавов, Нержавеющих сплавов, черных металлов.  Высокоактивный. Остатки удаляются водой
ФКТ ПЭТ— Изготовлен на основе экстракционной канифоли «А» или «Б» (ГОСТ 19113-84), растворителя (IPA) и нейтральной смачивающей присадки-тетрабромида дипентена (по ТУ 13-0281078-140-93).
Обращаться в маг. по адресу:
пр. Курако, 20 или по тел.+7-906-926-1066
Флюс ФКТ.. ФИМ…

Схема проезда

 

 

23.09.2019

Минидрели — граверы RC-40A; SDCJ-05 
RC-40A— Напр. питания 220В от сети, мощность 130Вт, скорость вращения 8000-30000 об/мин, диаметр сверла 3,2мм макс. В комплекте 32 насадки, ключ, гибкий вал, держатель с креплением на стол
SCJ-05— Напр. питания 220В от сети, мощность 130Вт, скорость вращения 8000-30000 об/мин, диаметр сверла 3,2мм макс. В комплекте 2 насадки и ключ
Обращаться в маг. по адресу:
пр. Курако, 20 или по тел.+7-906-926-1066
Минидрели — граверы …

Схема проезда

 

 

08.09.2019

Термореле REX-C100 в комплекте с термопарой, SSR-40DA, с радиатором
Диапазон температур: 0 — 400С (можно поменять в настройках), Термопары: K, j, S, E, r, wre3 ~ wre25, Терморезистор: Pt100, Cu50, Основной выход: твердотельные реле SSR, 1 реле тревоги:.
Видео по настройке: https://www.youtube.com/watch?v=ZaH9E7C_I2o
Обращаться в маг. по адресу: — пр. Курако, 20 или по тел.+7-906-926-1066
Термореле REX-C100…
Схема проезда

 

02.09.2019

Контроллер заряда-разряда для Li-ion батарей, 3-5 ячеек, до 50А. с балансировкой, QS-B305A 97600
Плата защиты для сборки из трех, четырех или пяти последовательно включенных li-ion, li-po аккумуляторов. С балансировкой.
Хорошо подходит для шуруповертов и прочего аккумуляторного инструмента.
Простая переделка под 3S, 4S или 5S, путём установки перемычек .
Есть светодиодная индикация окончания заряда, когда происходит балансировка аккумуляторов.
Обращаться в маг. по адресу: — пр. Курако, 20 или по тел.+7-906-926-1066
Контроллер заряда-разряда для Li-ion батарей, 3-5 ячеек, до 50А…
Схема проезда

 

18.07.2019

Радиоприемник «Эфир-14»
Эфир-14 имеет аналоговый тип тюнера, обеспечивает сигнал в диапазонах УКВ 64-108мГц, СВ 530-1600кГц, КВ1, КВ2.
Питание от батареек АА*2шт, размер изделия составляет 144х42х85мм, телескопическая антенна, разъем для наушников.
Обращаться в маг. по адресу: — пр. Курако, 20 или по тел.+7-906-926-1066
Радиоприемник «Эфир-14»
Схема проезда

 

www.delta-n.ru

Фоторезистор | Описание, предназначение, принцип работы

Что такое фоторезистор

Фоторезистор представляет из себя полупроводниковый радиоэлемент, который меняет свое сопротивление в зависимости от освещения. Для видимого света (солнечный свет или свет от осветительных ламп) используют сульфид или селенид кадмия. Есть также фоторезисторы, которые регистрируют инфракрасное излучение. Их делают  из германия с некоторыми примесями других веществ. Свойство менять свое сопротивление под воздействием света очень широко используется в электронике.

Внешний вид и обозначение на схеме

В основном фоторезисторы выглядят вот так

фоторезистор

плоский фоторезисторсоветский фоторезистор

На схемах могут обозначаться так

или так

Как работает фоторезистор

Давайте рассмотрим одного из представителя семейства фоторезисторов

фоторезистор сф3-1

На нем, как и во всех фотоэлементах, есть окошко, с помощью которого он “ловит” свет.

окошко фоторезистора

Сбоку можно прочитать его маркировку

советский фоторезистор

Главным параметром фоторезистора является его темновое сопротивление. Темновое сопротивление фоторезистора — это его сопротивление при полном отсутствии падения света на него. Судя по справочнику, темновое сопротивление нашего подопечного 15х108 Ом или словами — 1,5 ГОм. Можно даже сказать — полнейший обрыв. Так ли это? Давайте глянем. Для этого я использую свою записную книжку и прячу там фоторезистор:

темновое сопротивление фоторезистора

Даже в диапазоне 200 МОм мультиметр показал единичку. Это означает, что сопротивление фоторезистора далеко за 200 МОм.

Убираем нашего подопытного из книжки и включаем в комнате свет. Результат сразу же на лицо:

Фоторезистор

106,7 КОм.

Теперь включаю свою настольную лампу. В комнате стало еще светлее.  Смотрим на показания мультиметра:

сопротивление фоторезистора

76,2 КОм.

Подношу фоторезистор вплотную к настольной лампе:

фоторезистор под светом

18,6 КОм

Делаем вывод: чем больше поток света попадает на фоторезистор, тем меньше его сопротивление.

Заключение

Широко используются фоторезисторы в полиграфии для обнаружения обрывов бумажной ленты, подаваемых в печатную машину. Они также осуществляют контроль уровня жидкости и сыпучих тел, защищают персонал от входа в опасные зоны. Автоматические выключатели уличного освещения и турникеты в метрополитене — вот далеко не полный перечень областей применения фоторезисторов. Фоторезисторы нашли применение в медицине, сельском хозяйстве и других областях. В настоящее время они вытесняются другими фото-радиоэлементами. Это могут быть фототранзисторы, фотодиоды, а также бесконтактные датчики.

www.ruselectronic.com

Фоторезисторы Конструкция и схема включения фоторезистора

Фоторезисторами называют полупроводниковые приборы, проводимость которых меняется под действием света.

Монокристаллический фоторезистор

Рис. 2.2. Монокристаллический фоторезистор

 

Пленочный фоторезистор

Рис. 2.3. Пленочный фоторезистор

Рис. 2.4. Включение фоторезистора в цепь постоянного тока

Конструкция монокристаллического и пленочного фоторезисторов показана на рис. 2.2, 2.3. Основным элементом фоторезистора является в первом случае монокристалл, а во втором — тонкая пленка полупроводникового материала.

Если фоторезистор включен последовательно с источником напряжения (рис. 2.4) и не освещен, то в его цепи будет протекать темновой ток:

где Е — ЭДС источника питания;

RT — величина электрического сопротивления фоторезистора в темноте, называемая темновым сопротивлением;

RH — сопротивление нагрузки.

При освещении фоторезистора энергия фотонов расходуется на перевод электронов в зону проводимости. Количество свободных электронно-дырочных пар возрастает, сопротивление фоторезистора падает, и через него течет световой ток, обусловленный формулой:

Разность между световым и темновым током дает значение тока 1ф, получившего название первичного фототока проводимости

Когда лучистый поток мал, первичный фототок проводимости практически безынерционен и изменяется прямо пропорционально величине лучистого потока, падающего на фоторезистор. По мере возрастания величины лучистого потока увеличивается число электронов проводимости. Двигаясь внутри вещества, электроны сталкиваются с атомами, ионизируют их и создают дополнительный поток электрических зарядов, получивший название вторичного фототока проводимости. Увеличение числа ионизированных атомов тормозит движение электронов проводимости. В результате этого изменения фототока запаздывают во времени относительно изменений светового потока, что определяет некоторую инерционность фоторезистора.

Основные характеристики фоторезисторов

Фоторезистор (от фото- и резистор), представляет собой полупроводниковый резистор, омическое сопротивление которого определяется степенью освещенности. В основе принципа действия фоторезисторов лежит явление фотопроводимости полупроводников. Фотопроводимость — увеличение электрической проводимости полупроводника под действием света. Причина фотопроводимости — увеличение концентрации носителей заряда — электронов в зоне проводимости и дырок в валентной зоне. Светочувствительный слой полупроводникового материала в таких сопротивлениях помещен между двумя токопроводящими электродами. Под воздействием светового потока электрическое сопротивление слоя меняется в несколько раз (у некоторых типов фотосопротивлений оно уменьшается на два-три порядка). В зависимости от применяемого слоя полупроводникового материала фотосопротивления подразделяются на сернисто-свинцовые, сернисто-кадмиевые, сернисто-висмутовые и поликристаллические селено-кадмиевые. Фотосопротивления обладают высокой чувствительностью, стабильностью, они экономичны и надежны в эксплуатации. В целом ряде случаев они с успехом заменяют вакуумные и газонаполненные фотоэлементы.

Основные характеристики фотосопротивлений:

•        Рабочая площадь.

•        Темновое сопротивление (сопротивление в полной темноте), варьируется в обычных приборах от 1000 до 100000000 Ом.

•        Удельная чувствительность

где Ai — фототок, равный разности токов в темноте и на свету; Ф — световой поток; U — приложенное напряжение.

•        Предельное рабочее напряжение (как правило от 1 до 1000 В).

•        Среднее относительное изменение сопротивления в процентах (обычно лежит в пределах 10…99,9%):

где RT и Rc — сопротивление в темноте и в освещенном состоянии соответственно.

•        Средняя кратность изменения сопротивления (как правило от 1 до 1000). Определяется соотношением: RT/RC.

Схема включения фоторезисторов показана на рис. 2.5.

При определенном освещении сопротивление фотоэлемента уменьшается, а, следовательно, сила тока в цепи возрастает, достигая значения, достаточного для работы какого-либо

Рис. 2.5. Электрическая схема включения фоторезистора

 

Рис. 2.6. ВАХ фоторезистора

устройства (схематично показано в виде некоторого сопротивления нагрузки). Полезный сигнал для дальнейшего усиления или управления другими устройствами снимают параллельно RHarp.

Основными характеристиками фоторезисторов являются:

• Вольт-амперная (ВАХ), характеризующая зависимость фототока (при постоянном световом потоке Ф) или темнового тока от приложенного напряжения. Для фоторезисторов эта зависимость практически линейна (рис. 2.6). Закон Ома нарушается только при высоких напряжениях, приложенных к фоторезистору.

Световая (люкс-амперная), характеризующая зависимость фототока от падающего светового потока постоянного спектрального состава. Полупроводниковые фоторезисторы имеют нелинейную люкс-амперную характеристику (рис. 2.7). Наибольшая чувствительность получается при малых освещенностях. Это позволяет использовать фоторезисторы для измерения очень малых интенсивностей излучения. При увеличении освещенности световой ток растет примерно пропорционально корню квадратному из освещенности. Наклон люкс-амперной характеристики зависит от приложенного к фоторезистору напряжения.

Рис, 2.7. Зависимость тока от светового потока, падающего на рабочую поверхность фоторезистора

 

Рис. 2.8. Зависимость спектральной характеристики от материала фоторезистора

 

Рис. 2.9. Зависимость фототока фоторезистора от частотной модуляции светового потока

• Спектральная, характеризующая чувствительность фоторезистора при действии на него потока излучения постоянной мощности определенной длины волны. Спектральная характеристика определяется материалом, используемым для изготовления светочувствительного элемента. Сернисто-кад- миевые фоторезисторы имеют высокую чувствительность в видимой области спектра, селенисто-кадмиевые — в красной, а сернисто-свинцовые — в инфракрасной. Это хорошо демонстрирует рис. 2.8.

Частотная, характеризующая чувствительность фоторезистора при действии на него светового потока, изменяющегося с определенной частотой. Наличие инерционности у фоторезисторов приводит к тому, что величина их фототока зависит от частоты модуляции падающего на них светового потока — с увеличением частоты светового потока фототок уменьшается (см. рис. 2.9). Инерционность ограничивает возможности применения фоторезисторов при работе с переменными световыми потоками высокой частоты.

Параметры фоторезисторов

Рабочее напряжение Up — постоянное напряжение, приложенное к фоторезистору, при котором обеспечиваются номинальные параметры при длительной его работе в заданных эксплуатационных условиях.

Максимально допустимое напряжение фоторезистора Umax — максимальное значение постоянного напряжения, приложенного к фоторезистору, при котором отклонение его параметров от номинальных значений не превышает указанных пределов при длительной работе в заданных эксплуатационных условиях.

Темновое сопротивление RT — сопротивление фоторезистора в отсутствие падающего на него излучения в диапазоне его спектральной чувствительности.

Световое сопротивление Rc — сопротивление фоторезистора, измеренное через определенный интервал времени после начала воздействия излучения, создающего на нем освещенность заданного значения.

Кратность изменения сопротивления KR — отношение тем- нового сопротивления фоторезистора к сопротивлению при определенном уровне освещенности (световому сопротивлению).

Допустимая мощность рассеяния — мощность, при которой не наступает необратимых изменений параметров фоторезистора в процессе его эксплуатации.

Общий ток фоторезистора — ток, состоящий из темнового тока и фототока.

Фототок — ток, протекающий через фоторезистор при указанном напряжении на нем, обусловленный только воздействием потока излучения с заданным спектральным распределением.

Удельная чувствительность — отношение фототока к произведению величины падающего на фоторезистор светового потока на приложенное к нему напряжение, мкА/(лм-В):

где 1ф — фототок, равный разности токов, протекающих по фоторезистору в темноте и при определенной (200 лк) освещенности, мкА;

Ф — падающий световой поток, лм; U — напряжение, приложенное к фоторезистору, В.

Интегральная чувствительность — произведение удельной чувствительности на предельное рабочее напряжение:

Постоянная времени тф — время, в течение которого фото- ток изменяется на 63%, т.е. в е раз. Постоянная времени характеризует инерционность прибора и влияет на вид его частотной характеристики.

Рис. 2.10. Иллюстрация нарастания и спада фототока в зависимости от освещенности фоторезистора

При включении и выключении света фототок возрастает до максимума (рис. 2.10) и спадает до минимума не мгновенно. Характер и длительность кривых нарастания и спада фототока во времени существенно зависят от механизма рекомбинации неравновесных носителей в данном материале, а также от величины интенсивности света. При малом уровне инжекции нарастание и спад фототока во времени можно представить экспонентами с постоянной времени т, равной времени жизни носителей в полупроводнике. В этом случае при включении света фототок будет нарастать и спадать во времени по закону:

где 1ф — стационарное значение фототока при освещении.

По кривым спада фототока во времени можно определить время жизни т неравновесных носителей.

Изготовление фоторезисторов

В качестве материалов для фоторезисторов широко используются сульфиды, селениды и теллуриды различных элементов, а также соединения типа AlMBv. В инфракрасной области могут быть использованы фоторезисторы на основе PbS, PbSe, PbTe, InSb, в области видимого света и ближнего спектра ультрафиолета — CdS.

Применение фоторезисторов

Сегодня фоторезисторы широко применяются во многих отраслях науки и техники. Это объясняется их высокой чувствительностью, простотой конструкции, малыми габаритами и значительной допустимой мощностью рассеяния. Значительный интерес представляет использование фоторезисторов в опто- электронике. В радиолюбительских конструкциях фоторезисторы применяются как световые датчики в устройствах слежения и автоматики, автоматических и фотореле в быту, в охранных системах.

Регистрация оптического излучения

Для регистрации оптического излучения его световую энергию преобразуют в электрический сигнал, который затем измеряют обычным способом. При этом преобразовании обычно используют следующие физические явления:

•        генерацию подвижных носителей в твердотельных фотопрово- дящих детекторах;

•        изменение температуры термопар при поглощении излучения, приводящее к изменению термо-ЭДС;

•        эмиссию свободных электронов в результате фотоэлектрического эффекта с фоточувствительных пленок.

Наиболее важными типами оптических детекторов являются:

•        фотоумножитель;

•        полупроводниковый фоторезистор;

•        фотодиод;

•        лавинный фотодиод.

Полупроводниковый фотодетектор

Схема включения полупроводникового фотодетектора приведена на рис. 2.11.

Рис. 2.11. Схема подключения полупроводникового фотоэлемента

Полупроводниковый кристалл последовательно соединен с резистором R и источником постоянного напряжения U. Оптическая волна, которую нужно зарегистрировать, падает на кристалл и поглощается им, возбуждая при этом электроны в зону проводимости (или в полупроводниках р-типа — дырки в валентную зону). Такое возбуждение приводит к уменьшению сопротивления Rd полупроводникового кристалла и, следовательно, к увеличению падения напряжения на сопротивлении R, которое при ARd/Rd « 1 пропорционально плотности падающего потока. В качестве примера рассмотрим энергетические уровни одного из наиболее распространенных полупроводников — германия, легированного атомами ртути. Атомы Нд в германии являются акцепторами с энергией ионизации 0,09 эВ. Следовательно, для того чтобы поднять электрон с верхнего уровня валентной зоны и чтобы атом Нд (акцептор) сумел захватить его, необходим фотон с энергией не менее 0,09 эВ (т.е. фотон с длиной волны короче 14 мкм). Обычно кристалл германия содержит небольшое количество ND донорных атомов, которым при низких температурах энергетически выгодно отдавать свои валентные электроны большому количеству NA акцепторных атомов. При этом возникает равное количество положительно ионизированных донорных и отрицательно ионизированных акцепторных атомов. Так как концентрация акцепторов NA » ND, большинство атомов-акцепторов остается незаряженными.

Главным преимуществом полупроводниковых фотодетекторов по сравнению с фотоумножителями является их способность регистрировать длинноволновое излучение, поскольку создание подвижных носителей в них не связано с преодолением значительного поверхностного потенциального барьера.

Недостатком же их является небольшое усиление по току. Чтобы выходной импульс мог управлять различными электронными системами, его необходимо многократно усилить. Таким усилителем может быть одно-двухкаскадный транзисторный усилитель или операционный усилитель. Чтобы фотовозбуждение носителей не маскировалось тепловым возбуждением, полупроводниковые фотодетекторы не должны эксплуатироваться в средах с высокими температурами, иначе их необходимо охлаждать.

nauchebe.net

Фоторезисторы. Виды и работа. Применение и особенности

Фоторезисторы — это резисторы, у которых меняется сопротивление в зависимости от действия света на светочувствительную поверхность. Сопротивление не зависит от величины напряжения, в отличие от обычного резистора.

В основном фотосопротивления применяются для индикации или отсутствия света. В полной темноте сопротивление фоторезистора имеет большую величину, достигающую иногда до 1 мегаома. При воздействии на датчик (чувствительную часть фоторезистора) светового потока, его сопротивление в значительной степени снижается, и зависит от интенсивности освещенности. Величина сопротивления при этом может упасть до нескольких Ом.

Длина световой волны оказывает влияние на чувствительность фотосопротивления. Они применяются в различных устройствах, но не являются такими популярными, как фототранзисторы и фотодиоды. В некоторых зарубежных странах запрещено применение фотосопротивлений, так как в них содержится кадмий или свинец, вредные по экологическим требованиям.

Быстродействие фоторезисторов незначительное, поэтому они действуют только на низких частотах. В новых конструкциях устройств фоторезисторы редко применяются. Их можно встретить в основном при ремонте старых устройств.

Для проверки фотосопротивления к нему подключают мультитестер. Без света его значение сопротивления должно быть значительным, а при его освещении оно сильно падает.

 
Виды и принцип действия
По материалам изготовления фоторезисторы делятся на виды:
  • С внутренним фотоэффектом.
  • С внешним фотоэффектом.

При изготовлении фотосопротивлений с внутренним фотоэффектом применяют нелегированные вещества: германий или кремний.

При попадании на чувствительную часть фотоны воздействуют на электроны и заставляют их двигаться в зону проводимости. В итоге в материале возникает значительное число электронов, вследствие чего повышается электропроводность, а значит и снижается сопротивление.

Фоторезисторы с возникновением внешнего фотоэффекта изготавливают из смешанных материалов, в которые входят легирующие добавки. Эти вещества создают обновленную энергетическую зону сверху валентной зоны, насыщенной электронами, нуждающимися в меньшем количестве энергии для осуществления перехода в проводимую зону, с помощью энергетической щели малого размера. В результате фотосопротивление становится чувствительным к разной длине световой волны.

Несмотря на вышеописанные особенности этих видов, оба вида снижают сопротивление при освещении. При повышении интенсивности освещения снижается сопротивление. Поэтому, получается обратная зависимость сопротивления от света, причем нелинейная.

На электрических схемах фотосопротивления обозначаются:
 
Чувствительность и длина световой волны

Длина волны света оказывает влияние на чувствительность фотосопротивления. Если величина длины световой волны выходит за пределы диапазона работы, то освещенность уже не оказывает влияния на такой резистор, и он становится нечувствительным в этом интервале длин световых волн.

Разные материалы обладают различными спектральными графиками отклика волны. Фотосопротивления с внешней зависимостью чаще всего используются для значительной длины волны, с приближением к инфракрасному излучению. При эксплуатации светового резистора в этом диапазоне следует быть осторожным, во избежание чрезмерного нагрева, который влияет на показания измерения сопротивления в зависимости от степени нагревания.

Чувствительность фотосопротивления

Фоторезисторы обладают меньшей чувствительностью, по сравнению с фототранзисторами и фотодиодами, которые являются полупроводниковыми приборами, с управлением заряженными частицами от светового луча, посредством р-n перехода. У фотосопротивлений нет полупроводникового перехода.

При нахождении интенсивности света в стабильном диапазоне, сопротивление фоторезистора может все равно меняться в значительной степени из-за изменения величины температуры, так как она также оказывает большое влияние на сопротивление. Это свойство не позволяет использовать фоторезистор для измерения точной интенсивности света.

Инертность

Еще одним уникальным свойством обладает фотосопротивление. Оно состоит в том, что существует время задержки между изменением сопротивления и освещения, что называется инертностью прибора.

Для значительного падения сопротивления от воздействия луча света необходимо затратить время, равное около 10 миллисекунд. При обратном действии для восстановления значения сопротивления понадобится около 1 секунды.

Благодаря этому свойству такой резистор не применяется в устройствах с необходимостью учета резких скачков освещенности.

Свойства и конструктивные особенности

Фотопроводность впервые обнаружили у элемента Селена. Затем были найдены и другие материалы с подобными свойствами. Фоторезисторы из сульфида кадмия являются наиболее популярными и имеют обозначение СDS-фоторезистора. Сегодня фотосопротивления производятся и из антимонида индия, сульфида свинца, селенида свинца.

Для производства фотосопротивлений из сульфида кадмия, порошок высокой степени очистки смешивают с веществами инертного действия. Далее, смесь спрессовывают и спекают.

На основание с электродами в вакууме напыляют светочувствительный слой в форме извилистой дорожки. Далее, это напыленное основание размещают в пластиковую или стеклянную оболочку, во избежание предотвращения попадания пыли и грязи на чувствительный элемент.

Спектральный график отклика чувствительного сульфида кадмия сочетается с временем отклика глаза человека. Длина волны света наибольшей чувствительности равна 600 нанометров. Это соответствует видимому спектру. Устройства с содержанием кадмия или свинца запрещены во многих зарубежных странах.

Сфера использования фоторезисторов

Такой вид светочувствительных сопротивлений применяется в виде датчиков света, если необходимо определять отсутствие или наличие света, либо фиксацию значения интенсивности освещения. Таким примером служит автоматическая система включения освещения улиц, а также работа фотоэкспонометра.

Световое реле для освещения улиц

В виде примера на схеме изображено уличное фотореле освещения. Эта система включает освещение улиц в автоматическом режиме, при наступлении темного времени суток, и отключает его при наступлении светлого времени. Такую схему можно применять для любых автоматических систем освещения.

При падении луча света на фоторезистор, его сопротивление снижается, становится значительным падение напряжения на переменном сопротивлении R2, транзистор VТ1 открывается. Коллектор этого транзистора соединен с базой VТ2 транзистора, который в это время закрыт, и реле отключено. При наступлении темноты сопротивление фоторезистора повышается, напряжение на переменном сопротивлении снижается, а транзистор VТ1 закрывается. Транзистор VТ2 открывается и выдает напряжение на реле, подключающее лампу освещения.

Похожие темы:

electrosam.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *