Закрыть

Уравнение фарадея: Ошибка 404: страница не найдена

Содержание

Законы Фарадея в физике

Законы электролиза

При прохождении электрического тока через электролиты происходит процесс разложения вещества, который называют электролизом. При этом проводники, которые погружены в раствор, называют анодом (положительный электрод) и катодом (отрицательный электрод).

При помощи электролиза получают различные вещества, например, хлор, фтор, щелочи и т.д. При помощи данного процесса производят переработку сырья, которое содержит металлы, очищают металлы. Используя процессы электролиза, наносят тонкие металлические покрытия на разные металлические поверхности.

Формулировка первого закона Фарадея

Масса вещества, которое выделяется на электроде, прямо пропорциональна заряду, который прошел через электролит. В виде формулы данный закон можно представить как:

   

где — полный заряд, который проходит через электролит, за времяt. — сила тока. — коэффициент пропорциональности (электрохимический эквивалент вещества ()), равный массе вещества, которая выделится при прохождении через электролит заряда равного 1 Кл.

Величина является характеристикой вещества.

Первый закон для электролиза был получен Фарадеем экспериментально.

Формулировка второго закона Фарадея

Электрохимический эквивалент пропорционален молярной массе вещества () и обратно пропорционален величине его химической валентности (). В математическом виде второй закон Фарадея записывают как:

   

где Кл/моль — постоянная Фарадея, полученная эмпирически. Величину называют химическим эквивалентом вещества, она показывает, какая масса вещества требуется для замещения одного моля водорода в химических соединениях.

Иногда второй закон Фарадея формулируют так:

Электрохимические эквиваленты веществ пропорциональны их химическим эквивалентам.

Второй закон Фарадея также относят к эмпирическим законам.

Объединенный закон Фарадея для электролиза

Объединенный закон Фарадея записывают в виде:

   

Физический смысл выражения (3) заключен в том, что постоянная Фарадея количественно равна заряду, который следует пропустить через всякий электролит для того, чтобы на электродах выделилось вещество в количестве, равном одному химическому эквиваленту.

Примеры решения задач

Законы электромагнитной индукции Фарадея • Джеймс Трефил, энциклопедия «Двести законов мироздания»

После того как в начале XIX века было установлено, что электрические токи порождают магнитные поля (см. Открытие Эрстеда, Закон Био—Савара), ученые заподозрили, что должна наблюдаться и обратная закономерность: магнитные поля должны каким-то образом производить электрические эффекты. В 1822 году в своей записной книжке Майкл Фарадей записал, что должен найти способ «превратить магнетизм в электричество». На решение этой задачи у него ушло почти десять лет.

Не раз за эти годы он возвращался к этой проблеме, пока не придумал серию экспериментов, кажущихся крайне незамысловатым по современным меркам. На железную катушку в форме бублика, например, он с одной стороны намотал плотные витки длинного, заизолированного от железного сердечника проводника, подключаемые к сильной электрической батарее, а с другой — плотные витки электрического проводника, подключенного к

гальванометру — прибору для обнаружения электрического тока. Железный сердечник был нужен для «поимки» силовых линий образующегося магнитного поля и передачи их внутрь контура второй обмотки.

Первые результаты пришли не сразу. Сначала, сколько Фарадей ни наблюдал за своей установкой, при протекании электрического тока по первичной обмотке тока во вторичной обмотке не возбуждалось. Могло показаться, что предположения Фарадея относительно «преобразования» электричества в магнетизм и обратно ошибочны. И тут на помощь пришел случай: обнаружилось, к полному удивлению Фарадея, что стрелка гальванометра в цепи вторичной обмотки скачкообразно отклоняется от нулевого положения лишь при подключении или отключении батареи. И тогда Фарадея посетило великое прозрение: электрическое поле возбуждается лишь при

изменении магнитного поля. Самого по себе присутствия магнитного поля недостаточно. Сегодня эффект возникновения электрического поля при изменении магнитного физики называют электромагнитной индукцией.

Повторяя свои опыты и анализируя результаты, Фарадей вскоре пришел к выводу, что протекающий по контуру электрический заряд пропорционален изменению т.  н. магнитного потока, проходящего через него. Представьте себе, что замкнутый электропроводящий контур положен на лист бумаги, через который проходят силовые линии магнитного поля. Магнитным потоком называется произведение площади контура на напряженность (условно говоря, число силовых линий) магнитного поля, проходящего через эту площадь перпендикулярно ей. В первоначальной формулировке закон электромагнитной индукции Фарадея гласил, что при изменении магнитного потока, проходящего через контур, по проводящему контуру протекает электрический заряд, пропорциональный изменению магнитного потока, который возбуждается без всякого внешнего источника питания типа электрической батареи. Не будучи до конца удовлетворенным формулировкой, в которой фигурировала столь трудноизмеримая величина, как электрический заряд, Фарадей вскоре объединил свой закон с законом Ома и получил формулу (иногда ее принято называть

вторым законом электромагнитной индукции Фарадея) для определения электродвижущей силы, возникающей в результате изменения магнитного потока через контур.

Изменить магнитный поток через контур можно тремя способами:

  • изменить площадь контура;
  • изменить интенсивность магнитного поля;
  • изменить взаимную ориентацию магнитного поля и плоскости, в которой лежит контур.

Последний метод работает, поскольку при таком движении изменяется проекция магнитного поля на перпендикуляр к площади контура, хотя ни напряженность магнитного поля, ни площадь контура не меняются. Это очень важно с практической точки зрения, поскольку именно это явление лежит в основе действия любого электрогенератора. В самом простом варианте генератора проволочный контур вращается между полюсами сильного магнита. Поскольку в процессе вращения магнитный поток, проходящий через контур, постоянно меняется, по нему всё время протекает электрический ток. Согласно правилу Ленца, на протяжении одного полуоборота контура ток будет течь в одну сторону, а на протяжении следующего полуоборота — в другую. Собственно, по этому принципу и вырабатывается так хорошо нам знакомый переменный ток, который поступает в дома жителей всего мира по сетям энергоснабжения.

И не важно, что частота его в Америке равна 60 герц, а в Европе — 50 герц; важен сам принцип его получения. А тот факт, что американские генераторы совершают 60 оборотов в секунду, а европейские — 50 оборотов в секунду, — это уже дань исторической традиции.

Электрогенераторы играли, играют и будут играть важнейшую роль в развитии нашей технологической цивилизации, поскольку позволяют получать энергию в одном месте, а использовать ее в другом. Паровая машина, например, может преобразовывать энергию сгорания угля в полезную работу, но использовать эту энергию можно только там, где установлены угольная топка и паровой котел. Электростанция же может размещаться весьма далеко от потребителей электроэнергии — и, тем не менее, снабжать ею заводы, дома и т. п.

Рассказывают (скорее всего, это всего лишь красивая сказка), будто Фарадей, демонстрировал прототип электрогенератора Джону Пилу (John Peel), Канцлеру казначейства Великобритании, и тот спросил ученого: «Хорошо, мистер Фарадей, всё это очень интересно, а какой от всего этого толк?»

«Какой толк? — якобы удивился Фарадей.  — Да вы знаете, сэр, сколько налогов в казну эта штука со временем будет приносить?!»

См. также:

1.4. Законы Фарадея (законы электролиза)

Связь между количеством выделившегося при электролизе веществ и количеством электричества, прошедшего через электролит, выражается двумя законами Фарадея.

Первый закон Фарадея. Масса вещества, выделившегося на электроде при электролизе, прямо пропорциональна количеству электричества, прошедшего через электролит:

m = kQ,

где m

— масса вещества, г; k – электрохимический эквивалент, т.е. масса вещества, выделившаяся при прохождении одного кулона электричества, г/Кл; Q – количество электричества, Кл (Q = It, где I — сила тока, t — время, с).

Второй закон Фарадея. Одинаковое количество электричества выделяет при электролизе на электродах эквивалентные массы различных веществ. Для выделения одного моля эквивалента любого вещества необходимо затратить одно и то же количество электричества, а именно 96485 Кл, называемое числом Фарадея.

Тогда электрохимический эквивалент:

,

где Mэкв — молярная масса химического эквивалента вещества (иона), г/моль экв.

Из первого и второго законов Фарадея вытекает объединенное уравнение:

;

. (4)

1.5. Примеры решения задач

Пример 1. Написать уравнения электрохимических процессов, происходящих на аноде (анод инертный) и катоде при электролизе раствора бромида меди (II).

Решение. В водном растворе CuBr2 диссоциирует следующим образом:

CuBr2 Cu2+ + 2Br.

Стандартный электродный потенциал водородного электрода в нейтральной водной среде:

2H2O + 2ē → H2↑ + 2OH (–0,41В).

Это значительно отрицательнее потенциала системы:

Cu2+ + 2e → Cu

0 (+0,34В).

Поэтому на катоде будет происходить электрохимическое осаждение меди:

Cu2+ + 2ē → Cu0.

На аноде будет происходить окисление ионов брома, приводящее к выделению газообразного брома:

Brē → Br0 ;

2Br0 → Br2↑;

поскольку электрохимическое окисление воды:

2H2O – 4e → O2↑ + 4H+

из нейтральных сред может протекать при потенциалах не менее (+1,23 В), что выше стандартного электродного потенциала, характеризующего выделение газообразного брома (+1,07 В).

Пример 2. Написать уравнения электрохимических процессов, происходящих на аноде и катоде при электролизе раствора сульфата натрия (анод инертный).

Решение. В водном растворе Na2SO4 диссоциирует следующим образом:

Na2SO4 2Na+ + SO42–.

Стандартный электродный потенциал системы:

Na+ + ē → Na0 (–2,71 В)

значительно отрицательнее потенциала водородного электрода в нейтральной среде (–0,41 В). Поэтому на катоде будет происходить электрохимическое разложение воды с выделением водорода:

2H2O + 2ē → H2↑ + 2OH,

а ионы натрия, приходящие к катоду, будут накапливаться в прилегающей к нему части раствора (катодное пространство).

На аноде будет происходить электрохимическое окисление воды, приводящее к выделению кислорода:

2H2O – 4e → O2↑ + 4H+,

поскольку отвечающей этой системе стандартный электродный потенциал (+1,23 В) значительно ниже, чем стандартный электродный потенциал (+2,01 В), характеризующий систему:

2SO42– – 2ē → S2O82–.

Сульфат-ионы, движущиеся при электролизе к аноду, будут накапливаться в анодном пространстве.

Пример 3. Написать уравнения электрохимических процессов, происходящих на катоде и аноде при электролизе раствора сульфата цинка с цинковым анодом.

Решение. В водном растворе ZnSO4 диссоциирует следующим образом:

ZnSO4 Zn2+ + SO42–.

Стандартный электродный потенциал системы:

Zn2+ + 2ē → Zn0 (–0,76 В)

близок к потенциалу водородного электрода в нейтральной водной среде (– 0,41 В), поэтому на катоде будут совместно протекать два процесса восстановления:

Zn2+ + 2ē → Zn0;

2H2O + 2ē → H2↑ + 2OH.

На аноде возможно протекание трех окислительных процессов: электрохимического окисления воды, приводящего к выделению кислорода (+1,23 В), окисления сульфат-ионов (+2,01 В) и окисления материала анода, т.е. цинка (–0,76 В). Сравнение электродных потенциалов систем позволяет сделать вывод об окислении анода и выделении ионов цинка в раствор:

Zn0 – 2ē → Zn2+.

Пример 4. Определить массу цинка, которая выделится на катоде при электролизе сульфата цинка в течение одного часа при токе 26,8 А, если выход по току цинка равен 50 %.

Решение. Расчет ведем согласно объединенному уравнению из законов Фарадея (4). Масса моля эквивалента (химический эквивалент вещества) цинка в ZnSO4 равна (65,38 / 2) = 32,69 г/моль экв. Не забыв выразить время в секундах, подставим в уравнение закона Фарадея все известные значения и определим массу цинка, которая должна выделиться (при условии, если весь ток будет израсходован на выделение цинка):

m = (32,69 ∙ 26,8 ∙ 3600) / 96485 = 32,69 г.

Так как выход по току цинка составляет 50%, то практически на катоде выделится цинка:

mпр = 32,69 ∙ (50/100) = 16,345 г.

Пример 5. Рассчитать ток при электролизе раствора в течение 1 ч 40 мин 25 с, если на катоде выделилось 1,4 л водорода, измеренного при нормальных условиях.

Решение. Из формулы (4) выразим силу тока:

.

Так как количество водорода дано в единицах объема, то отношение m/Э заменяем отношением VH2/Vэкв H2 , где VH2 — объем водорода, л; Vэкв H2 — объем одного моля эквивалента водорода. Объем моля эквивалента водорода при нормальных условиях равен половине моля молекул водорода Vэкв H2 = 22,4/2 = 11,2 л, так как моль любого газа в нормальных условиях занимает объем, равный 22,4 л, а в процессе электрохимического восстановления водорода участвуют два электрона. Подставив в приведенную формулу числовые значения, получим:

= 2 А.

Закон Фарадея для электромагнитной индукции в трансформаторах

Электричество обладает способностью генерировать магнитное поле. В 1831 году М. Фарадей ввел понятие электромагнитная индукция. Он смог получить в закрытой системе проводников электричество, появляющееся при изменении показателей магнитного потока. Формула закона Фарадея дала толчок для развития электродинамики.

История развития

После доказательства закона электромагнитной индукции английским ученым М. Фарадеем над открытием работали российские ученые Э. Ленц и Б. Якоби. Благодаря их трудам, сегодня разработанный принцип положен в основу функционирования многих приборов и механизмов.

Основными агрегатами, в которых применяется закон электромагнитной индукции Фарадея, являются двигатель, трансформатор и множество иных приборов.

Индукцией электромагнитно именуется индуцирование в замкнутой проводящей системе электрического тока. Такое явление становится возможным при физическом передвижении через проводниковую систему магнитного поля. Механическое действие влечет за собой появление электричества. Его принято называть индукционным. До открытия закона Фарадея человечество не знало об иных способах создания электричества, кроме гальваники.

Если сквозь проводник пропустить магнитное поле, в нем будет возникать ЭДС индукции. Ее еще именуют электродвижущей силой. При помощи этого открытия удается представить в количественном выражении показатель.

Опытное доказательство

Проводя свои исследования, английский ученый установил, что индукционный ток получается одним из двух способов. В первом опыте он появляется при движении рамки в магнитном поле, создаваемом неподвижной катушкой. Второй способ предполагает неподвижное положение рамки. В этом эксперименте изменяется только поле катушки при ее движении или изменении силы тока в ней.

Опыты Фарадея привели исследователя к выводу, что при генерировании индукционного тока провоцируется увеличением или уменьшением магнитного потока в системе. Также опыты Фарадея позволили утверждать, что значение электричества, полученного опытным путем, не зависит от методологии, которой был изменен поток магнитной индукции. На показатель влияет только скорость такого изменения.

Количественное выражение

Установить количественное значение явления электромагнитной индукции позволяет закон Фарадея. Он гласит, что ЭДС, определяющаяся в системе, меняет значение пропорционально скорости перемещения потока в проводнике. Формула будет иметь такой вид:

Отрицательный знак свидетельствует о том, что ЭДС препятствует появлению изменений внутри контура. Для решения некоторых задач отрицательный знак в формуле не ставят. В этом случае результат записывают в виде модуля.

Система может включать в себя несколько витков. Количество их обозначается латинской буквой N. Все элементы контура пронизываются единым магнитным потоком. ЭДС индукции будет рассчитываться так:

Понятным примером воссоздания электричества в проводнике считается катушка, сквозь которую перемещается постоянный магнит.

Работа Э. Ленца

Направленность индукционного тока предоставляет возможность определить правило Ленца. Краткая формулировка звучит достаточно просто. Появляющийся при изменении показателей поля проводникового контура ток, препятствует благодаря своему магнитному полю такому изменению.

Если в катушку постепенно вводить магнит, в ней повышается уровень магнитного потока. Согласно правилу Ленца, магнитное поле будет иметь направление противоположное увеличению поля магнита. Чтобы понять эту направленность, необходимо смотреть на магнит с северной стороны. Отсюда будет вкручиваться буравчик навстречу северному полюсу. Ток будет перемещаться в сторону движения часовой стрелки.

Если магнит выводится из системы, магнитный поток в ней уменьшится. Чтобы установить направление тока, выкручивается буравчик. Вращения будет направлено в обратную сторону перемещения по циферблату часовой стрелки.

Формулировки Ленца приобретают большое значение для системы с контуром замкнутого типа и отсутствующим сопротивлением. Его принято именовать идеальным контуром. По правилу Ленца, в нем невозможно увеличить или уменьшить магнитный поток.

Понятие самоиндукции

Генерация индукции в идеальной системе, которое имеет место при падении или возрастании электричества в проводнике, именуется самоиндукцией.

Закон Фарадея для самоиндукции выражается равенством, когда при изменении электричества не произошло иных изменений:

где е – ЭДС, L – индуктивность закрытой катушки, ΔI/Δt – скорость, с которой происходят изменения силы тока.

Индуктивность

Отношение, которое показывает пропорциональность между такими категориями, как сила тока в проводящей системе и магнитным потоком именуется индуктивностью. На показатель имеет влияние физические габариты катушки и магнитные характеристики среды. Отношение описывается формулой:

Движущееся в контуре электричество провоцирует появление магнитного поля. Оно пронизывает собственный проводник и влечет появление своего потока сквозь контур. Причем собственный поток пропорционален электричеству, которая его порождает:

Фс = L*I

Значение индуктивности также формируется из закона Фарадея.

Недвижимая система

Сила Лоренца объясняет возникновение ЭДС при движении системы в поле со значением постоянным. Индукционная ЭДС имеет способность возникать и при неподвижной проводящей системе, находящейся в переменном магнитном поле. Сила Лоренца в таком примере не способна объяснить появление ЭДС индукции.

Максвелл для проводящих систем неподвижного типа предложил применять особое уравнение. Оно объясняет возникновение в таких системах ЭДС. Главным принципом закона Фарадея-Максвелла является факт, что переменное поле образует в пространстве вокруг себя электрическое поле. Оно выступает фактором, провоцирующим появление тока индукции в недвижимой системе. Перемещение вектора (Е) по стационарным контурам (L) является ЭДС:

При наличии тока переменного значения законы Фарадея водятся в уравнения Максвелла. Причем они могут быть представлены как в дифференциальной форме, так и в виде интегралов.

Труды в области электролиза

При использовании законов Фарадея описываются закономерности, которые существуют при электролизе. Этот процесс заключается в превращении веществ с разнообразными характеристиками. Это происходит при движении электричества сквозь электролит.

Эти закономерности были доказаны М. Фарадеем в 1834 году. Первое утверждение гласит, что масса вещества, которое образуется на электроде, меняется соответственно заряду, перемещенному сквозь электролит.

Второе утверждение гласит, что эквиваленты компонентов с разными характеристиками пропорциональны химическим эквивалентам этих компонентов.

Оба представленных утверждения совмещаются в объединенный закон Фарадея. Из него следует, что число Фарадея будет равняться электричеству, способному выделить на электролите 1 моль вещества. Ее рассчитывают на единицу валентности. Именно по объединенной формуле в далеком 1874 году был вычислен заряд электрона.

Законы электролиза, установленные Фарадеем, тестировались при различном значении тока, температуры, давления, а также при одновременном выделении двух и более веществ. Электролиз также проводился в разных расплавах и растворителях. Концентрация электролита также отличалась в разных опытах. При этом иногда наблюдались небольшие отклонения от закона Фарадея. Они объясняются электронной проводимостью электролитов, которая определяется наравне с ионной проводимостью.

Открытия, сделанные английским физиком М. Фарадеем, позволили описать множество явлений. Его законы являются основой современной электродинамики. По этому принципу функционирует различное современное оборудование.

Сектант электротехнической революции

Если верить концепции технико-экономических волн Карлоты Перес, Фарадей родился через двадцать лет после начала первой, промышленной, технологической революции (механизация производства), уже зрелым человеком встретил вторую, связанную с паром и железными дорогами, и умер незадолго до третьей (электричество, сталь, тяжелая промышленность). Этот тот чистый случай роли личности в истории, когда мы наверняка можем сказать, что, если бы Фарадея не было, третья технологическая революция случилась бы с заметным опозданием, так как его работы по электромагнетизму, заложившие основы современной электротехники, были определяющими и уникальными. Пожалуй, ни в одном другом революционном технологическом сдвиге цивилизации нет столь четкой персонификации.

 Электродвигатель, трансформатор, генератор — все эти революционные изобретения сделал человек без особого образования, плохо знавший математику и практически не использовавший в своих трудах формул

Не менее любопытно и еще одно обстоятельство: электродвигатель, трансформатор, генератор — все эти революционные изобретения сделал человек без особого образования, плохо знавший математику и практически не использовавший в своих трудах формул. Уже значительно позже Джеймс Максвелл оформил (по его собственной скромной оценке) натурфилософские мутноватые рассуждения Фарадея в элегантную систему уравнений, однако машины третьей технологической революции к этому моменту были созданы и работали.

 В отличие от Галилея, утверждавшего, что книга природы написана языком математики, плохо знавший математику Фарадей утверждал, что на самом деле она «написана перстом Господа»

Наконец, третья удивительная вещь, связанная с творчеством Фарадея: придумывая машины третьей технологической революции, он параллельно создал современную физику. Мощь физической интуиции необразованного Фарадея даже не столько восхищает, сколько пугает. Как мог этот подмастерье переплетчика, делавший скромную карьеру лаборанта, создать одну из самых продуктивных концепций современной физики — концепцию поля? Этим же вопросом безуспешно задавались Максвелл и Эйнштейн. Некоторые историки науки считают, что необразованность Фарадея, его незашоренность, в частности ньютоновским дальнодействием, позволили ему сразу считать, что действие передается не через пустоту, а с помощью некоего «силового посредника». Отчасти эту точку зрения разделял и сам Максвелл, замечая в своем знаменитом «Трактате»: «Фарадей своим мысленным взором видел пронизывающие всё пространство силовые линии там, где математики видели центры сил, притягивающие на расстоянии. Фарадей видел среду там, где они не видели ничего, кроме расстояния. Фарадей усматривал местонахождение явлений в тех реальных процессах, которые происходят в среде, а они довольствовались тем, что нашли его в силе действия на расстоянии, которая прикладывается к электрическим жидкостям».

Роберт Сандеман был шотландским нонконформистским богословом. Его последователи , сандеманианцы, настаивая на буквальном прочтении Библии, утверждали целостность и взаимосвязанность всех вещей, отрицая пустое пространство

Wikipedia

Некоторые же идут еще дальше и связывают происхождение фарадеевой концепции силового поля с его принадлежностью секте сандеманианцев, которые, настаивая на буквальном прочтении Библии, утверждали целостность и взаимосвязанность всех вещей, отрицая пустое пространство. Хотя подобные размышления могут завести нас достаточно далеко, следует признать, что и семья Фарадея, и он сам всегда оставались членами этой секты, отколовшейся в восемнадцатом веке от пресвитерианской церкви Шотландии ввиду недостаточной ригоричности последней. В отличие от Галилея, утверждавшего, что книга природы написана языком математики, плохо знавший математику Фарадей утверждал, что на самом деле она «написана перстом Господа».

Продуктивный медовый месяц

Собственно научная карьера Фарадея началась после того, как известный химик и физик Гэмфрид Дэви взял его из переплетной мастерской на должность личного помощника в Королевском институте — ключевом научном учреждении империи. Дэви благоволит молодому самоучке и предлагает ему сопровождать его в длительном путешествии по европейским научным центрам в качестве камердинера. Возможно, иной амбициозный юноша счел бы такое предложение унизительным, но для члена сандеманианской секты, проповедовавшей скромность, граничащую с самоуничижением, оно показалось вполне адекватным, и полтора года Фарадей имел возможность лично общаться с научными звездами Европы. 

 Как мог подмастерье переплетчика, делавший скромную карьеру лаборанта создать одну из самых продуктивных концепций современной физики — концепцию поля? Этим же вопросом безуспешно задавались Максвелл и Эйнштейн

Он знакомится с Ампером, уже предложившем свою гипотезу кольцевых токов, но из-за незнания математики не оценивает ее; общается с Вольтой и изучает принцип работы вольтова столба. По возвращении в Англию и повышения по службе (он начинает отвечать за работу лабораторного оборудования всего Королевского института) Фарадей приступает к собственным исследованиям, правда, начинает он с химии, и полученных здесь результатов уже хватило бы на звание выдающегося ученого. Ему удается открыть нержавеющую сталь (но металлургов открытие не заинтересовывает — третья технологическая революция еще впереди), выделить из китового масла вещество, которое мы сегодня называем бензолом, сделать пионерские работы по сжижению различных газов, заложив основы криогенной техники.

Фарадей с женой Сарой, которой всегда было чем заняться по хозяйству

Wikipedia

Толчком к началу занятий над главной темой — электромагнетизмом — послужили, как ни странно, личные обстоятельства. Фарадей влюбляется в Сару Барнард, дочь уважаемого члена секты, сандеманианского пастора. Он делает ей предложение, но сразу оговаривает, что брак должен будет стать не более чем незаметным фоном для его научной работы. Сара, будучи истинной сандеманианкой, проглатывает обиду и дает согласие, но после свадьбы, когда счастливый Фарадей спрашивает, как она хотела бы провести медовый месяц, молодая жена невозмутимо отвечает, что была бы счастлива, если бы муж подготовил к его окончанию обзор последних исследований по какой-нибудь научной теме, а ей есть чем заняться по хозяйству. Обескураженный Фарадей решает подготовить обзор последних открытий в области электричества и магнетизма, и это оказывается поистине судьбоносным для науки решением.

#image-kit_2126

Больше всего Фарадея заинтересовали описания опытов датчанина Ганса Эрстеда, показавшего, что стрелка компаса отклоняется, если рядом с ней помещен проводник с протекающим по нему током. Размышляя над этим, Фарадей сконструировал первый в истории простенький электродвигатель: намагниченный стержень, помещенный в колбу с ртутью, вращался вокруг проводника, по которому пропускался ток, — электричество делало механическую работу! Далее Фарадей задумался о следующем: если в опыте Эрстеда электрический ток производит магнитное действие, то не должна ли природа продемонстрировать симметрию и нельзя ли придумать эксперимент, в котором уже магнит вызывает электрический ток? Эта теоретически ничем не подкрепленная на тот момент идея симметрии между электрическими и магнитными явлениями настолько овладела Фарадеем, что на какое-то время он практически поселился в лаборатории, в которую верная жена приносила ему поесть.  

Демонстрация первого электродвигателя Фарадея (1821 год) Слева: намагниченная проволка, погруженная одним концом в ртуть, вращается вокруг проводника с током, расположенного по оси симметрии сосуда Справа: проводник с током, один конец которого погружен во ртуть, вращается вокруг намагниченной проволки, расположенной по оси симметрии сосуда

Quarterly Journal of Science, Literature and the Arts, 1821, volume XII

После серии безуспешных опытов был придуман следующий эксперимент: вокруг железного кольца были обмотаны две изолированные проволоки, причем одна проволока была обмотана вокруг одной половины кольца, а другая — вокруг другой. Через одну проволоку пропускался ток от гальванической батареи, а концы другой были соединены с гальванометром. (Сегодняшний читатель без труда узнает в этой схеме трансформатор.) И вот, когда ток замыкался или прекращался и, следовательно, железное кольцо намагничивалось или размагничивалось, стрелка гальванометра быстро колебалась и затем быстро останавливалась, то есть в нейтральной проволоке под влиянием магнетизма возбуждался «наведенный», или индуктивный, электрический ток. Так Фарадей впервые превратил магнетизм в электричество. Еще в одном эксперименте Фарадей быстро вводил магнит в катушку провода и фиксировал в ней появление электрического тока — круг замкнулся, механическая энергия руки двигала магнит, и в результате получался электрический ток. Открытый им закон, известный сегодня как закон электромагнитной индукции Фарадея, был сформулирован в одной фразе и без единого математического символа: «При увеличении или уменьшении магнитной силы всегда возникает электричество; чем выше скорость увеличения или уменьшения, тем большее количество электричества образуется».

Один из классических экспериментов Фарадея по электромагнитной индукции (1831 год Батарея (справа) вызывает электрический ток в малой катушке (А). Когда мы вдвигаем А в большую катушку (В) или выдвигаем ее из нее, переменное магнитное поле индуцирует в В электрический ток, фиксируемый гальванометром (слева)

Wikipedia

Вскоре Фарадей придумал и первый генератор постоянного тока, поместив проводящий вращающийся диск между полюсами магнита (магнитное поле параллельно оси вращения диска). Между центром диска и его краем возникала разность потенциалов. Разместив токосъемники в центре и на краю диска и включив их в цепь, Фарадей получал постоянный ток, который не прекращался, пока было желание или возможность вращать диск. Первый генератор переменного тока (динамо-машина) был сконструирован по описаниям Фарадея несколько позже французским механиком Ипполитом Пикси.

 Вошел в анналы ответ Фарадея министру финансов Гладстону, спросившему великого ученого: «Для чего вообще может понадобится это электричество?» Ответ Фарадея был министерски доходчив: «Однажды, сэр, вы обложите его налогом»

Примерно к этому времени относится и вошедший в анналы ответ Фарадея министру финансов Гладстону, спросившему великого ученого: «Для чего вообще может понадобится это электричество?» Ответ Фарадея был министерски доходчив: «Однажды, сэр, вы обложите его налогом». Кстати, первый налог на производство электричества в Англии был введен уже в 1880 году — всего через тринадцать лет после смерти первооткрывателя электромагнитной индукции.

Визит к королеве

Совпадение это или нет, но практически сразу после открытия первого производства динамо-машин в Бирмингеме сандеманианцы присвоили Фарадею статус почетного прихожанина. Родная секта, довольно равнодушно наблюдавшая его научные успехи, возможно, решила отметить начало их реальной службы на пользу человечества. Фарадея, впрочем, уже влекли новые темы.

 Совпадение это или нет, но практически сразу после открытия первого производства динамо-машин в Бирмингеме сандеманианцы присвоили Фарадею статус почетного прихожанина

После своих выдающихся работ в области электромагнетизма Фарадей занялся электрохимией, открыл законы электролиза и, что не менее любопытно, вместе со своим другом классическим филологом Уильямом Уэвеллом разработал терминологию для этой области науки. Ион, катод, анод, электрод, электролиз — все это результат их совместного лингвистического творчества. Успел оставить свой след Фарадей и в таких отраслях как диа- и парамагнетизм, химия катализа, ему удалось предсказать влияние электромагнитного поля на световое излучение, конечную скорость распространения электромагнитного поля. Он предвосхитил исследовательскую программу Эйнштейна, считая, что в итоге все фундаментальные взаимодействия природы, включая гравитацию, имеют единую основу.

Фарадей объединил линзы Френеля (А и В) с часовым механизмом (М и Р), в результате мигающий свет, видимый моряками, служил для отличия маяка от звезд или береговых огней

Wikipedia

Но занимался Фарадей и совсем прикладными задачами — выступал технологическим экспертом в судах, консультировал правительство по научным вопросам, совершенствовал маяки, разрабатывал защиту днищ кораблей от коррозии, правда, наотрез отказался от участия в разработке химического оружия (токсичных газов) для Крымской войны — не позволили религиозные убеждения. Власть на закате жизни относилась к нему с большим уважением, королева Виктория выделила ему покои во дворце и искала его общества (именно отсутствие на одной из сандеманианских служб по причине визита к королеве стоило Фарадею звания старейшины общины — сандеманианцы не сочли это уважительной причиной). Но Фарадей считал, что власть пока не до конца оценила роль и значение ученых и изобретателей в современной истории и был уверен, что, если она не позволит исследовательскому классу участвовать в принятии важных решений, она может поплатиться за это в ближайшую эпоху. Комиссия Британского общества естествоиспытателей обратилась однажды к Фарадею с запросом, какие, по его мнению, средства могло бы употребить правительство для улучшения в Англии положения представителей науки. В ответ Фарадей написал, что, по его мнению, «правительству ради своей выгоды следовало бы ценить людей, служащих стране и приносящих ей честь» и что «во множестве случаев, требующих научных знаний, правительству следовало бы пользоваться учеными; но к сожалению, это не практикуется в таких размерах, в каких могло бы делаться с пользою для всех; очевидно, правительство, еще не научившееся уважать ученых как особый класс людей, не может найти верных путей и средств вступать с ними в сношения и сильно проигрывает от этого».

Alibi sepulti на памятной табличке Фарадея в Вестминстерском аббатстве означает «похоронен в другом месте» 

Когда Фарадей умер, королева Виктория намеревалась организовать пышные похороны и погребение великого ученого рядом с Исааком Ньютоном и другими великими деятелями в Вестминстерском аббатстве. Однако он успел по-другому распорядиться своими похоронами, оставив следующую записку: «Скромные похороны, на которых должны присутствовать только мои родственники, самый простой надгробный памятник в самом обычном месте земли». Как истинного сандеманианца Фарадея похоронили на сандеманианском участке кладбища Хайгейт в Лондоне, а рядом с могилой Исаака Ньютона в Вестминстерском аббатстве повесили скромную табличку.

§23. Закон электромагнитной индукции Фарадея

В 1831 г. Фарадей экспериментально открыл явление электромагнитной индукции. Суть явления состояла в том, что если через замкнутый контур происходило изменение магнитного потока, то в контуре возникала электродвижущая сила, приводящая к возникновению замкнутого тока. Этот ток был назван индукционным током. Правило, устанавливающее направление индукционного тока было сформулировано в 1833г. Э. Х. Ленцем (1804 — 1865) и называется правилом Ленца. Оно гласит: индукционный ток направлен так, что создаваемый им магнитный поток стремится компенсировать изменение магнитного потока, вызывающего данный ток.

Опыты Фарадея состояли в следующем: катушка индуктивности подключалась к чувствительному гальванометру и в катушку вдвигался и выдвигался постоянный магнит.

Из опытов следовало, что

. Но сила тока зависит еще и от сопротивления контура. Поэтому закон электромагнитной индукции формулируется не для индукционного тока, а для причины, вызывающий этот ток, т. е. для . В 1845г. Ф. Э. Нейман (1799 — 1895) дал математическое определение закона электромагнитной индукции в современной форме: (23.1)

Хотя внешне формулы (22.6) и (23.1) одинаковы, между ними существует принципиальное различие. Возникновение

в (22.6) связано с движением проводников в магнитном поле и с действием на заряды силы Лоренца. Тогда как в (23.1) на заряды в контуре действует электрическое поле, причем сам контур лишь только инструмент или прибор, который может обнаружить это изменяющееся электрическое поле, которое возникает в пространстве. Следовательно закон Фарадея отражает новое физическое явление, а именно: изменяющееся магнитное поле порождает изменяющееся электрическое поле. А это означает, что электрическое поле порождается не только зарядами, но и изменяющимся магнитным полем. Закон электромагнитной индукции является фундаментальным законом природы.

Дифференциальная формулировка закона

, а тогда магнитный поток , а ..

К левой части применим формулу Стокса. Тогда

. После того как перенесем все слагаемые в одну сторону получим:

В силу произвольности

можно заключить, что подынтегральная функция равна нулю, а значит (23.2)

Уравнение (23.2) является дифференциальной формой закона электромагнитной индукции. В переменных магнитных полях

, а значит и следовательно, в отличие от электростатического поля, порождаемого неподвижными зарядами, переменное электрическое поле не является потенциальным и работа при перемещении заряда по замкнутому контуру не равна нулю:.

Так как закон электромагнитной индукции не затрагивает закона порождения магнитного поля, то уравнение (18.6)

остается в силе, а значит в силе остается и выражение (19.2): .

Если подставить (19.2) в (23.2), то

, а значит. (23.3)

Отсюда следует, что в переменных полях потенциальным является вектор

, а значит он равен градиенту скалярной функции, т. е., а значит. (23.4)

Второе слагаемое в (23.4) означает, что электрическое поле может порождаться неподвижными зарядами, а первое означает, что электрическое поле может порождаться переменным магнитным полем.

Закон Фарадея — это… Что такое Закон Фарадея?

  • закон Фарадея — закон электромагнитной индукции — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия Синонимы закон электромагнитной… …   Справочник технического переводчика

  • закон Фарадея — Faraday aus dėsnis statusas T sritis automatika atitikmenys: angl. Faraday s law vok. Faradaysches Gesetz, n; Gesetz von Faraday, n rus. закон Фарадея, m pranc. loi de Faraday, f ryšiai: sinonimas – Faradėjaus dėsnis …   Automatikos terminų žodynas

  • ИНДУКЦИИ ЗАКОН, ЗАКОН ФАРАДЕЯ — (Induction law) если вблизи проволоки, концы которой замкнуты (замкнутый контур), возникает изменяющееся по времени магнитное поле, то в контуре возникает электродвижущая сила и по проволоке пойдет электрический ток. И. З. гласит, что… …   Морской словарь

  • Фарадея законы — Закон Фарадея Закон электромагнитной индукции Фарадея Законы Фарадея количественные законы электролиза …   Википедия

  • Закон электромагнитной индукции Фарадея —     Классическая электродинамика …   Википедия

  • Закон индукции Фарадея — Классическая электродинамика Магнитное поле соленоида Электричество · Магнетизм Электростатика Закон Кулона …   Википедия

  • Фарадея законы — основные количественные законы электролиза, согласно которым массы m превращённых веществ пропорциональны количеству прошедшего через электролит электричества q (1 й Фарадея закон) и химическому эквиваленту А вещества (2 й Фарадея закон).… …   Энциклопедический словарь

  • Закон магнитоэлектрической индукции — Классическая электродинамика Магнитное поле соленоида Электричество · Магнетизм Электростатика Закон Кулона …   Википедия

  • Фарадея число — Постоянная Фарадея , физическая постоянная, определяющая соотношение между электрохимическими и физическими свойствами вещества. Постоянная Фарадея входит в качестве константы во второй закон Фарадея (закон электролиза). Численно постоянная… …   Википедия

  • Фарадея постоянная — Постоянная Фарадея , физическая постоянная, определяющая соотношение между электрохимическими и физическими свойствами вещества. Постоянная Фарадея входит в качестве константы во второй закон Фарадея (закон электролиза). Численно постоянная… …   Википедия

  • Магнитный поток, индукция и закон Фарадея

    Индуцированные ЭДС и магнитный поток

    Закон индукции Фарадея гласит, что электродвижущая сила индуцируется изменением магнитного потока.

    Цели обучения

    Объясните взаимосвязь между магнитным полем и электродвижущей силой

    Основные выводы

    Ключевые моменты
    • Это изменение потока магнитного поля, которое приводит к возникновению электродвижущей силы (или напряжения).
    • Магнитный поток (часто обозначаемый Φ или Φ B ), проходящий через поверхность, является составляющей магнитного поля, проходящего через эту поверхность.
    • В самом общем виде магнитный поток определяется как [латекс] \ Phi _ {\ text {B}} = \ iint _ {\ text {A}} \ mathbf {\ text {B}} \ cdot \ text {d} \ mathbf {\ text {A}} [/ latex]. Это интеграл (сумма) всего магнитного поля, проходящего через бесконечно малые элементы площади dA.
    Ключевые термины
    • векторная площадь : вектор, величина которого соответствует рассматриваемой области, а направление перпендикулярно площади поверхности.
    • гальванометр : аналоговое измерительное устройство, обозначенное G, которое измеряет ток, используя отклонение стрелки, вызванное силой магнитного поля, действующей на провод с током.

    Индуцированная ЭДС

    Аппарат, использованный Фарадеем для демонстрации того, что магнитные поля могут создавать токи, показан на следующем рисунке. Когда переключатель замкнут, магнитное поле создается в катушке в верхней части железного кольца и передается (или направляется) на катушку в нижней части кольца.Гальванометр используется для обнаружения любого тока, наведенного в отдельной катушке внизу.

    Аппарат Фарадея : Это аппарат Фарадея для демонстрации того, что магнитное поле может производить ток. Изменение поля, создаваемого верхней катушкой, вызывает ЭДС и, следовательно, ток в нижней катушке. Когда переключатель разомкнут и замкнут, гальванометр регистрирует токи в противоположных направлениях. Когда переключатель остается замкнутым или разомкнутым, через гальванометр не течет ток.

    Было обнаружено, что каждый раз, когда переключатель замыкается, гальванометр обнаруживает ток в одном направлении в катушке внизу. Каждый раз при размыкании переключателя гальванометр обнаруживает ток в противоположном направлении. Интересно, что если переключатель остается замкнутым или разомкнутым в течение некоторого времени, через гальванометр нет тока. Замыкание и размыкание переключателя индуцирует ток. Это изменение магнитного поля, которое создает ток. Более важным, чем текущий ток, является вызывающая его электродвижущая сила (ЭДС).Ток является результатом ЭДС, индуцированной изменяющимся магнитным полем, независимо от того, есть ли путь для протекания тока.

    Магнитный поток

    Магнитный поток (часто обозначаемый Φ или Φ B ), проходящий через поверхность, является составляющей магнитного поля, проходящего через эту поверхность. Магнитный поток через некоторую поверхность пропорционален количеству силовых линий, проходящих через эту поверхность. Магнитный поток, проходящий через поверхность с векторной площадью A, равен

    [латекс] \ Phi_ \ text {B} = \ mathbf {\ text {B}} \ cdot \ mathbf {\ text {A}} = \ text {BA} \ cos \ theta [/ latex],

    , где B — величина магнитного поля (в Тесла, Тл), A — площадь поверхности, а θ — угол между силовыми линиями магнитного поля и нормалью (перпендикулярно) к A.

    Для переменного магнитного поля мы сначала рассмотрим магнитный поток [латекс] \ text {d} \ Phi _ \ text {B} [/ latex] через бесконечно малый элемент площади dA, где мы можем считать поле постоянным:

    Изменяющееся магнитное поле : Каждая точка на поверхности связана с направлением, называемым нормалью к поверхности; магнитный поток, проходящий через точку, тогда является составляющей магнитного поля вдоль этого нормального направления.

    [латекс] \ text {d} \ Phi_ \ text {B} = \ mathbf {\ text {B}} \ cdot \ text {d} \ mathbf {\ text {A}} [/ latex]

    Общая поверхность A затем может быть разбита на бесконечно малые элементы, и тогда полный магнитный поток через поверхность равен интегралу поверхности

    [латекс] \ Phi_ \ text {B} = \ iint_ \ text {A} \ mathbf {\ text {B}} \ cdot \ text {d} \ mathbf {\ text {A}} [/ latex].

    Закон индукции Фарадея и закон Ленца

    Закон индукции Фарадея гласит, что ЭДС, индуцированная изменением магнитного потока, равна [латексу] \ text {EMF} = — \ text {N} \ frac {\ Delta \ Phi} {\ Delta \ text {t}} [ / латекс], когда поток изменяется на Δ за время Δt.

    Цели обучения

    Выразите закон индукции Фарадея в форме уравнения

    Основные выводы

    Ключевые моменты
    • Минус в законе Фарадея означает, что ЭДС создает ток I и магнитное поле B, которые противодействуют изменению потока Δ, известному как закон Ленца.
    • Закон индукции Фарадея является основным принципом работы трансформаторов, индукторов и многих типов электродвигателей, генераторов и соленоидов.
    • Закон Фарадея гласит, что ЭДС, вызванная изменением магнитного потока, зависит от изменения магнитного потока Δ, времени Δt и количества витков катушек.
    Ключевые термины
    • электродвижущая сила : (ЭДС) — напряжение, генерируемое батареей или магнитной силой в соответствии с законом Фарадея.Она измеряется в вольтах, а не в ньютонах, и поэтому на самом деле не является силой.
    • Соленоид : Катушка с проволокой, которая действует как магнит, когда через нее протекает электрический ток.
    • поток : Скорость передачи энергии (или другой физической величины) через данную поверхность, в частности электрического или магнитного потока.

    Закон индукции Фарадея

    Закон индукции Фарадея — это основной закон электромагнетизма, который предсказывает, как магнитное поле будет взаимодействовать с электрической цепью, создавая электродвижущую силу (ЭДС).Это основной принцип работы трансформаторов, индукторов и многих типов электродвигателей, генераторов и соленоидов.

    Эксперименты Фарадея показали, что ЭДС, вызванная изменением магнитного потока, зависит только от нескольких факторов. Во-первых, ЭДС прямо пропорциональна изменению потока Δ. Во-вторых, ЭДС является наибольшей, когда изменение во времени Δt наименьшее, то есть ЭДС обратно пропорциональна Δt. Наконец, если катушка имеет N витков, будет создаваться ЭДС, которая в N раз больше, чем для одиночной катушки, так что ЭДС прямо пропорциональна N.Уравнение для ЭДС, вызванной изменением магнитного потока, равно

    [латекс] \ text {EMF} = — \ text {N} \ frac {\ Delta \ Phi} {\ Delta \ text {t}} [/ latex].

    Это соотношение известно как закон индукции Фарадея. Единицы измерения ЭДС, как обычно, — вольты.

    Закон Ленца

    Знак минус в законе индукции Фарадея очень важен. Минус означает, что ЭДС создает ток I и магнитное поле B, которые противодействуют изменению потока Δ, известному как закон Ленца. Направление (обозначенное знаком минус) ЭМП настолько важно, что оно названо законом Ленца в честь русского Генриха Ленца (1804–1865), который, подобно Фарадею и Генри, независимо исследовал аспекты индукции.Фарадей знал о направлении, но Ленц указал его, поэтому ему приписывают это открытие.

    Закон Ленца : (а) Когда стержневой магнит вставляется в катушку, сила магнитного поля в катушке увеличивается. Ток, наведенный в катушке, создает другое поле в направлении, противоположном стержневому магниту, чтобы противодействовать увеличению. Это один из аспектов закона Ленца: индукция препятствует любому изменению потока. (b) и (c) — две другие ситуации. Убедитесь сами, что показанное направление индуцированной катушки B действительно противостоит изменению магнитного потока и что показанное направление тока согласуется с правилом правой руки.

    Энергосбережение

    Закон Ленца является проявлением сохранения энергии. Индуцированная ЭДС создает ток, который противодействует изменению потока, потому что изменение потока означает изменение энергии. Энергия может входить или уходить, но не мгновенно. Закон Ленца — это следствие. Когда изменение начинается, закон говорит, что индукция противодействует и, таким образом, замедляет изменение. Фактически, если бы индуцированная ЭДС была в том же направлении, что и изменение потока, была бы положительная обратная связь, которая не давала бы нам бесплатную энергию из любого видимого источника — закон сохранения энергии был бы нарушен.

    Движение ЭДС

    Движение в магнитном поле, которое является стационарным относительно Земли, вызывает ЭДС движения (электродвижущую силу).

    Цели обучения

    Определить процесс, вызывающий двигательную электродвижущую силу

    Основные выводы

    Ключевые моменты
    • Закон индукции Фарадея можно использовать для расчета ЭДС движения, когда изменение магнитного потока вызвано движущимся элементом в системе.
    • То, что движущееся магнитное поле создает электрическое поле (и, наоборот, движущееся электрическое поле создает магнитное поле), является частью причины, по которой электрические и магнитные силы теперь рассматриваются как разные проявления одной и той же силы.
    • Любое изменение магнитного потока индуцирует электродвижущую силу (ЭДС), противодействующую этому изменению — процесс, известный как индукция. Движение — одна из основных причин индукции.
    Ключевые термины
    • электродвижущая сила : (ЭДС) — напряжение, генерируемое батареей или магнитной силой в соответствии с законом Фарадея. Она измеряется в вольтах, а не в ньютонах, и поэтому на самом деле не является силой.
    • магнитный поток : Мера силы магнитного поля в заданной области.
    • индукция : Генерация электрического тока изменяющимся магнитным полем.

    Как было замечено в предыдущих атомах, любое изменение магнитного потока индуцирует электродвижущую силу (ЭДС), противодействующую этому изменению — процесс, известный как индукция. Движение — одна из основных причин индукции. Например, магнит, перемещенный к катушке, индуцирует ЭДС, а катушка, перемещенная к магниту, создает аналогичную ЭДС. В этом атоме мы концентрируемся на движении в магнитном поле, которое является стационарным относительно Земли, производя то, что в общих чертах называется ЭДС движения.

    Движение ЭДС

    Рассмотрим ситуацию, показанную на. Стержень перемещается со скоростью v по паре проводящих рельсов, разделенных расстоянием в однородном магнитном поле B. Рельсы неподвижны относительно B и соединены с неподвижным резистором R ( резистором может быть что угодно от лампочки до вольтметра). Учтите площадь, ограниченную подвижным стержнем, направляющими и резистором. B перпендикулярно этой области, и площадь увеличивается по мере перемещения стержня. Таким образом, магнитный поток между рельсами, стержнем и резистором увеличивается.Когда поток изменяется, ЭДС индуцируется согласно закону индукции Фарадея.

    ЭДС движения : (a) ЭДС движения = Bℓv индуцируется между рельсами, когда этот стержень перемещается вправо в однородном магнитном поле. Магнитное поле B направлено внутрь страницы, перпендикулярно движущемуся стержню и рельсам и, следовательно, к области, окружающей их. (б) Закон Ленца дает направление индуцированного поля и тока, а также полярность наведенной ЭДС. Поскольку поток увеличивается, индуцированное поле направлено в противоположном направлении или за пределы страницы.Правило правой руки дает указанное направление тока, и полярность стержня будет управлять таким током.

    Чтобы найти величину ЭДС, индуцированной вдоль движущегося стержня, мы используем закон индукции Фарадея без знака:

    [латекс] \ text {EMF} = \ text {N} \ frac {\ Delta \ Phi} {\ Delta \ text {t}} [/ latex].

    В этом уравнении N = 1 и поток Φ = BAcosθ. Имеем θ = 0º и cosθ = 1, так как B перпендикулярно A. Теперь Δ = Δ (BA) = BΔA, поскольку B однородна. Отметим, что площадь, заметаемая стержнем, равна ΔA = ℓx.Ввод этих величин в выражение для ЭДС дает:

    [латекс] \ text {EMF} = \ frac {\ text {B} \ Delta \ text {A}} {\ Delta \ text {t}} = \ text {B} \ frac {\ text {l} \ Дельта \ text {x}} {\ Delta \ text {t}} = \ text {Blv} [/ latex].

    Чтобы найти направление индуцированного поля, направление тока и полярность наведенной ЭДС, мы применяем закон Ленца, как объяснено в Законе индукции Фарадея: Закон Ленца. Как видно на рис. 1 (b), уровень освещенности увеличивается, так как увеличивается закрытая площадь.Таким образом, индуцированное поле должно противостоять существующему и быть вне страницы. (Правило правой руки требует, чтобы я вращался против часовой стрелки, что, в свою очередь, означает, что верхняя часть стержня положительна, как показано.)

    Зависимость электрического поля от магнитного

    Между электрической и магнитной силой существует множество связей. То, что движущееся магнитное поле создает электрическое поле (и, наоборот, движущееся электрическое поле создает магнитное поле), является частью причины, по которой электрические и магнитные силы теперь рассматриваются как различных проявлений одной и той же силы (впервые замечено Альбертом Эйнштейном) .Это классическое объединение электрических и магнитных сил в так называемую электромагнитную силу является источником вдохновения для современных усилий по объединению других основных сил.

    Обратная ЭДС, вихревые токи и магнитное демпфирование

    Обратная ЭДС, вихревые токи и магнитное затухание — все это происходит из-за наведенной ЭДС и может быть объяснено законом индукции Фарадея.

    Цели обучения

    Объясните взаимосвязь между двигательной электродвижущей силой, вихревыми токами и магнитным демпфированием

    Основные выводы

    Ключевые моменты
    • Входной ЭДС, которая питает двигатель, может противодействовать самогенерируемая ЭДС двигателя, называемая обратной ЭДС двигателя.
    • Если ЭДС движения может вызвать токовую петлю в проводнике, ток называется вихревым током.
    • Вихревые токи могут вызывать значительное сопротивление, называемое магнитным демпфированием, при движении.
    Ключевые термины
    • электродвижущая сила : (ЭДС) — напряжение, генерируемое батареей или магнитной силой в соответствии с законом Фарадея. Она измеряется в вольтах, а не в ньютонах, и поэтому на самом деле не является силой.
    • Закон индукции Фарадея : основной закон электромагнетизма, который предсказывает, как магнитное поле будет взаимодействовать с электрической цепью, создавая электродвижущую силу (ЭДС).

    Задний ЭДС

    Двигатели и генераторы очень похожи. (Прочтите наши атомы в разделах «Электрические генераторы» и «Электродвигатели».) Генераторы преобразуют механическую энергию в электрическую, а двигатели преобразуют электрическую энергию в механическую. Кроме того, двигатели и генераторы имеют одинаковую конструкцию. Когда катушка двигателя поворачивается, магнитный поток изменяется, и возникает электродвижущая сила (ЭДС), соответствующая закону индукции Фарадея. Таким образом, двигатель действует как генератор всякий раз, когда его катушка вращается.Это произойдет независимо от того, поворачивается ли вал под действием внешнего источника, например ременной передачи, или под действием самого двигателя. То есть, когда двигатель выполняет работу и его вал вращается, возникает ЭДС. Закон Ленца говорит нам, что наведенная ЭДС противодействует любому изменению, так что входной ЭДС, питающей двигатель, будет противодействовать самогенерируемая ЭДС двигателя, называемая обратной ЭДС двигателя.

    Вихретоковый

    Как обсуждалось в разделе «ЭДС движения», ЭДС движения индуцируется, когда проводник движется в магнитном поле или когда магнитное поле движется относительно проводника.Если подвижная ЭДС может вызвать токовую петлю в проводнике, мы называем этот ток вихревым. Вихревые токи могут вызывать значительное сопротивление движению, называемое магнитным затуханием.

    Рассмотрим устройство, показанное на рисунке, которое раскачивает маятник между полюсами сильного магнита. Если боб металлический, то при входе в поле и выходе из него он испытывает значительное сопротивление, что быстро гасит движение. Однако, если боб представляет собой металлическую пластину с прорезями, как показано на (b), эффект от магнита будет гораздо меньше.Заметного воздействия на боб из изолятора не наблюдается.

    Устройство для исследования вихревых токов и магнитного затухания : Обычное демонстрационное устройство для изучения вихревых токов и магнитного затухания. (а) Движение металлического маятника, раскачивающегося между полюсами магнита, быстро затухает под действием вихревых токов. (б) Движение металлического боба с прорезями мало влияет, что означает, что вихревые токи становятся менее эффективными. (c) На непроводящем бобе также отсутствует магнитное затухание, поскольку вихревые токи чрезвычайно малы.

    показывает, что происходит с металлической пластиной, когда она входит в магнитное поле и выходит из него. В обоих случаях он испытывает силу, противодействующую его движению. Когда он входит слева, поток увеличивается, и поэтому возникает вихревой ток (закон Фарадея) в направлении против часовой стрелки (закон Ленца), как показано. Только правая сторона токовой петли находится в поле, так что слева на нее действует беспрепятственная сила (правило правой руки). Когда металлическая пластина полностью находится внутри поля, вихревой ток отсутствует, если поле однородно, поскольку поток остается постоянным в этой области.Но когда пластина покидает поле справа, поток уменьшается, вызывая вихревой ток по часовой стрелке, который, опять же, испытывает силу слева, еще больше замедляя движение. Аналогичный анализ того, что происходит, когда пластина поворачивается справа налево, показывает, что ее движение также затухает при входе в поле и выходе из него.

    Проводящая пластина, проходящая между полюсами магнита : Более подробный взгляд на проводящую пластину, проходящую между полюсами магнита.Когда он входит в поле и выходит из него, изменение потока создает вихревой ток. Магнитная сила на токовой петле препятствует движению. Когда пластина полностью находится внутри однородного поля, нет ни тока, ни магнитного сопротивления.

    Когда металлическая пластина с прорезями входит в поле, как показано на, ЭДС индуцируется изменением магнитного потока, но она менее эффективна, поскольку прорези ограничивают размер токовых петель. Более того, в соседних контурах есть токи в противоположных направлениях, и их эффекты нейтрализуются.Когда используется изолирующий материал, вихревые токи чрезвычайно малы, поэтому магнитное затухание на изоляторах незначительно. Если необходимо избегать вихревых токов в проводниках, они могут быть выполнены с прорезями или состоять из тонких слоев проводящего материала, разделенных изоляционными листами.

    Вихревые токи, индуцированные в металлической пластине с прорезями : Вихревые токи, индуцированные в металлической пластине с прорезями, входящие в магнитное поле, образуют небольшие петли, и силы на них имеют тенденцию нейтрализоваться, что делает магнитное сопротивление почти нулевым.

    Изменение магнитного потока создает электрическое поле

    Закон индукции Фарадея гласит, что изменение магнитного поля создает электрическое поле: [latex] \ varepsilon = — \ frac {\ partial \ Phi_ \ text {B}} {\ partial \ text {t}} [/ latex].

    Цели обучения

    Опишите взаимосвязь между изменяющимся магнитным полем и электрическим полем

    Основные выводы

    Ключевые моменты
    • Закон индукции Фарадея — это основной закон электромагнетизма, который предсказывает, как магнитное поле будет взаимодействовать с электрической цепью, создавая электродвижущую силу.
    • Альтернативная дифференциальная форма закона индукции Фарадея выражается в уравнении [латекс] \ nabla \ times \ vec {\ text {E}} = — \ frac {\ partial \ vec {\ text {B}}} { \ partial \ text {t}} [/ latex].
    • Закон индукции Фарадея — одно из четырех уравнений Максвелла, управляющих всеми электромагнитными явлениями.
    Ключевые термины
    • векторная область : вектор, величина которого соответствует рассматриваемой области и направление которого перпендикулярно плоскости.
    • Уравнения Максвелла : Набор уравнений, описывающих, как электрические и магнитные поля генерируются и изменяются друг другом, а также зарядами и токами.
    • Теорема Стокса : утверждение об интегрировании дифференциальных форм на многообразиях, которое одновременно упрощает и обобщает несколько теорем векторного исчисления.

    Мы изучили закон индукции Фарадея в предыдущих атомах. Мы узнали взаимосвязь между наведенной электродвижущей силой (ЭДС) и магнитным потоком.Вкратце, закон гласит, что изменение магнитного поля [латекс] (\ frac {\ text {d} \ Phi_ \ text {B}} {\ text {dt}}) [/ latex] создает электрическое поле [латекс] (\ varepsilon) [/ latex], закон индукции Фарадея выражается как [latex] \ varepsilon = — \ frac {\ partial \ Phi_ \ text {B}} {\ partial \ text {t}} [/ latex], где [латекс] \ varepsilon [/ latex] — это индуцированная ЭДС, а [latex] \ Phi_ \ text {B} [/ latex] — магнитный поток. («N» опущено из нашего предыдущего выражения. Число витков катушки может быть включено в магнитный поток, поэтому коэффициент не является обязательным.) Закон индукции Фарадея — это основной закон электромагнетизма, который предсказывает, как магнитное поле будет взаимодействовать с электрической цепью, создавая электродвижущую силу (ЭДС). В этом Атоме мы узнаем об альтернативном математическом выражении закона.

    Эксперимент Фарадея : эксперимент Фарадея, показывающий индукцию между витками проволоки: жидкая батарея (справа) обеспечивает ток, который течет через небольшую катушку (A), создавая магнитное поле. Когда катушки неподвижны, ток не индуцируется.Но когда малая катушка перемещается внутрь или из большой катушки (B), магнитный поток через большую катушку изменяется, вызывая ток, который регистрируется гальванометром (G).

    Дифференциальная форма закона Фарадея

    Магнитный поток [латекс] \ Phi_ \ text {B} = \ int_ \ text {S} \ vec {\ text {B}} \ cdot \ text {d} \ vec {\ text {A}} [/ латекс], где [латекс] \ vec {\ text {A}} [/ latex] — это векторная площадь над замкнутой поверхностью S. Устройство, которое может поддерживать разность потенциалов, несмотря на протекание тока, является источником электродвижущей силы. .(EMF) Математически определение [латекс] \ varepsilon = \ oint_ \ text {C} \ vec {\ text {E}} \ cdot \ text {d} \ vec {\ text {s}} [/ latex], где интеграл вычисляется по замкнутому циклу C.

    Закон Фарадея теперь можно переписать [latex] \ oint_ \ text {C} \ vec {\ text {E}} \ cdot \ text {d} \ vec {\ text {s}} = — \ frac {\ partial} {\ partial \ text {t}} (\ int \ vec {\ text {B}} \ cdot \ text {d} \ vec {\ text {A}}) [/ latex]. Используя теорему Стокса в векторном исчислении, левая часть равна [latex] \ oint_ \ text {C} \ vec {\ text {E}} \ cdot \ text {d} \ vec {\ text {s}} = \ int_ \ text {S} (\ nabla \ times \ vec {\ text {E}}) \ cdot \ text {d} \ vec {\ text {A}} [/ latex].Также обратите внимание, что в правой части [latex] \ frac {\ partial} {\ partial \ text {t}} (\ int \ vec {\ text {B}} \ cdot \ text {d} \ vec {\ текст {A}}) = \ int \ frac {\ partial \ vec {\ text {B}}} {\ partial \ text {t}} \ cdot \ text {d} \ vec {\ text {A}} [ /латекс]. Таким образом, мы получаем альтернативную форму закона индукции Фарадея: [latex] \ nabla \ times \ vec {\ text {E}} = — \ frac {\ partial \ vec {\ text {B}}} {\ partial \ text {t}} [/ latex]. Это также называется дифференциальной формой закона Фарадея. Это одно из четырех уравнений Максвелла, управляющих всеми электромагнитными явлениями.

    Электрогенераторы

    Электрические генераторы преобразуют механическую энергию в электрическую; они индуцируют ЭДС, вращая катушку в магнитном поле.

    Цели обучения

    Объясните, как в электрогенераторах индуцируется электродвижущая сила.

    Основные выводы

    Ключевые моменты
    • Электрический генератор вращает катушку в магнитном поле, индуцируя ЭДС, заданную как функцию времени величиной ε = NABw sinωt.
    • Генераторы поставляют почти всю мощность для электрических сетей, которые обеспечивают большую часть мировой электроэнергии.
    • Двигатель становится генератором, когда его вал вращается.
    Ключевые термины
    • электродвижущая сила : (ЭДС) — напряжение, генерируемое батареей или магнитной силой в соответствии с законом Фарадея. Она измеряется в вольтах, а не в ньютонах, и поэтому на самом деле не является силой.
    • турбина : Любая из различных вращающихся машин, которые используют кинетическую энергию непрерывного потока жидкости (жидкости или газа) для вращения вала.

    Электрические генераторы — это устройства, преобразующие механическую энергию в электрическую.Они индуцируют электродвижущую силу (ЭДС), вращая катушку в магнитном поле. Это устройство, преобразующее механическую энергию в электрическую. Генератор заставляет электрический заряд (обычно переносимый электронами) проходить через внешнюю электрическую цепь. Возможные источники механической энергии включают в себя поршневой или турбинный паровой двигатель, воду, падающую через турбину или водяное колесо, двигатель внутреннего сгорания, ветряную турбину, ручной кривошип, сжатый воздух или любой другой источник механической энергии.Генераторы поставляют почти всю мощность для электрических сетей, которые обеспечивают большую часть мировой электроэнергии.

    Паротурбинный генератор : современный паротурбинный генератор.

    Базовая настройка

    Рассмотрим схему, показанную на. Заряды в проводах петли испытывают магнитную силу, потому что они движутся в магнитном поле. Заряды в вертикальных проводах испытывают силы, параллельные проводу, вызывая токи. Однако те, кто находится в верхнем и нижнем сегментах, ощущают силу, перпендикулярную проводу; эта сила не вызывает тока.Таким образом, мы можем найти наведенную ЭДС, рассматривая только боковые провода. ЭДС движения задается равной ЭДС = Bℓv, где скорость v перпендикулярна магнитному полю B (см. Наш Атом в «ЭДС движения»). Здесь скорость находится под углом θ к B, так что ее составляющая, перпендикулярная B, равна vsinθ.

    Схема электрического генератора : Генератор с одной прямоугольной катушкой, вращающейся с постоянной угловой скоростью в однородном магнитном поле, создает ЭДС, синусоидально изменяющуюся во времени.Обратите внимание, что генератор похож на двигатель, за исключением того, что вал вращается для выработки тока, а не наоборот.

    Таким образом, в этом случае ЭДС, индуцированная с каждой стороны, равна ЭДС = Bℓvsinθ, и они направлены в одном направлении. Общая ЭДС [латекс] \ varepsilon [/ latex] вокруг петли тогда:

    [латекс] \ varepsilon = 2 \ text {Blv} \ sin {\ theta} [/ latex].

    Это выражение действительное, но оно не дает ЭДС как функцию времени. Чтобы найти зависимость ЭДС от времени, предположим, что катушка вращается с постоянной угловой скоростью ω.Угол θ связан с угловой скоростью соотношением θ = ωt, так что:

    [латекс] \ varepsilon = 2 \ text {Blv} \ sin {\ omega \ text {t}} [/ latex].

    Итак, линейная скорость v связана с угловой скоростью соотношением v = rω. Здесь r = w / 2, так что v = (w / 2) ω, и:

    [латекс] \ varepsilon = 2 \ text {Bl} \ frac {\ text {w}} {2} \ omega \ sin {\ omega \ text {t}} = (\ text {lw}) \ text {B } \ omega \ sin {\ omega \ text {t}} [/ латекс].

    Учитывая, что площадь петли A = ℓw, и учитывая N петель, мы находим, что:

    [латекс] \ varepsilon = \ text {NABw} ~ \ sin {\ omega \ text {t}} [/ latex] — это ЭДС, индуцированная в катушке генератора N витков и площади A, вращающейся с постоянной угловой скоростью в однородное магнитное поле B.

    Генераторы

    , показанные в этом Atom, очень похожи на двигатели, показанные ранее. Это не случайно. Фактически, двигатель становится генератором, когда его вал вращается.

    Электродвигатели

    Электродвигатель — это устройство, преобразующее электрическую энергию в механическую.

    Цели обучения

    Объясните, как сила создается в электродвигателях

    Основные выводы

    Ключевые моменты
    • Большинство электродвигателей используют взаимодействие магнитных полей и токопроводящих проводов для создания силы.
    • Ток в проводнике состоит из движущихся зарядов. Следовательно, катушка с током в магнитном поле также будет ощущать силу Лоренца.
    • В двигателе катушка с током в магнитном поле испытывает силу с обеих сторон катушки, которая создает крутящую силу (называемую крутящим моментом), заставляющую ее вращаться.
    Ключевые термины
    • Сила Лоренца : Сила, действующая на заряженную частицу в электромагнитном поле.
    • крутящий момент : вращательное или скручивающее действие силы; (Единица СИ ньютон-метр или Нм; британская единица измерения фут-фунт или фут-фунт)

    Основные принципы работы двигателя такие же, как и у генератора, за исключением того, что двигатель преобразует электрическую энергию в механическую энергию (движение).(Сначала прочтите наш атом об электрических генераторах.) Большинство электродвигателей используют взаимодействие магнитных полей и проводников с током для создания силы. Электродвигатели находят применение в самых разных областях, таких как промышленные вентиляторы, нагнетатели и насосы, станки, бытовые приборы, электроинструменты и дисководы.

    Лоренц Форс

    Если вы поместите движущуюся заряженную частицу в магнитное поле, на нее будет действовать сила, называемая силой Лоренца:

    [латекс] \ text {F} = \ text {q} \ times \ text {v} \ times \ text {B} [/ latex]

    Правило правой руки : Правило правой руки, показывающее направление силы Лоренца

    , где v — скорость движущегося заряда, q — заряд, а B — магнитное поле.Ток в проводнике состоит из движущихся зарядов. Следовательно, катушка с током в магнитном поле также будет ощущать силу Лоренца. Для неподвижного прямолинейного токоведущего провода сила Лоренца составляет:

    [латекс] \ text {F} = \ text {I} \ times \ text {L} \ times \ text {B} [/ latex]

    , где F — сила (в ньютонах, Н), I — ток в проводе (в амперах, А), L — длина провода, находящегося в магнитном поле (в м). , а B — напряженность магнитного поля (в теслах, Тл).Направление силы Лоренца перпендикулярно как направлению потока тока, так и магнитного поля, и его можно найти с помощью правила правой руки, показанного на рисунке. Используя правую руку, направьте большой палец в направлении тока, и укажите указательным пальцем в направлении магнитного поля. Ваш третий палец теперь будет указывать в направлении силы.

    Крутящий момент : Сила на противоположных сторонах катушки будет в противоположных направлениях, потому что заряды движутся в противоположных направлениях.Это означает, что катушка будет вращаться.

    Механика двигателя

    И двигатели, и генераторы можно объяснить с помощью катушки, вращающейся в магнитном поле. В генераторе катушка подключена к внешней цепи, которая затем включается. Это приводит к изменению потока, который индуцирует электромагнитное поле. В двигателе катушка с током в магнитном поле испытывает силу с обеих сторон катушки, которая создает крутящую силу (называемую крутящим моментом), заставляющую ее вращаться.Любая катушка, по которой проходит ток, может чувствовать силу в магнитном поле. Эта сила является силой Лоренца, действующей на движущиеся заряды в проводнике. Сила на противоположных сторонах катушки будет в противоположных направлениях, потому что заряды движутся в противоположных направлениях. Это означает, что катушка будет вращаться.

    Индуктивность

    Индуктивность — это свойство устройства, которое показывает, насколько эффективно оно индуцирует ЭДС в другом устройстве или на самом себе.

    Цели обучения

    Описание свойств катушки индуктивности с указанием взаимной индуктивности и самоиндукции

    Основные выводы

    Ключевые моменты
    • Взаимная индуктивность — это влияние двух устройств, индуцирующих друг в друге ЭДС.Изменение тока ΔI 1 / Δt в одном порождает ЭДС ЭДС2 в секунду: ЭДС 2 = -M ΔI 1 / Δt, где M определяется как взаимная индуктивность между двумя устройствами.
    • Самоиндукция — это эффект того, что устройство вызывает саму по себе ЭДС.
    • Устройство, которое демонстрирует значительную самоиндукцию, называется индуктором, и ЭДС, индуцированная в нем изменением тока через него, равна ЭДС = −L ΔI / Δt.
    Ключевые термины
    • Закон индукции Фарадея : основной закон электромагнетизма, который предсказывает, как магнитное поле будет взаимодействовать с электрической цепью, создавая электродвижущую силу (ЭДС).
    • трансформатор : статическое устройство, которое передает электрическую энергию от одной цепи к другой с помощью магнитной связи. Их основное назначение — передача энергии между различными уровнями напряжения, что позволяет выбирать наиболее подходящее напряжение для выработки, передачи и распределения электроэнергии по отдельности.

    Индукция — это процесс, при котором ЭДС индуцируется изменением магнитного потока. Трансформаторы, например, спроектированы так, чтобы быть особенно эффективными для создания желаемого напряжения и тока с очень небольшими потерями энергии в другие формы (см. Наш Atom в разделе «Трансформаторы.«) Есть ли полезная физическая величина, связанная с тем, насколько« эффективно »данное устройство? Ответ — да, и эта физическая величина называется индуктивностью.

    Взаимная индуктивность

    Взаимная индуктивность — это влияние закона индукции Фарадея для одного устройства на другое, например, первичная катушка, при передаче энергии вторичной обмотке в трансформаторе. Посмотрите, где простые катушки наводят друг на друга ЭДС.

    Взаимная индуктивность катушек : Эти катушки могут вызывать ЭДС друг в друге, как неэффективный трансформатор.Их взаимная индуктивность M указывает на эффективность связи между ними. Здесь видно, что изменение тока в катушке 1 вызывает ЭДС в катушке 2. (Обратите внимание, что «E2 индуцированная» представляет наведенную ЭДС в катушке 2.)

    Во многих случаях, когда геометрия устройств фиксирована, магнитный поток изменяется за счет изменения тока. Поэтому мы концентрируемся на скорости изменения тока, ΔI / Δt, как на причине индукции. Изменение тока I 1 в одном устройстве, катушка 1, индуцирует ЭДС 2 в другом.Мы выражаем это в форме уравнения как

    [латекс] \ text {EMF} _2 = — \ text {M} \ frac {\ Delta \ text {I} _1} {\ Delta \ text {t}} [/ latex],

    , где M определяется как взаимная индуктивность между двумя устройствами. Знак минус является выражением закона Ленца. Чем больше взаимная индуктивность M, тем эффективнее связь.

    Природа здесь симметрична. Если мы изменим ток I2 в катушке 2, мы индуцируем ЭДС1 в катушке 1, которая равна

    [латекс] \ text {EMF} _1 = — \ text {M} \ frac {\ Delta \ text {I} _2} {\ Delta \ text {t}} [/ latex],

    , где M то же, что и для обратного процесса.Трансформаторы работают в обратном направлении с такой же эффективностью или взаимной индуктивностью M.

    Самоиндуктивность

    Самоиндукция, действие закона индукции Фарадея устройства на самого себя, также существует. Когда, например, увеличивается ток через катушку, магнитное поле и магнитный поток также увеличиваются, вызывая противоэдс, как того требует закон Ленца. И наоборот, если ток уменьшается, индуцируется ЭДС, которая препятствует уменьшению. Большинство устройств имеют фиксированную геометрию, поэтому изменение магнитного потока полностью связано с изменением тока ΔI через устройство.Индуцированная ЭДС связана с физической геометрией устройства и скоростью изменения тока. Выдается

    [латекс] \ text {EMF} = — \ text {L} \ frac {\ Delta \ text {I}} {\ Delta \ text {t}} [/ latex],

    где L — самоиндукция устройства. Устройство, которое демонстрирует значительную самоиндукцию, называется индуктором. Опять же, знак минус является выражением закона Ленца, указывающего на то, что ЭДС препятствует изменению тока.

    Количественная интерпретация ЭДС движения

    A ЭДС движения — это электродвижущая сила (ЭДС), индуцированная движением относительно магнитного поля B.

    Цели обучения

    Сформулируйте две точки зрения, которые применяются для расчета электродвижущей силы

    Основные выводы

    Ключевые моменты
    • Движущаяся и наведенная ЭДС — одно и то же явление, только наблюдаемое в разных системах отсчета. Эквивалентность этих двух явлений подтолкнула Эйнштейна к работе над специальной теорией относительности.
    • ЭДС, возникающая из-за относительного движения петли и магнита, задается как [latex] \ varepsilon _ {\ text {motion}} = \ text {vB} \ times \ text {L} [/ latex] (Eq.1), где L — длина объекта, движущегося со скоростью v относительно магнита.
    • ЭДС можно рассчитать с двух разных точек зрения: 1) с точки зрения магнитной силы, действующей на движущиеся электроны в магнитном поле, и 2) с точки зрения скорости изменения магнитного потока. Оба дают одинаковый результат.
    Ключевые термины
    • специальная теория относительности : теория, которая (игнорируя эффекты гравитации) согласовывает принцип относительности с наблюдением, что скорость света постоянна во всех системах отсчета.
    • магнитное поле : Состояние в пространстве вокруг магнита или электрического тока, в котором существует обнаруживаемая магнитная сила и где присутствуют два магнитных полюса.
    • рамка отсчета : система координат или набор осей, в пределах которых можно измерить положение, ориентацию и другие свойства объектов в ней.

    Электродвижущая сила (ЭДС), индуцированная движением относительно магнитного поля B, называется ЭДС движения. Вы могли заметить, что ЭДС движения очень похожа на ЭДС, вызванную изменением магнитного поля.В этом атоме мы видим, что это действительно одно и то же явление, показанное в разных системах отсчета.

    Движение ЭДС

    В случае, когда проводящая петля перемещается в магнит, показанный на (а), магнитная сила, действующая на движущийся заряд в петле, определяется выражением [латекс] evB [/ латекс] (сила Лоренца, e: заряд электрона).

    Петля проводника, движущаяся в магнит : (а) ЭДС движения. Токовая петля переходит в неподвижный магнит. Направление магнитного поля внутрь экрана.(б) Индуцированная ЭДС. Токовая петля неподвижна, а магнит движется.

    Из-за силы электроны будут продолжать накапливаться с одной стороны (нижний конец на рисунке), пока на стержне не установится достаточное электрическое поле, препятствующее движению электронов, то есть [латекс] \ text {eE} [/ латекс]. Приравнивая две силы, получаем [латекс] \ text {E} = \ text {vB} [/ latex].

    Следовательно, двигательная ЭДС на длине L стороны петли определяется как [latex] \ varepsilon _ {\ text {motion}} = \ text {vB} \ times \ text {L} [/ latex] (Eq .1), где L — длина объекта, движущегося со скоростью v относительно магнита.

    Индуцированная ЭДС

    Поскольку скорость изменения магнитного потока, проходящего через петлю, равна [latex] \ text {B} \ frac {\ text {dA}} {\ text {dt}} [/ latex] (A: площадь петли что магнитное поле проходит), индуцированная ЭДС [латекс] \ varepsilon _ {\ text {индуцированный}} = \ text {BLv} [/ latex] (уравнение 2).

    Эквивалентность движущей и индуцированной ЭДС

    Из уравнения. 1 и уравнение. 2 мы можем подтвердить, что двигательная и индуцированная ЭДС дают одинаковый результат.Фактически, эквивалентность двух явлений побудила Альберта Эйнштейна исследовать специальную теорию относительности. В своей основополагающей статье по специальной теории относительности, опубликованной в 1905 году, Эйнштейн начинает с упоминания эквивалентности двух явлений:

    «…… например, взаимное электродинамическое действие магнита и проводника. Наблюдаемое явление здесь зависит только от относительного движения проводника и магнита, в то время как обычный взгляд проводит резкое различие между двумя случаями, когда одно или другое из этих тел находится в движении.Поскольку, если магнит находится в движении, а проводник находится в состоянии покоя, в окрестности магнита возникает электрическое поле с определенной энергией , производящее ток в местах, где части проводника находятся расположенный. Но если магнит неподвижен, а проводник движется, электрическое поле поблизости от магнита не возникает. В проводнике, однако, мы находим электродвижущую силу, которой сама по себе не соответствует энергия, но которая вызывает — при условии равенства относительного движения в двух рассмотренных случаях — электрические токи того же пути и силы, что и создаваемые электрическими силами в первом случае.«

    Механические работы и электроэнергия

    Механическая работа, совершаемая внешней силой для создания ЭДС движения, преобразуется в тепловую энергию; энергия сохраняется в процессе.

    Цели обучения

    Применить закон сохранения энергии для описания производственной двигательной электродвижущей силы с механической работой

    Основные выводы

    Ключевые моменты
    • ЭДС движения, создаваемая движущимся проводником в однородном поле, имеет следующий вид [latex] \ varepsilon = \ text {Blv} [/ latex].
    • Чтобы стержень двигался с постоянной скоростью v, мы должны постоянно прикладывать внешнюю силу F ext к стержню во время его движения.
    • Закон Ленца гарантирует, что движение стержня противоположно, и, следовательно, закон сохранения энергии не нарушается.
    Ключевые термины
    • ЭДС движения : ЭДС (электродвижущая сила), индуцированная движением относительно магнитного поля.
    • Закон индукции Фарадея : основной закон электромагнетизма, который предсказывает, как магнитное поле будет взаимодействовать с электрической цепью, создавая электродвижущую силу (ЭДС).

    Мы узнали о двигательной ЭДС ранее (см. Наш Атом в «Двигательной ЭДС»). Для простой схемы, показанной ниже, движущаяся ЭДС [латекс] (\ varepsilon) [/ латекс], создаваемая движущимся проводником (в однородном поле), задается следующим образом:

    [латекс] \ varepsilon = \ text {Blv} [/ латекс]

    , где B — магнитное поле, l — длина проводящего стержня, а v — (постоянная) скорость его движения. ( B , l и v все перпендикулярны друг другу, как показано на изображении ниже.)

    ЭДС движения : (a) ЭДС движения = Bℓv индуцируется между рельсами, когда этот стержень перемещается вправо в однородном магнитном поле. Магнитное поле B направлено внутрь страницы, перпендикулярно движущемуся стержню и рельсам и, следовательно, к области, окружающей их. (б) Закон Ленца дает направление индуцированного поля и тока, а также полярность наведенной ЭДС. Поскольку поток увеличивается, индуцированное поле направлено в противоположном направлении или за пределы страницы. Правило правой руки дает указанное направление тока, и полярность стержня будет управлять таким током.

    Сохранение энергии

    В этом атоме мы рассмотрим систему с точки зрения энергии . Поскольку стержень движется и пропускает ток и , он ощущает силу Лоренца

    .

    [латекс] \ text {F} _ \ text {L} = \ text {iBL} [/ latex].

    Чтобы стержень двигался с постоянной скоростью v , мы должны постоянно прикладывать внешнюю силу F ext (равную величине F L и противоположную по направлению) к стержню вдоль его движения. .Поскольку стержень движется со скоростью v , мощность P , передаваемая внешней силой, будет:

    [латекс] \ text {P} = \ text {F} _ {\ text {ext}} \ text {v} = (\ text {iBL}) \ times \ text {v} = \ text {i} \ варепсилон [/ латекс].

    На последнем этапе мы использовали первое уравнение, о котором говорили. Обратите внимание, что это в точности мощность, рассеиваемая в контуре (= ток [латекс] \ умноженное на [/ латекс] напряжение). Таким образом, мы заключаем, что механическая работа, совершаемая внешней силой, чтобы стержень двигался с постоянной скоростью, преобразуется в тепловую энергию в контуре.В более общем смысле, механическая работа, совершаемая внешней силой для создания ЭДС движения, преобразуется в тепловую энергию. Энергия сохраняется в процессе.

    Закон Ленца

    Из «Закона индукции Фарадея и закона Ленца» мы узнали, что закон Ленца является проявлением сохранения энергии. Как мы видим в примере с этим атомом, закон Ленца гарантирует, что движение стержня противодействует из-за склонности природы противодействовать изменению магнитного поля. Если бы наведенная ЭДС была в том же направлении, что и изменение потока, возникла бы положительная обратная связь, заставляющая стержень улетать от малейшего возмущения.

    Энергия в магнитном поле

    Магнитное поле накапливает энергию. Плотность энергии задается как [латекс] \ text {u} = \ frac {\ mathbf {\ text {B}} \ cdot \ mathbf {\ text {B}}} {2 \ mu} [/ latex].

    Цели обучения

    Выразите плотность энергии магнитного поля в форме уравнения

    Основные выводы

    Ключевые моменты
    • Энергия необходима для создания магнитного поля как для работы против электрического поля, создаваемого изменяющимся магнитным полем, так и для изменения намагниченности любого материала в магнитном поле.2 [/ латекс].
    Ключевые термины
    • проницаемость : Количественная мера степени намагничивания материала в присутствии приложенного магнитного поля (измеряется в ньютонах на квадратный ампер в единицах СИ).
    • индуктор : Пассивное устройство, которое вводит индуктивность в электрическую цепь.
    • ферромагнетик : Материалы, обладающие постоянными магнитными свойствами.

    Энергия необходима для создания магнитного поля как для работы против электрического поля, создаваемого изменяющимся магнитным полем, так и для изменения намагниченности любого материала в магнитном поле.Для недисперсионных материалов эта же энергия высвобождается при разрушении магнитного поля. Следовательно, эту энергию можно смоделировать как «хранящуюся» в магнитном поле.

    Магнитное поле, создаваемое соленоидом : Магнитное поле, создаваемое соленоидом (вид в разрезе), описанное с использованием силовых линий. Энергия «хранится» в магнитном поле.

    Энергия, запасенная в магнитном поле

    Для линейных недисперсных материалов (таких, что B = мкм, H, где мкм, называемая проницаемостью, не зависит от частоты), плотность энергии составляет:

    [латекс] \ text {u} = \ frac {\ mathbf {\ text {B}} \ cdot \ mathbf {\ text {B}}} {2 \ mu} = \ frac {\ mu \ mathbf {\ text {H}} \ cdot \ mathbf {\ text {H}}} {2} [/ latex].

    Плотность энергии — это количество энергии, хранящейся в данной системе или области пространства на единицу объема. Если поблизости нет магнитных материалов, мкм можно заменить на мкм 0 . Однако приведенное выше уравнение нельзя использовать для нелинейных материалов; необходимо использовать более общее выражение (приведенное ниже).

    В общем, дополнительная работа на единицу объема δW , необходимая для того, чтобы вызвать небольшое изменение магнитного поля δ B, составляет:

    [латекс] \ delta \ text {W} = \ mathbf {\ text {H}} \ cdot \ delta \ mathbf {\ text {B}} [/ latex].

    Когда связь между H и B известна, это уравнение используется для определения работы, необходимой для достижения заданного магнитного состояния. Для гистерезисных материалов, таких как ферромагнетики и сверхпроводники, необходимая работа также зависит от того, как создается магнитное поле. Однако для линейных недисперсионных материалов общее уравнение приводит непосредственно к более простому уравнению плотности энергии, приведенному выше.

    Энергия, запасенная в поле соленоида

    Энергия, запасенная индуктором, равна количеству работы, необходимой для установления тока через индуктор и, следовательно, магнитного поля.2 [/ латекс].

    Трансформаторы

    Трансформаторы преобразуют напряжения из одного значения в другое; его функция определяется уравнением трансформатора.

    Цели обучения

    Примените уравнение трансформатора для сравнения вторичного и первичного напряжений

    Основные выводы

    Ключевые моменты
    • Трансформаторы часто используются в нескольких точках систем распределения электроэнергии, а также во многих бытовых адаптерах питания.
    • Уравнение трансформатора
    • гласит, что отношение вторичного напряжения к первичному в трансформаторе равно отношению количества витков в их катушках: [латекс] \ frac {\ text {V} _ \ text {s}} {\ text { V} _ \ text {p}} = \ frac {\ text {N} _ \ text {s}} {\ text {N} _ \ text {p}} [/ latex].
    • Если предположить, что сопротивление незначительно, выходная электрическая мощность трансформатора равна его входной. Это приводит нас к другому полезному вопросу: [latex] \ frac {\ text {I} _ \ text {s}} {\ text {I} _ \ text {p}} = \ frac {\ text {N} _ \ текст {p}} {\ text {N} _ \ text {s}} [/ latex]. Если напряжение увеличивается, ток уменьшается. И наоборот, если напряжение уменьшается, ток увеличивается.
    Ключевые термины
    • магнитный поток : Мера силы магнитного поля в заданной области.
    • Закон индукции Фарадея : основной закон электромагнетизма, который предсказывает, как магнитное поле будет взаимодействовать с электрической цепью, создавая электродвижущую силу (ЭДС).

    Трансформаторы изменяют напряжение с одного значения на другое. Например, такие устройства, как сотовые телефоны, ноутбуки, видеоигры, электроинструменты и небольшая бытовая техника, имеют трансформатор (встроенный в их съемный блок), который преобразует 120 В в напряжение, соответствующее устройству.Трансформаторы также используются в нескольких точках в системах распределения электроэнергии, как показано на рисунке. Мощность передается на большие расстояния при высоком напряжении, поскольку для данного количества мощности требуется меньший ток (это означает меньшие потери в линии). Поскольку высокое напряжение представляет большую опасность, трансформаторы используются для получения более низкого напряжения в месте нахождения пользователя.

    Настройка трансформатора : Трансформаторы изменяют напряжение в нескольких точках в системе распределения электроэнергии. Электроэнергия обычно вырабатывается при напряжении более 10 кВ и передается на большие расстояния при напряжениях более 200 кВ, иногда даже 700 кВ, для ограничения потерь энергии.Распределение электроэнергии по районам или промышленным предприятиям осуществляется через подстанцию ​​и передается на короткие расстояния с напряжением от 5 до 13 кВ. Оно снижено до 120, 240 или 480 В для безопасности на месте отдельного пользователя.

    Тип трансформатора, рассматриваемого здесь, основан на законе индукции Фарадея и очень похож по конструкции на устройство, которое Фарадей использовал для демонстрации того, что магнитные поля могут создавать токи (показано на рисунке). Две катушки называются первичной и вторичной катушками.При нормальном использовании входное напряжение подается на первичную обмотку, а вторичная обмотка создает преобразованное выходное напряжение. Мало того, что железный сердечник улавливает магнитное поле, создаваемое первичной катушкой, его намагниченность увеличивает напряженность поля. Поскольку входное напряжение переменного тока, изменяющийся во времени магнитный поток направляется во вторичную обмотку, вызывая ее выходное переменное напряжение.

    Простой трансформатор : Типичная конструкция простого трансформатора имеет две катушки, намотанные на ферромагнитный сердечник, ламинированный для минимизации вихревых токов.Магнитное поле, создаваемое первичной обмоткой, в основном ограничивается и увеличивается сердечником, который передает его вторичной обмотке. Любое изменение тока в первичной обмотке вызывает ток во вторичной обмотке. На рисунке показан простой трансформатор с двумя катушками, намотанными с обеих сторон многослойного ферромагнитного сердечника. Набор катушек на левой стороне сердечника обозначен как первичный, и его номер указан как N p. Напряжение на первичной обмотке равно V p. Набор катушек на правой стороне сердечника обозначен как вторичный, и его номер представлен как N s.Напряжение на вторичной обмотке равно В с. Символ трансформатора также показан под диаграммой. Он состоит из двух катушек индуктивности, разделенных двумя равными параллельными линиями, представляющими сердечник.

    Уравнение трансформатора

    Для простого трансформатора, показанного на, выходное напряжение V s почти полностью зависит от входного напряжения V p и соотношения количества витков в первичной и вторичной обмотках. Закон индукции Фарадея для вторичной обмотки дает ее индуцированное выходное напряжение V с как:

    [латекс] \ text {V} _ \ text {s} = — \ text {N} _ \ text {s} \ frac {\ Delta \ Phi} {\ Delta \ text {t}} [/ latex],

    , где N s — количество витков вторичной катушки, а Δ / Δt — скорость изменения магнитного потока.Обратите внимание, что выходное напряжение равно индуцированной ЭДС (В с = ЭДС с ), при условии, что сопротивление катушки невелико. Площадь поперечного сечения катушек одинакова с обеих сторон, как и напряженность магнитного поля, поэтому / Δt одинаково с обеих сторон. Входное первичное напряжение V p также связано с изменением магнитного потока соотношением:

    [латекс] \ text {V} _ \ text {p} = — \ text {N} _ \ text {p} \ frac {\ Delta \ Phi} {\ Delta \ text {t}} [/ latex].

    Соотношение этих двух последних уравнений дает полезное соотношение:

    [латекс] \ frac {\ text {V} _ \ text {s}} {\ text {V} _ \ text {p}} = \ frac {\ text {N} _ \ text {s}} {\ текст {N} _ \ text {p}} [/ latex].

    Это известно как уравнение для трансформатора , которое просто устанавливает, что отношение вторичного напряжения к первичному в трансформаторе равно отношению количества контуров в их катушках. Выходное напряжение трансформатора может быть меньше, больше или равно входному напряжению, в зависимости от соотношения количества витков в их катушках. Некоторые трансформаторы даже обеспечивают переменный выход, позволяя выполнять подключение в разных точках вторичной обмотки.Повышающий трансформатор — это трансформатор, который увеличивает напряжение, тогда как понижающий трансформатор снижает напряжение.

    Если предположить, что сопротивление незначительно, выходная электрическая мощность трансформатора равна его входной. Уравнивание входной и выходной мощности,

    [латекс] \ text {P} _ \ text {p} = \ text {I} _ \ text {p} \ text {V} _ \ text {p} = \ text {I} _ \ text {s} \ text {V} _ \ text {s} = \ text {P} _ \ text {s} [/ latex].

    Комбинируя эти результаты с уравнением трансформатора, находим:

    [латекс] \ frac {\ text {I} _ \ text {s}} {\ text {I} _ \ text {p}} = \ frac {\ text {N} _ \ text {p}} {\ текст {N} _ \ text {s}} [/ latex].

    Значит, если напряжение увеличивается, ток уменьшается. И наоборот, если напряжение уменьшается, ток увеличивается.

    Закон Фарадея

    Концепция закона Фарадея состоит в том, что любое изменение магнитной среды катушки с проволокой вызывает в катушке «индуцированное» напряжение (ЭДС). Независимо от того, как производится изменение, напряжение будет генерироваться. Изменение может быть произведено изменением напряженности магнитного поля, перемещением магнита к катушке или от нее, перемещением катушки в магнитное поле или из него, вращением катушки относительно магнита и т. Д.

    Слева вверху на иллюстрации две катушки пронизаны изменяющимся магнитным полем. Магнитный поток F определяется как F = BA, где B — магнитное поле или среднее магнитное поле, а A — площадь, перпендикулярная магнитному полю. Обратите внимание, что для данной скорости изменения потока через катушку генерируемое напряжение пропорционально количеству витков N, через которые проходит поток. Этот пример относится к работе трансформаторов, где магнитный поток обычно следует за железным сердечником от первичной обмотки ко вторичной обмотке и генерирует вторичное напряжение, пропорциональное количеству витков вторичной обмотки.

    По часовой стрелке второй пример показывает напряжение, генерируемое при перемещении катушки в магнитное поле. Иногда это называют «ЭДС движения», и она пропорциональна скорости, с которой катушка перемещается в магнитное поле. Эта скорость может быть выражена через скорость изменения области, находящейся в магнитном поле.

    Следующий пример — это стандартная геометрия генератора переменного тока, в которой катушка с проволокой вращается в магнитном поле. Вращение изменяет перпендикулярную площадь катушки по отношению к магнитному полю и генерирует напряжение, пропорциональное мгновенной скорости изменения магнитного потока.При постоянной скорости вращения генерируемое напряжение является синусоидальным.

    Последний пример показывает, что напряжение можно генерировать, перемещая магнит к катушке с проволокой или от нее. При постоянной площади изменяющееся магнитное поле вызывает генерируемое напряжение. Направление или «смысл» генерируемого напряжения таковы, что любой результирующий ток создает магнитное поле, противодействующее изменению магнитного поля, которое его создало. Это значение знака минус в законе Фарадея, и это называется законом Ленца.

    Закон Фарадея — Chemistry LibreTexts

    1. Последнее обновление
    2. Сохранить как PDF
    1. Участники и авторства

    В каждом электрохимическом процессе, спонтанном или нет, определенное количество электрического заряда передается во время окисления и восстановления.Полураакции, которые мы написали для электродных процессов, включают электроны, несущие этот заряд. Скорость передачи заряда можно измерить с помощью устройства, называемого амперметром.

    Амперметр измеряет ток, протекающий в цепи. Единицы измерения тока — амперы (А) (для краткости амперы). В отличие от вольтметра, амперметры позволяют электронам проходить и, по сути, «синхронизируют» их. Затем количество электрического заряда, прошедшего через цепь, можно рассчитать с помощью простого соотношения:

    Заряд = ток x время ИЛИ Кулоны = амперы x секунды

    Это позволяет связать стехиометрию реакции с электрическими измерениями.Принципы, лежащие в основе этих отношений, были разработаны в первой половине XIX века английским ученым Майклом Фарадеем.

    На диаграмме показано, как можно измерить напряжение и ток для типичного гальванического элемента, но расположение одинаково для любого электрохимического элемента. Обратите внимание, что вольтметр помещается поперек канала для электронов (т. Е. Провода), а амперметр является частью этого канала. Таким образом можно использовать вольтметр хорошего качества, даже если может показаться, что он «замыкает» цепь.Поскольку электроны не могут проходить через вольтметр, они просто продолжают движение по проводу.

    И вольтметр, и амперметр поляризованы. На них нанесены отрицательные и положительные клеммы. Электроны «ожидаются» только в одном направлении. Это важно при измерениях постоянного тока (DC), например, выходящего из (или входящего) электрохимических ячеек.

    Закон электролиза Фарадея можно сформулировать так: количество вещества, производимого на каждом электроде, прямо пропорционально количеству заряда, протекающего через элемент.Конечно, это своего рода упрощение. Вещества с различными изменениями окисления / восстановления в отношении электронов / атома или иона не будут производиться в одинаковых молярных количествах. Но если учесть эти дополнительные соотношения, закон верен во всех случаях.

    Пример 1

    Пример 2

    Пример 3

    Пример 4

    Пример 5

    Авторы и указание авторства

    Стивен Р.Марсден

    Уравнения Максвелла: Закон Фарадея

    Третье уравнение Максвелла

    На этой странице мы объясним значение третьего уравнения Максвелла, Закон Фарадея , который дан в уравнении [1]:

    [Уравнение 1]

    Фарадей был ученым, экспериментировавшим с цепями и магнитными катушками еще в 1830-е гг. Схема его эксперимента, которая привела к закону Фарде, показана на рисунке 1:

    Фигура 1.Экспериментальная установка для Фарадея.

    Сам эксперимент несколько прост. Когда аккумулятор отключен, у нас нет электрического тока, протекающего по проводу. Следовательно, нет магнитного поток, индуцированный внутри Железа (Магнитного Ядра). Железо похоже на шоссе для Магнитные поля — они очень легко проходят через магнитный материал. Итак, цель сердечника состоит в том, чтобы создать путь для потока Магнитного потока.

    Когда переключатель замкнут, электрический ток будет течь внутри провода. прикреплен к аккумулятору.Когда этот ток течет, он имеет связанный магнитный поле (или магнитный поток) с ним. Когда проволока наматывается на левую сторону магнитный сердечник (как показано на рисунке 1), магнитное поле (магнитный поток) индуцируется внутри ядра. Этот поток движется по сердцевине. Итак, магнитный поток произведенная проводной катушкой слева существует внутри проводной катушки справа, который подключен к амперметру.

    Теперь происходит забавная вещь, которую заметил Фарадей. Когда он замкнул выключатель, тогда ток начнет течь, и амперметр подскочит в одну сторону (скажем, измерение +10 ампер с другой стороны).Но это было очень кратко, и ток на правая катушка пошла бы в ноль. Когда переключатель был разомкнут, измеренный ток будет скачок в другую сторону (скажем, будет измерено -10 ампер), а затем измеренный ток на правой стороне снова будет равен нулю.

    Фарадей понял, что происходит. Когда переключатель был первоначально изменен от открытого к закрытому магнитный поток внутри магнитопровода увеличивался от нуля до некоторого максимального числа (которое было постоянным значением в зависимости от времени).Когда поток увеличивался, на противоположной стороне существовал наведенный ток. боковая сторона.

    Точно так же, когда переключатель был открыт, магнитный поток в сердечнике уменьшился бы. от его постоянного значения до нуля. Следовательно, уменьшающийся поток в пределах сердечник индуцировал противоположный ток на правой стороне.

    Фарадей выяснил, что изменяющийся магнитный поток внутри контура (или замкнутого контура провода) создавал наведенную ЭДС или напряжение в цепи.Он написал это как:

    [Уравнение 2]

    В уравнении [2] — магнитный поток внутри цепи, а ЭДС — это электродвижущая сила, которая в основном источник напряжения. Уравнение [2] говорит, что индуцированное напряжение в цепи противоположна скорости изменения магнитного потока во времени. Для получения дополнительной информации о производных финансовых инструментах см. страница частных производных.

    Уравнение [2] известно как Закон Ленца .Ленц был тем парнем, который понял минус знак. Мы знаем, что электрический ток порождает магнитное поле, но благодаря Фаради мы также знаем, что магнитное поле внутри петли порождает электрическому току. Вселенная любит симметрию, и уравнения Максвелла много этого.

    Вывод закона Фарадея

    Теперь у нас есть экспериментальный результат уравнения [2], как нам выйти из этого привести к стандартной форме закона Фарде в уравнении [1]? Ну, я рад ты спросил.Представим простой цикл с изменяющимся во времени полем B внутри:

    Рис. 1. Проволочная петля с плотностью магнитного потока B (t) внутри нее.

    Мы знаем, что скорость изменения полного магнитного потока равна противоположной ЭДС , или электрическая сила внутри провода. Полный магнитный поток представляет собой просто интеграл (или сумму) поля B по площади, ограниченной проводом:

    [Уравнение 3]

    Чтобы найти общую ЭДС , индуцированную по всей цепи, мы суммируем по длине провода EMF создавалась в каждой точке.Это известно как линейный интеграл. Это записывается как:

    [Уравнение 4]

    Напомним, что Электрическое поле напрямую связано с силой электрических зарядов. Напряжение также определяется как сумма (интеграл) электрического поля на пути. [напомним, что электрическое поле измеряется в вольт / метр]. Следовательно, E-поле есть фактически пространственная производная напряжения (E-поле равно скорости изменения напряжения по отношению к расстоянию).Эти факты резюмируются следующим образом:

    [Уравнение 5]

    Следовательно, уравнения [4] и [5] говорят нам, что дифференциальная величина ЭДС в любой точке цепи ( dEMF в [4]) равна E поле в этом месте. Следовательно:

    [Уравнение 6]

    Теперь некий математик по имени Стокс выяснил, что интегрирование (усреднение) поля вокруг петли в точности эквивалентно интегрированию завиток поля внутри петля.Это должно быть для вас чем-то вроде интуитивной истины: завиток — это мера вращения поля, поэтому ротор векторного поля внутри поверхность должна быть связана с интегралом поля вокруг петли, которая охватывает поверхность. Если это не имеет смысла, подумайте об этом больше или просто примите следующее как правда (потому что это правда — не только для полей E , но и для любого поля):

    [Уравнение 7]

    Теперь мы почти у цели.Если мы заменим закон уравнения Фарде [2] на термины, которые мы нашли в уравнении [3] и уравнении [7], то получаем:

    [Уравнение 8]

    В уравнении [8] отметим, что если у нас есть два интеграла по поверхностям, а поверхности могут быть какими бы они ни были, тогда интегрируемые величины также должны быть таким же. И вот так мы получили закон Фарадея в окончательной форме: внесены в список уравнений Максвелла!

    Толкование закона Фарде

    Закон Фарадея показывает, что изменяющееся магнитное поле внутри петли порождает на индуцированный ток, который возникает из-за силы или напряжения в этой цепи.Тогда мы можем сказать следующее о законе Фардея:

  • Электрический ток вызывает магнитные поля. Магнитные поля вокруг цепь порождает электрический ток.
  • Магнитное поле, изменяющееся во времени, вызывает циркуляцию электрического поля. вокруг него.
  • Циркулирующее электронное поле во времени вызывает изменение магнитного поля во времени.

    Закон Фардея очень силен, поскольку он показывает, насколько Вселенная любит симметрию. Если ток вызывает магнитное поле, то магнитное поле может вызвать электрическому току.А изменяющееся E-поле в космосе порождает изменяющееся B-поле. во время. И когда мы перейдем к окончательному из уравнений Максвелла, Ампера Закон, мы увидим еще больше этой симметрии!


    Уравнения Максвелла

    Эта страница закона индукции Фарде защищена авторским правом, в частности все отношения с уравнениями Максвелла. Авторские права www.maxwells-equations.com, 2012.

  • Закон индукции Фарадея | физика

    Закон индукции Фарадея , в физике количественная связь между изменяющимся магнитным полем и электрическим полем, создаваемым этим изменением, разработанная на основе экспериментальных наблюдений, сделанных в 1831 году английским ученым Майклом Фарадеем.

    Подробнее по этой теме

    электромагнетизм: закон индукции Фарадея

    Открытие Фарадеем в 1831 году явления магнитной индукции — одна из важнейших вех на пути к пониманию и …

    Явление, называемое электромагнитной индукцией, было впервые замечено и исследовано Фарадеем; закон индукции — это его количественное выражение.Фарадей обнаружил, что всякий раз, когда магнитное поле вокруг электромагнита возрастает и схлопывается за счет замыкания и размыкания электрической цепи, частью которой он является, электрический ток может быть обнаружен в отдельном проводнике поблизости. Перемещение постоянного магнита в катушку с проволокой и из нее также индуцировало ток в проволоке, пока магнит находился в движении. При перемещении проводника рядом с неподвижным постоянным магнитом в проводе также протекал ток, пока он двигался.

    Фарадей визуализировал магнитное поле как состоящее из множества линий индукции, вдоль которых будет указывать небольшой магнитный компас.Совокупность линий, пересекающих данную область, называется магнитным потоком. Таким образом, электрические эффекты были объяснены Фарадеем изменяющимся магнитным потоком. Несколько лет спустя шотландский физик Джеймс Клерк Максвелл предположил, что фундаментальным эффектом изменения магнитного потока является создание электрического поля не только в проводнике (где он может приводить в движение электрический заряд), но и в космосе даже в отсутствие электрического поля. обвинения. Максвелл сформулировал математическое выражение, связывающее изменение магнитного потока с наведенной электродвижущей силой ( E, или ЭДС ).Это соотношение, известное как закон индукции Фарадея (чтобы отличить его от его законов электролиза), гласит, что величина ЭДС , индуцированная в цепи, пропорциональна скорости изменения магнитного потока, проходящего через цепь. Если скорость изменения магнитного потока выражается в единицах веберов в секунду, наведенная эдс имеет единицы вольт. Закон Фарадея — одно из четырех уравнений Максвелла, определяющих теорию электромагнетизма.

    Закон Фарадея

    Закон Фарадея
    Следующая: Электрический скалярный потенциал? Up: Зависящие от времени уравнения Максвелла Предыдущая: Введение История развития физики человечеством можно рассматривать как историю синтеза идей.Физики продолжают находить, что очевидно несопоставимые явления можно понимать как разные аспекты некоторых более фундаментальное явление. Этот процесс продолжается до сегодняшнего дня. явления могут быть описаны в терминах трех фундаментальных сил: силы тяжести , силы тяжести Электрослабая сила и сильная сила . Одна из главных целей современной физики состоит в том, чтобы найти способ объединить эти три силы, чтобы все физики можно описать в терминах единой объединенной силы.Этот, по сути, это цель теории струн.

    Первый великий синтез идей в физике произошел в 1666 году, когда Исаак Ньютон понял, что сила, заставляющая яблоки падать вниз, такая же, как у сила, которая удерживает планеты на эллиптических орбитах вокруг Солнца. Второй великий синтез, который мы собираемся изучить более подробно, произошел в 1830 г., когда Майкл Фарадей открыл, что электричество и магнетизм — это два аспекты одного и того же, обычно называемые электромагнетизм .Третий великий синтез, который мы обсудим в настоящее время произошло в 1873 году, когда Джеймс Клерк Максвелл продемонстрировал этот свет и электромагнетизм тесно связаны. Последний (но, надеюсь, не последний) великий синтез произошел в 1967 году, когда Стив Вайнберг и Абдус Салам показал, что электромагнитная сила и слабое ядерное взаимодействие (, то есть , которое отвечает за распады) можно комбинировать для создания электрослабой силы. К сожалению, работа Вайнберга выходит далеко за рамки этого курса лекций.

    Давайте теперь рассмотрим эксперименты Фарадея, поместив их в надлежащее положение. исторический контекст. До 1830 года единственный известный способ изготовления электрического ток через проводник должен был соединить концы провода с положительное и отрицательное клеммы аккумуляторной батареи. Мы измеряем способность батареи выдавать ток вниз по проводу с точки зрения его напряжения , под которым мы понимаем разницу напряжений между его положительным и отрицательным выводами. Чему соответствует напряжение в физику? Что ж, вольт — это единицы измерения электрического скалярного потенциала, поэтому, когда мы Говоря о батарее 6 В, мы действительно говорим о том, что разница в электрический скалярный потенциал между его положительным и отрицательным выводами составляет шесть вольт.Это понимание позволяет нам писать

    (370)

    где — напряжение аккумулятора, обозначает положительный полюс, отрицательный вывод, и является элементом длины вдоль провод. Конечно, приведенное выше уравнение является прямым следствием . Ясно, что разница напряжений между двумя концами провода прикрепленный к батарее подразумевает наличие электрического поля, которое проталкивает заряды через провод. Это поле направлено от положительной клеммы аккумулятора к отрицательной. терминал, и, следовательно, таков, что заставляет электроны течь через провод от отрицательного к положительному выводу.Как и ожидалось, это означает, что Чистая положительный ток течет от положительной клеммы к отрицательной. Дело в том, что — консервативное поле гарантирует, что разность напряжений не зависит от путь провода. Другими словами, два разных провода, подключенных к одной батарее развиваются одинаковые разности напряжений.

    Давайте теперь рассмотрим замкнутый контур провода (без батареи). Напряжение вокруг такой петли, которую иногда называют электродвижущей силой . force или эл.м.ф. , это

    (371)

    Это прямое следствие уравнения поля . Итак, поскольку это консервативное поле, то электродвижущая сила вокруг замкнутый контур провода автоматически равно нулю, и ток по проводу не течет. Кажется, все это имеет смысл. Однако Майкл Фарадей собирается бросить гаечный ключ в наших работах! В 1830 году он обнаружил, что изменяющееся магнитное поле может вызвать протекание тока по замкнутому шлейф провода (при отсутствии аккумулятора).Ну, а если по проводу течет ток, значит, должен быть электродвигатель. сила. Так,
    (372)

    что сразу означает, что это не консервативная область, и что . Ясно, что нам придется изменить некоторые наших идей относительно электрических полей.

    Фарадей продолжил свои эксперименты и обнаружил, что другой способ создания электродвижущей силы вокруг проволочной петли состоит в том, чтобы поддерживать постоянное магнитное поле и переместите петлю.В конце концов, Фарадей смог сформулировать закон, который объяснял все его эксперименты. Э.д.с. генерируется вокруг проволочной петли в магнитном поле, пропорционально скорость изменения потока магнитного поля через петлю. Так, если обозначена петля, и это некоторая поверхность, прикрепленная к петле, то фарадеевский эксперименты можно резюмировать, написав

    (373)

    где — коэффициент пропорциональности.Таким образом, изменяющийся поток магнитного поля через петлю создает электрическое поле, направленное вокруг петли. Этот процесс известен как магнитная индукция .

    единиц S.I. были тщательно отобраны, чтобы приведенное выше уравнение. Единственное, что нам теперь нужно решить, это то, или же . Другими словами, в каком направлении вокруг петли возникает наведенная ЭДС. хотите погонять ток? У нас есть общий принцип, который позволяет нам решать подобные вопросы.Это называется Принцип Ле-Шателье . Согласно принципу Ле Шателье, каждое изменение вызывает реакцию, которая пытается минимизировать изменение. По сути, это означает что Вселенная устойчива к малым возмущениям. Когда этот принцип применяется к частному случаю магнитная индукция, его обычно называют законом Ленца . По словам Ленца закон, ток, индуцированный вокруг замкнутого контура всегда такова, что создаваемое магнитное поле пытается противодействовать изменение магнитного потока, создающего электродвижущую силу.Из рис. 34 видно, что если магнитное поле увеличивается, и ток циркулирует по часовой стрелке (как видно сверху), затем он создает поле, которое противодействует увеличению магнитного потока через петлю, в в соответствии с законом Ленца. Направление тока противоположно смысл токовой петли (при условии, что поток через петля положительна), поэтому это означает, что в уравнении. (373). Таким образом, фарадеевский закон принимает форму

    (374)

    Рисунок 34:

    Экспериментально установлено, что закон Фарадея правильно предсказывает е.м.ф. ( то есть , ) генерируется в любом проводном шлейфе, независимо от положение или форма петли. Резонно предположить, что та же ЭДС. было бы генерируется в отсутствие провода (конечно, ток не будет течь в таком случае). Таким образом, уравнение. (374) действительно для любого замкнутого контура. Если Фарадея закон должен иметь какой-то смысл, тогда он также должен быть верным для любой поверхности, прикрепленной к петля . Ясно, что если поток магнитного поля через петлю зависит от поверхность, на которой это оценивается, то закон Фарадея будет предсказывать разные е.m.f.s для разных поверхностей. Поскольку нет предпочтительной поверхности для обычная некопланарная петля, это не имело бы особого смысла. Условие для потока магнитного поля, , зависеть только на петле, к которой прикреплена поверхность, а не на натуре самой поверхности, является

    (375)

    для любой закрытой поверхности.

    Закон Фарадея, Ур. (374), можно преобразовать в уравнение поля, используя Теорема Стокса.Мы получаем

    (376)

    Это последнее уравнение Максвелла. Он описывает, как изменяющееся магнитное поле может генерировать или индуцировать электрическое поле. Теорема Гаусса применима к уравнению. (375) дает знакомое уравнение поля
    (377)

    Это гарантирует, что магнитный поток через петлю является четко определенной величиной.

    Расхождение уравнения.(376) дает

    (378)

    Таким образом, уравнение поля (376) фактически требует, чтобы дивергенция магнитное поле должно быть постоянным во времени для самосогласования (это означает что поток магнитного поля через петлю не обязательно должен быть четко определенным количество, пока его производная по времени хорошо определена). Однако постоянный несоленоидное магнитное поле может быть создано только магнитными монополями, а магнитных монополей не существует (насколько нам известно).Следовательно, . Отсутствие магнитных монополей это факт наблюдения: его не может предсказать никакая теория. Если магнитные монополи будут открыты завтра, это не вызовет у физиков какие-то проблемы. Мы знаем, как обобщить уравнения Максвелла, чтобы включить как магнитные монополи, так и токи магнитных монополей. В этом обобщенном формализма, уравнения Максвелла полностью симметричны относительно электрические и магнитные поля, а также . Тем не мение, дополнительный член (включающий ток магнитных монополей) должен быть добавлен к правая часть уравнения.(376), чтобы сделать его самосогласованным.

    Следующая: Электрический скалярный потенциал? Up: Зависящие от времени уравнения Максвелла Предыдущая: Введение
    Ричард Фицпатрик 2006-02-02

    Закон Фарадея — Электромагнитная геофизика

    С помощью апплета мы можем наблюдать несколько характеристик электромагнитной индукции:

    1. Вольтметр регистрирует сигнал только при движении магнита, независимо от его абсолютного положения.

    2. Знак наведенного напряжения меняется в зависимости от направления движения и ориентации магнита

    3. Величина напряжения зависит от скорости движения магнита

    4. При прочих равных, напряжение, индуцированное в контуре с четырьмя катушками, больше, чем в контуре с двумя катушками.

    Такое поведение описывается законом Фарадея. Закон Фарадея назван в честь английского ученого Майкла Фарадея (1791-1867), и описывает способ, которым изменяющиеся во времени магнитные поля индуцируют вращательные электрические поля.Это объясняет электромагнитную индукцию явление, которое является фундаментальным механизмом возбуждения индуктивного источник.

    Интегральная форма во временной области

    Закон Фарадея в интегральной форме можно выразить с помощью следующего уравнения:

    (55) \ [\ oint_C {\ bf e} \ cdot {\ bf d} {\ bf l} = — \ int_S \ frac {\ partial {\ bf b}} {\ partial t} \ cdot \ hat {\ bf n} \, da, \]

    где:

    • \ (\ mathbf {e} \) — электрическое поле, определенное вокруг замкнутого пути \ (C \)

    • \ (\ mathbf {b} \) — плотность магнитного потока, определяемая над замкнутой поверхностью \ (A \), очерченной \ (C \)

    • \ (\ hat n \) — единичный вектор внешней нормали, перпендикулярный \ (da \)

    • \ (\ d \ mathbf {l} \) — векторный элемент длины по контуру \ (C \)

    Ур.(55) утверждает, что зависящая от времени скорость изменения магнитного потока через поверхность, ограниченную замкнутым путем, отрицательно пропорциональна линейному интегралу электрического поля, которое он наводит на этом пути.

    Дифференциальная форма во временной области

    Применяя теорему Стокса к левой части уравнения. (55), мы можем получить дифференциальную форму уравнения Фарадея закон:

    (56) \ [\ nabla \ times {\ bf e} = — \, \ frac {\ partial {\ bf b}} {\ partial t} \]

    Ур. (56) утверждает, что изменяющиеся во времени магнитные поля будут индуцируют вращательные электрические поля.Кроме того, ротор индуцированной электрические поля противодействуют зависящим от времени изменениям индуцирующего магнитного поля.

    Закон Фарадея в частотной области

    Частотное представление закона Фарадея может быть получено применяя преобразование Фурье к уравнениям. (55) и (56). Интегральная форма закона Фарадея в частотная область:

    (57) \ [\ oint_C {\ bf E} \ cdot d {\ bf l} = — \, i \ omega \ int_A {\ bf B} \ cdot \ hat n \, da \]

    Аналогично, используя теорему Стокса, дифференциальная форма закона Фарадея:

    (58) \ [\ nabla \ times {\ bf E} = — \, i \ omega {\ bf B} \]

    где \ (\ omega \) — угловая частота, \ ({\ bf E} \) — частотно-зависимое электрическое поле, а \ ({\ bf B} \) — частотно-зависимое зависимая плотность магнитного потока.

    Из уравнения. (58), мы можем вывести две вещи:

    1. Наведенные вращательные электрические поля пропорциональны угловой частоте; это означает, что электромагнитная индукция больше на более высоких частотах.

    2. Индуцированные вращательные электрические поля и отвечающие за них частотно-зависимые магнитные поля сдвинуты по фазе на 90 градусов.

    Открытие закона Фарадея

    Закон Фарадея лучше всего понять с помощью трех экспериментов, которые Фарадей проведено и обобщено в 1831 г.Для каждого из этих экспериментов электромагнит использовался для создания зависящего от времени магнитного поля, которое мы представим с использованием плотности магнитного потока \ ({\ bf {b}} \). Петля провод с областью \ (A \), очерченный замкнутым контуром \ (C \), затем удерживался в непосредственной близости от электромагнита. Это привело к магнитному потоку \ ({\ boldsymbol \ Phi_b} \) определяется по: s

    (59) \ [{\ boldsymbol \ Phi_b} = \ int_A {\ bf b} \ cdot \ hat {\ bf {n}} \, da \]

    Затем Фарадей провел следующие три эксперимента:

    1. Проволочная петля была закрыта, а электромагнит оставался неподвижным.

    2. Электромагнит перемещался, в то время как проволочная петля оставалась неподвижной.

    3. Как проволочная петля, так и электромагнит оставались неподвижными, однако сила магнитного поля менялась как функция времени.

    Фарадей заметил, что во всех трех экспериментах электродвижущая сила \ (\ mathcal {E} \) был индуцирован в проводе, что привело к измеримому электрический ток. Электродвижущая сила \ (\ mathcal {E} \) может быть определена через электрическое поле \ ({\ bf e} \) путем интегрирования по пути провод следующим образом:

    (60) \ [\ mathcal {E} = — \ oint_C {\ bf e} \ cdot d {\ bf l} = V \]

    В идеальной схеме электродвижущая сила эквивалентна напряжению \ (V \) испытанный проводом.Для цепи с сопротивлением \ (R \), Закон Ома \ (V = IR \) может быть использован, чтобы показать, что электродвижущие силы связанные с токами \ (I \). Прорыв Фарадея произошел, когда он предложил что зависящее от времени изменение магнитного потока через проволочную петлю было отвечает за возникающую электродвижущую силу. В 1833 году Генрих Ленц определили, что изменение магнитного потока, зависящее от времени, отрицательно пропорциональна создаваемой электродвижущей силе. Сделанные взносы Фарадея и Ленца представлены следующим уравнением:

    (61) \ [\ mathcal {E} = — \, \ frac {\ partial {\ boldsymbol \ Phi_b}} {\ partial t} \]

    Вклад Ленца в открытие Фарадея не только обеспечивает равенство в Уравнение(61), но определяет направление силы на свободном заряжается в ответ на изменения приложенного магнитного поля. Для большего полное описание см. на странице закона Ленца. Подставляя определение магнитного потока из уравнения. (59) и определение электродвижущая сила из уравнения. (60) в уравнение. (61) можно получить закон Фарадея в интегральной форме согласно формуле. (55).

    Шт.

    Плотность магнитного потока

    \ (\ mathbf {b} \)

    \ (\ frac {\ text {Wb}} {\ text {m} ^ {2}} \)

    Weber на квадратный метр

    Плотность электрического тока

    \ (\ mathbf {j} \)

    \ (\ frac {\ text {A}} {\ text {m} ^ {2}} \)

    Ампер на квадратный метр

    Напряженность электрического поля

    \ (\ mathbf {e} \)

    \ (\ frac {\ text {V}} {\ text {m}} \)

    Вольт на метр

    Электрический потенциал

    \ (\ text {V} \)

    В

    Вольт

    Электродвижущая сила

    \ (\ mathcal {E} \)

    В

    Вольт

    Электрический ток

    \ (\ text {I} \)

    А

    Ампер

    Рассмотрим единицы величин в левой и правой частях уравнения.(55). Используя размерный анализ, получаем:

    \ [V = \ frac {Wb} {s} \]

    Следовательно, приведенное выше выражение утверждает, что изменение магнитного потока, равное 1 Вебер в секунду, будет индуцировать электродвижущую силу в 1 вольт вдоль закрытый путь. Используя вышеупомянутое выражение, Вебер (\ (Wb \)) может можно выразить как:

    \ [Wb = V \ cdot s = \ frac {J} {A}, \]

    , где \ (J \) — Джоуль, а \ (A \) — Ампер. Джоули используются для обозначения единицы энергии или работы.Таким образом, мы можем интерпретировать магнитный поток как единицу работы на единицу тока.

    Геофизические приложения Закон Фарадея

    При проведении электромагнитных исследований используются различные инструменты для генерировать зависящие от времени магнитные поля. Эти поля обычно называют в качестве основных полей. Согласно уравнениям. (56), это будет индуцировать вращательные электрические поля в окружающей области. Для рока единица, определяемая проводимостью \ (\ sigma \), законом Ома (\ ({\ bf j} = \ sigma {\ bf e} \)) означает, что плотность тока \ ({\ bf j} \) также индуцируется первичным полем.Эти индуцированные токи параллельны \ ({\ bf e} \) и имеют величину, зависящую от физического свойства породы. Следовательно, мы можем использовать закон Фарадея в дифференциале форма, чтобы понять, каким образом вращательные токи индуцируются в проводящие объекты искусственно созданным первичным полем.

    Согласно закону Био-Савара Раздел Био-Савара, плотности тока несут ответственность за создание магнитных полей. Это означает, что токи индуцированное первичным полем приведет к созданию аномального магнитное поле, обычно называемое вторичным полем.Вторичный поле может быть измерено в точках над поверхностью Земли и обеспечивает важная информация о подземных геологических структурах. Но как вторичное поле измеряли?

    При размещении в области, где наблюдаются вторичные поля, петля приемника провода будет испытывать электродвижущую силу в соответствии с формулой. (61). Из уравнения. (60), и мы знаем что электродвижущая сила эквивалентна напряжению, индуцированному в провод.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *