Закрыть

Где применяется сила ампера – Сила Ампера и закон Ампера

Содержание

Сила Ампера и закон Ампера

сила ампера

Содержание:

  • Закон Ампера

  • Что такое сила Ампера

  • Правило левой руки

  • Применение силы Ампера

  • Сила Ампера, видео
  • Трудно представить нашу современную жизнь без электричества, ведь исчезни оно, это бы мгновенно привело к глобальным катастрофическим последствиям. Так что в любом случае с электричеством мы отныне не разлучные. А вот для того, чтобы иметь с ним дело нужно знать определенные физические законы, одним из которых, безусловно, является закон Ампера. А пресловутая магнитная сила Ампера – главная составляющая этого закона.

    Закон Ампера

    Итак, давайте сформулируем закон Ампера: в параллельных проводниках, где электрические токи текут в одном направление, появляется сила притяжения. А в проводниках, где токи текут в противоположных направлениях, наоборот возникает сила отталкивания. Если же говорить простым житейским языком, то закон Ампера можно сформулировать предельно просто «противоположности притягиваются», и ведь в реальной жизни (а не только физике) мы наблюдаемо подобное явление, не так ли?

    Но вернемся к физике, в ней также под законом Ампера понимают закон, определяющий силу действия магнитного поля на ту часть проводника, по которой протекает ток.

    Что такое сила Ампера

    Собственно сила ампера и является той силой действия магнитного поля на проводник, по которому идет ток. Сила Ампера вычисляется по формуле как результат умножения плотности тока, идущего по проводнику на индукцию магнитного поля, в котором находится проводник. Как результат формула силы Ампера будет выглядеть так

    са=ст*дчп*ми

    Где, са – сила Ампера, ст – сила тока, дчп – длина части проводника, ми – магнитная индукция.

    Правило левой руки

    Правило левой руки предназначено для того, чтобы помочь запомнить, куда направлена сила Ампера. Оно звучит следующим образом: если рука занимает такое положение, что линии самой магнитной индукции внешнего поля заходят в ладонь, а пальцы с мизинца по указательный указывают направление в сторону движения тока в проводнике, то отторгнутый под углом в 90 градусов большой палец ладони и будет указывать, куда направлена сила Ампера, действующая на элемент проводника.

    правило левой руки

    Примерно так выглядит правило левой руки на этой схеме.

    Применение силы Ампера

    Применение силы Ампера в современном мире очень широкое, можно даже без преувеличение сказать, что мы буквально окружены силой Ампера. Например, когда вы едете в трамвае, троллейбусе, электромобиле, его в движение приводит именно она, сила Ампера. Аналогичны лифты, электрические ворота, двери, любые электроприборы, все это работает именно благодаря силе Ампера.

    Сила Ампера, видео

    И в завершение небольшой видео урок о силе Ампера.


    www.poznavayka.org

    Referat. Сила Ампера — PhysBook

    Сила Ампера

    Сила, с которой магнитное поле действует на помещенный в него проводник с током, называется силой Ампера.

    Величина этой силы, действующей на элемент Δl проводника с током I в магнитном поле с индукцией \(~\vec B\) , определяется законом Ампера:

    \(~\Delta F = B \cdot I \cdot \Delta l \cdot \sin \alpha\) , (1)

    где α – угол между направлениями тока и вектора индукции.

    Направление силы Ампера можно найти с помощью правила левой руки (рис. 1):

    Рис. 1

    если левую руку расположить так, чтобы линии магнитной индукции входили в ладонь, а четыре вытянутых пальца совпадали по направлению с направлением тока, то отогнутый на 90° большой палец укажет направление силы, действующей на элемент проводника.

    Использование этого правила затруднительно лишь в том случае, когда угол α мал. Поскольку, однако, величина B∙sin α представляет собой модуль перпендикулярной проводнику с током компоненты вектора индукции \(~\vec B_{\perp}\) (рис. 2), то ориентацию ладони можно определять именно этой компонентой – она должна входить в открытую ладонь левой руки.

    Рис. 2

    Из (1) следует, что сила Ампера равна нулю, если проводник с током расположен вдоль линий магнитной индукции, и максимальна, если проводник перпендикулярен этим линиям.

    Закон Ампера выполняется для любого магнитного поля. Предположим, что это поле создается длинным линейным проводником с током I2, параллельным первому проводнику c током I1 и находящимся на расстоянии r от него. Тогда индукцию магнитного поля в точках расположения первого проводника можно определить (с учетом замены

    II2) по формуле:

    \(~B = \frac{\mu_0 \cdot I}{2 \pi \cdot r} = \frac{\mu_0 \cdot I_2}{2 \pi \cdot r}\) .

    Подставляя это выражение в (1) и замечая, что в рассматриваемом случае параллельных проводников α = 90°, находим силу, действующую на линейный элемент Δl первого проводника,

    \(~\Delta F = \frac{\mu_0 \cdot I_2}{2 \pi \cdot r} \cdot I_1 \cdot \Delta l = \mu_0 \cdot \frac{I_2 \cdot I_1 \cdot \Delta l}{2 \pi \cdot r} \) . (2)

    Совершенно ясно, что точно такое же выражение можно записать для силы, действующей на второй проводник. Используя правило буравчика (для определения магнитной индукции проводника с током) и правило левой руки (для определения силы, действующей на проводник с током), можно убедиться в том, что если токи в проводниках текут в одинаковых направлениях, то эти проводники притягиваются (рис. 3 а, б), а если в разных – отталкиваются (рис. 4, а, б), что и подтверждается опытом.

    • а

    • б

    Рис. 3
    • а

    • б

    Рис. 4

    Выражение (2) было положено в основу принципа определения единицы силы тока. Если в (2) считать I1 = I2 = 1 А, r = 1 м, Δl = 1 м, то получим F = 2∙10-7 Н/м. Другими словами,

    если по двум параллельным, бесконечно длинным линейным проводникам, расположенным на расстоянии 1 м друг от друга, текут одинаковые токи в 1 А, то эти токи взаимодействуют с силой 2∙10-7 Н на каждый метр длины проводников.

    Заметим, что единица силы тока – ампер – в СИ принадлежит, наряду с секундой, метром, килограммом, кельвином, молем и канделой, к числу основных единиц измерения физических величин.

    Момент сил, действующий на прямоугольную рамку с током

    Поместим в однородном магнитном поле с индукцией \(~\vec B\) прямоугольную рамку с током ABCD (рис. 5 а – вид сбоку; рис. 5 б – вид сверху), где обозначим

    AB = a, AD = b, β – угол между перпендикуляром к рамке и вектором магнитной индукции.

    • а

    • б

    Рис. 5

    На участки AD и BC магнитное поле действуют с силами, которые меняются от нуля до максимального значения (в зависимости от угла поворота рамки β) и стремятся растянуть рамку (на рис. 5 эти силы не указаны). На участки AB и CD магнитное поле действуют с постоянными силами \(~\vec F_1\) и \(~\vec F_2\), которые направлены в противоположные стороны (на рис. 5 а силы направлены перпендикулярно плоскости рисунка) и стремятся повернуть рамку вокруг оси OO´. Таким образом, эти силы \(~\vec F_1\) и \(~\vec F_2\) создают вращающий момент \(~M = F_1 \cdot l_1 + F_2 \cdot l_2\) , где \(~F_1 = F_2 = I \cdot B \cdot l\) (угол α = 90°), \(~l_1 = l_2 = \frac{AD}{2} \sin \beta = \frac{b}{2} \sin \beta\) , \(~l = AB = CD = a\) . Тогда

    \(~M = 2 F_1 \cdot l_1 = 2I \cdot B \cdot a \cdot \frac{b}{2} \cdot \sin \beta = I \cdot B \cdot a \cdot b \cdot \sin \beta = I \cdot B \cdot S \cdot \sin \beta\) ,

    где \(~S = a \cdot b\) – площадь рамки.

    Момент сил будет максимальным при β = 90° (рамка расположена вдоль линий индукции)

    \(~M_{max} = I \cdot B \cdot S\) . (3)

    Отметим, что формула (3) справедлива не только для квадратной рамки, но и для плоской рамки другой формы.

    Применение силы Ампера в технике

    Электрический двигатель постоянного тока

    В электрических двигателях для преобразования электрической энергии в механическую используется действие силы Ампера.

    Основными частями электродвигателя постоянного тока (рис. 6) являются индуктор 4, с помощью которого создается постоянное магнитное поле, якорь 3, через обмотки которого пропускается ток, и коллектор 1 с электрическими щетками 2, с помощью которых осуществляется соединение обмоток якоря с источником тока.

    • а

    • б

    Рис. 6

    В простейшей машине постоянного тока индуктор – это постоянный магнит или электромагнит со стальным сердечником. Обмотки электромагнита индуктора называются обмотками возбуждения. Магнит индуктора имеет полюсные наконечники такой формы, что между ними образуется отверстие цилиндрической формы. Между полюсными наконечниками индуктора помещается якорь. Якорь состоит из сердечника – стального цилиндра с пазами, параллельными оси цилиндра, и обмоток, вложенных в пазы сердечника (рис. 7). Выводы каждой обмотки соединены с медными контактами коллектора.

    Рис. 7

    Якорь насажен на ось, концы которой установлены в подшипниках, и может свободно вращаться вокруг этой оси.

    Для постоянного вращения рамки с током в магнитном поле необходимо устройство, меняющее направление тока. Такое устройство – коллектор – было изобретено в XIX веке. В простейшем случае он представляет собой два металлических полукольца

    1, насаженных на общую с рамкой ось 2, и к которым припаяны провода обмотки 4 (рис. 8). К коллектору с двух противоположных сторон прижимаются щетки 3 из графита или меди; щетки подключаются проводами 5 к источнику постоянного напряжения.

    Рис. 8

    При включении ток проходит через щетки, полукольца и обмотку, в результате чего под действием пары сил Ампера обмотка начинает поворачиваться и поворачивает полукольца коллектора. Когда плоскость обмотки окажется перпендикулярной линиям магнитной индукции, вращающий момент обратится в ноль. Однако это положение обмотка проскакивает по инерции, и с этого момента каждое из полуколец, повернувшись вместе с рамкой, станет прикасаться уже к другой щетке. В результате направление тока в обмотке изменится на противоположное, а возникший после такой смены направления тока вращающий момент будет вынуждать обмотку вращаться в прежнем направлении до тех пор, пока ее плоскость снова не станет перпендикулярной вектору индукции. После этого направление тока в обмотке снова изменится, и она продолжит вращение, и т.д.

    Скорость вращения якоря электродвигателя можно регулировать, изменяя силу тока в его обмотках; направление вращения можно изменять, изменяя направление тока в обмотке якоря или индуктора.

    Электродвигатель постоянного тока может приводить в движение колеса электровоза, троллейбуса, трамвая, приводить в действие электробритву, магнитофон и другие бытовые электроприборы.

    Электроизмерительные приборы

    В электроизмерительных приборах магнитоэлектрической системы используется действие магнитного поля на проводник с током (рис. 9).

    Рис. 9

    Измеряемый электрический ток пропускается через рамку 6, помещенную в магнитное поле постоянного магнита 5. Рамка укреплена на оси 2. Измеряемый ток подводится к рамке 6 через спиральную пружину 3. На участки проводников, расположенные перпендикулярно линиям индукции магнитного поля, действует сила Ампера. Если бы подвижная часть измерительного механизма не имела пружину 3, противодействующую ее повороту, то при пропускании тока через рамку происходил бы поворот ее на 180° независимо от силы тока. Но силы упругости, возникающие при закручивании пружины, препятствуют повороту рамки. Сила упругости прямо пропорциональна углу закручивания пружины, поэтому угол поворота, при котором наступает равенство моментов сил Ампера и сил упругости, пропорционален силе тока в рамке. Шкала магнитоэлектрического прибора равномерная.

    При изменениях силы тока равновесие моментов сил упругости и сил Ампера нарушается, в результате подвижная система начинает совершать колебания относительно нового положения равновесия. Вместе с ней колеблется и стрелка прибора. Для устранения этих колебаний в приборах применяются специальные успокоители. В них для торможения подвижной системы используется тонкая алюминиевая пластина 7, помещенная между полюсами постоянного магнита 8 и закрепленная на оси вращения подвижной системы. При повороте подвижной системы алюминиевая пластина успокоителя движется в поле постоянного магнита. Наводимые в ней при этом индукционные токи тормозят движение пластины и вместе с тем вращение всей подвижной системы электроизмерительного прибора.

    Для того чтобы при любом положении указательной стрелки 4 подвижная часть была уравновешена в поле тяжести, имеются противовесы 9. Установка на нулевое деление шкалы производится с помощью корректора 10.

    Прибор можно проградуировать так, чтобы угол поворота определял силу тока в амперах или других единицах. Согласно закону Ома сила тока в приборе \(~I = \frac{U}{R}\) . Поэтому прибор можно проградуировать и так, чтобы определенному углу отклонения стрелки соответствовало напряжение U на зажимах прибора в вольтах или других единицах.

    Таким образом, прибор может служить как амперметром, так и вольтметром. В последнем случае для увеличения сопротивления прибора нужно последовательно с катушкой включить резистор с большим сопротивлением.

    Литература

    1. Буров Л.И., Стрельченя В.М. Физика от А до Я: учащимся, абитуриентам, репетиторам. – Мн.: Парадокс, 2000. – 560 с.
    2. Мякишев, Г.Я. Физика : Электродинамика. 10-11 кл. : учеб. для углубленного изучения физики / Г.Я. Мякишев, А.3. Синяков, В.А. Слободсков. – М.: Дрофа, 2005. – 476 с.
    3. Физика: Учеб. пособие для 10 кл. шк. и классов с углубл. изуч. физики/ О. Ф. Кабардин, В. А. Орлов, Э. Е. Эвенчик и др.; Под ред. А. А. Пинского. – 2-е изд. – М.: Просвещение, 1995. – 415 с.

    www.physbook.ru

    Сила Ампера — FizikatTYT

    В первоначальной своей формулировке закон Ампера касался взаимодействия двух параллельных проводников с током. Направление силы такого взаимодействия зависит от взаимного направления токов. При одинаково направленных токах проводники притягиваются, при противоположно направленных токах — отталкиваются. Сама же сила получила название силы Ампера.

    Закон взаимодействия электрических токов

    В момент установления данного закона физика электричества и магнетизма являла собой несколько малосвязанных друг с другом разделов науки: электростатику, гальванизм и магнитизм:

    • Электростатика занималась исследованием взаимодействия заряженных объектов. Примером достижения этой науки является хорошо всем знакомый закон Кулона.
    • Гальванизм изучал токи, возникающие из батарей, сооруженных впервые Гальвани и опробованных в своих опытах Вольтой.
    • Магнитизм был посвящен выяснению свойств магнитов, магнитных свойств железных руд, а также магнитному полю планеты, влияющему на положение стрелки компаса.

    Все эти три направления рассматривались изолированно и лишь у некоторых, особенно чутких исследователей, возникала идея об их общем корне. В частности о том, что гальванические токи и электростатические взаимодействия как-то связаны. Закон Ампера стал второй важнейшей вехой на пути построения современной электромагнитной теории.

    Первым экспериментальным фактом, давшим повод говорить о единстве электрических и магнитных явлений, стал опыт Эрстеда. Полагая, что гальванический ток может воздействовать на стрелку компаса, он провел неудавшийся публичный опыт, в котором поместил стрелку параллельно идущему по проводу тока. Никакого эффекта это не возымело.

    После демонстрации Эрстеду пришла в голову идея установить стрелку перпендикулярно току, и он немедленно получил нетривиальный результат – стрелка отклонилась, а при смене направления тока – отклонилась в обратную сторону. Отсюда был один шаг до открытия закона Ампера, который Ампер практически немедленно и сделал. Ампер впервые ясно осознал взаимосвязь между электрическими и магнитными явлениями: ток порождает магнитное поле, которое, в свою очередь воздействует на ток. Причем направление магнитных сил ортогонально направлению токов.

    Действие магнитного поля на участок проводника с током описывается формулой:

    где, dl – длина участка, B – вектор магнитной индукции, I – сила тока на участке.

    Из данного выражения и закона Био-Савара нетрудно вывести величину для силы взаимодействия двух проводов:

    где μ0 – т.н. магнитная постоянная (связанны с выбором системы единиц), а r – расстояние между проводами.

    Практические применения силы Ампера

    Сила Ампера находит повсеместное применение в электромеханике:

    • Все электродвигатели используют данную силу для вращения ротора.
    • В звукотехнике силой Ампера управляется мембрана громкоговорителя.
    • В процессах прессовки.
    • При управлении плазмой в токомаках.

    Словом везде, где нужно превратить энергию электромагнитного поля в механическое действие.

    fizikatyt.ru

    Что такое сила Ампера? :: SYL.ru

    Знания о том, что такое сила Ампера, как она относится и чем может быть полезна для людей, необходимы для тех, кто работает с током. Как для собственной безопасности, так и для работы с различной радиоэлектроникой (при конструировании рельсетронов, что довольно популярно). Но хватит ходить вокруг, приступим к выяснению того, что такое сила Ампера, особенности этой силы и где она используется. Также можно будет прочитать потенциал использования в будущем и пользу от использования сейчас.

    Закон Ампера

    сила ампераСила Ампера является главной составляющей закона Ампера — закона о взаимодействии электрических токов. В нём говорится, что в параллельных проводниках, в которых электрические токи текут в одном направлении, возникает сила притягивания. А в тех проводниках, в которых электрические токи текут в противоположных направлениях, возникает сила отталкивания.

    Также законом Ампера называют закон, который определяет силу действия магнитного поля не небольшую часть проводника, по которой протекает ток. В данном случае она определяется как результат умножения плотности тока, который идёт по проводнику, на индукцию магнитного поля, в котором проводник находится.

    Из самого закона Ампера сделаны выводы, что сила Ампера равняется нулю, если величина угла, расположенного между током и линией магнитной индукции, тоже будет равняться нулю. Другими словами, проводник для достижения нулевого значения должен быть расположен вдоль линии магнитной индукции.

    А что же такое сила Ампера?

    применение силы ампераЭто сила, с которой магнитное поле влияет на часть проводника, по которому течёт ток. Сам проводник находится в магнитном поле. Сила Ампера прямо зависит от силы тока в проводнике и векторного произведения длины части проводника, множимого на магнитную индукцию.

    В формульном виде всё будет выглядеть так: са=ст*дчп*ми. Здесь:

    • са – сила Ампера,
    • ст – сила тока,
    • дчп – длина части проводника,
    • ми – магнитная индукция.

    История открытия

    Впервые его сформулировал Андре Ампер, который применил закон к постоянному току. Открыт он был в 1820 году. Этот закон в будущем имел далеко идущие последствия, ведь без него представить работу целого ряда электрических приборов просто невозможно.

    Правило левой руки

    направление силы ампераЭто правило помогает запомнить направление силы Ампера. Само правило звучит так: если рука занимает такое положение, что линии самой магнитной индукции внешнего поля заходят в ладонь, а пальцы с мизинца по указательный указывают направление в сторону движения тока в проводнике, то отторгнутый по углом в 90 градусов большой палец ладони и будет указывать, куда направлена сила Ампера, действующая на элемент проводника. Могут возникнуть некоторые затруднения при использовании этого правила, но только если угол между током и индукцией поля слишком маленький. Для простоты применения этого правила ладонь часто располагают так, чтобы в неё входил не вектор, а модуль магнитной индукции (как изображено на картинке).

    Сила Ампера (при использовании двух параллельных проводников)

    сила ампераПредставьте два бесконечных проводника, которые расположены на определённом расстоянии. По ним протекают токи. Если токи текут в одном направлении, то проводники притягиваются. В противоположном случае они будут отталкиваться один от одного. Поля, которые создают параллельные проводники, направлены встречно друг другу. И чтобы понять, почему они реагируют именно так, вам достаточно вспомнить о том, что одноименные полюса магнитов или одноименные заряды всегда отталкиваются. Для определения стороны направления поля, созданного проводником, следует использовать правило правого винта.

    Применение знаний о силе Ампера

    сила ампераВстретиться с областью применения знания о силе Ампера можно практически на каждом шагу цивилизации. Применение силы Ампера настолько обширно, что среднестатистическому гражданину даже сложно представить себе, что можно делать, зная закон Ампера и особенности применения силы. Так, под действием силы Ампера вращается ротор, на обмотку которого оказывает влияние магнитное поле статора, и ротор приходит в движение. Любое транспортное средство, которое использует электротягу для вращения валов (которые соединяют колеса транспорта), использует силу Ампера (это можно увидеть на трамваях, электровозах, электрических машинах и многих других интересных видах транспорта). Также именно магнитное поле влияет на механизмы, которые являются электрическими приборами, что должны открывать/закрывать что-то (двери лифта, открывающиеся ворота, электрические двери и много других). Другими словами, все устройства, что не могут работать без электричества и имеют движимые узлы, работают благодаря знанию о законе Ампера. Для примера:
    1. Любые узлы в электротехнике. Самый популярный – элементарный электродвигатель.
    2. Различные виды электротехники, которая формирует различные звуковые колебания с использованием постоянного магнита. Механизм действия таков, что на магнит действует электромагнитное поле, что создает расположенный рядом проводник с током, и изменение напряжения приводит к смене звуковой частоты.
    3. На силе Ампера построена работа электромеханических машин, в которых движение обмотки ротора происходит относительно обмотки статора.
    4. С помощью силы Ампера происходит электродинамический процесс сжатия плазмы, что нашло применение в токамаках и потенциально открывает огромные пути развития термоядерной энергии.
    5. Также с помощью электродинамического сжатия применяется электродинамический метод прессования.

    Потенциал

    Несмотря на уже сейчас существующее практическое применение, потенциал использования силы Ампера настолько огромен, что с трудом поддаётся описанию. Она может использоваться в сложных механизмах, которые призваны облегчить существование человека, автоматизировать его деятельность, а также усовершенствовать природные жизненные процессы.

    Эксперимент

    сила ампераДля того чтобы иметь возможность своими глазами увидеть действие силы Ампера, можно провести дома небольшой эксперимент. Для начала необходимо взять магнит-подкову, в котором между полюсами поместить проводник. Всё желательно воспроизвести так, как на картинке. Если замкнуть ключ, то можно увидеть, что проводник начнёт двигаться, смещаясь от начальной точки равновесия. Можно поэкспериментировать с направлениями пропускания тока и увидеть, что зависимо от направления движения меняется направление отклонения проводника. Из самого эксперимента можно вынести несколько наблюдений, которые подтверждают вышесказанное:
    • Магнитное поле действует исключительно на проводник с током.
    • На проводник с током в магнитном поле действует сила, которая является следствием их взаимодействия. Именно под воздействием этой силы проводник движется в пространстве в границах магнитного поля.
    • Характер взаимодействия прямо зависит от напряжения электрического тока и силовых линий магнитного поля.
    • Поле не действует на проводник с током, если ток в проводнике течёт параллельно направлению линий поля.

    Безопасность при работе с током

    При работе с электрическим током необходимо придерживаться нескольких простых правил техники безопасности, которые позволят вам избежать негативных последствий:

    • Работать с источниками питания не больше 12 Вольт.
    • Не работать на воспламеняемых материалах.
    • Не работать с мокрыми руками.
    • Не браться за части прибора, которые находятся под напряжением.

    www.syl.ru

    Применение действия силы Ампера в технике | Физика. Закон, формула, лекция, шпаргалка, шпора, доклад, ГДЗ, решебник, конспект, кратко

    Тема:

    Магнитостатика

    Силы Ампера используются для преобра­зования энергии электрического тока в ме­ханическую энергию проводника. Такое пре­образование применяется во многих элект­ротехнических устройствах. Рассмотрим не­которые из них.

    1. Электроизмерительные приборы магни­тоэлектрической системы.

    Рис. 6.19. Строение измерительного при­бора магнитоэлектрической системы

    Электроизмерительный прибор магнито­электрической системы состоит из посто­янного магнита и проволочной рамки, кото­рая находится между полюсами (рис. 6.19). Полюса магнита имеют специальные насад­ки, которые дают возможность получить такое магнитное поле, при котором по­ворачивание рамки в нем не приводит к изменению угла между магнитной индук­цией и проводниками рамки. Этот угол ос­тается всегда равным 90°. С рамкой соеди­нены две спиральные пружины, которые подводят электрический ток к рамке. При прохождении электрического тока по рамке появляется сила Ампера, пропорциональная силе тока в рамке. Поворачивание рамки приводит к деформации пружин и возник­новению силы упругости. Рамка прекратит поворачиваться тогда, когда момент силы Ампера станет равным моменту силы упру­гости.

    Стрелка, связанная с рамкой, показывает угол ее поворота, при котором моменты урав­новешиваются. Этот угол пропорциональ­ный силе тока в рамке.

    2. Электрический двигатель постоянного тока. Материал с сайта http://worldofschool.ru

    Рис. 6.20. Строение двигателя постоян­ного тока

    Электрический двигатель предназначен для непрерывного превращения энергии элект­рического тока в механическую. Принцип его действия такой же, как и электроизме­рительного прибора, описанного выше. Но в его конструкции отсутствует пружина. Ток к рамке подводится через специальные скользящие контакты — щетки (рис. 6.20). При замыкании цепи рамка начинает взаи­модействовать с магнитным полем постоян­ного магнита или электромагнита и повора­чивается так, что ее плоскость становится перпендикулярной магнитной индукции. Не­прерывность вращения рамки обеспечива­ется применением специального устройст­ва — коллектора, которое периодически из­меняет направление тока в рамке.

    В современных электродвигателях постоян­ного тока подвижная часть (ротор) состоит из многих рамок, размещенных в пазах ци­линдра из специальной электротехнической стали. Роль коллектора в них часто вы­полняет специальное электронное устройст­во.

    На этой странице материал по темам:
    • Реферат на тему силаа ампера и его применение в техники

    • Приминение силы ампера в измерительных приборах

    • Физика электромагнитное поле вкрадсе

    • Закон ампера, его применение в двигателях и электроизмерительных приборах.

    • Применение закона ампера в технике

    worldofschool.ru

    Закон Ампера: формула, определение, применение

    Закон АмпераЗакон Ампера — один из важнейших и полезнейших законов в электротехнике, без которого немыслим научно-технический прогресс. Этот закон был впервые сформулирован в 1820 году Андре Мари Ампером. Из него следует, что два расположенные параллельно проводника, по которым проходит электрический ток, притягиваются, если направления токов совпадают, а если ток течёт в противоположных направлениях, то проводники отталкиваются. Взаимодействие здесь происходит посредством магнитного поля, которое перманентно возникает при движении заряженных частиц. Математически закон Ампера в простой форме выглядит так:

    F = BILsinα,

    где F — это сила Ампера (сила, с которой проводники отталкиваются или притягиваются), где B — магнитная индукция; I — сила тока; L — длина проводника; α — угол между направлением тока и направлением магнитной индукции.

    Интересное видео с уроком о силе Ампера:

    Любые узлы в электротехнике, где под действием электромагнитного поля происходит движение каких-либо элементов, используют закон Ампера. Самый широко распространённый и используемый чуть-ли не во всех технических конструкциях агрегат, в основе своей работы использующий закон Ампера — это электродвигатель, либо, что конструктивно почти то же самое, генератор. Закон Ампера 1

    Закон Ампера 3

    Именно под действием силы Ампера происходит вращение ротора, поскольку на его обмотку влияет магнитное поле статора, приводя в движение. Любые транспортные средства на электротяге для приведения во вращение валов, на которых находятся колёса, используют силу Ампера (трамваи, электрокары, электропоезда и др). Также магнитное поле приводит в движение механизмы электрозапоров (электродвери, раздвигающиеся ворота, двери лифта). Другими словами, любые устройства, которые работают на электричестве и имеющие вращающиеся узлы основаны на эксплуатации закона Ампера. Также он находит применение во многих других видах электротехники, например, в громкоговорителях.

    В громкоговорителе или динамике для возбуждения мембраны, которая формирует звуковые колебания используется постоянный магнит. На него под действием электромагнитного поля, создаваемого расположенным рядом проводником с током, действует сила Ампера, которая изменяется в соответствии с нужной звуковой частотой.

    Ещё одно видео о законе Ампера смотрите ниже:

    pue8.ru

    14. Сила ампера. Правило левой руки. Применение силы Ампера.

    сила Ампера. Сила , с которой магнитное поле действует на элемент проводника с током, находящегося в магнитном поле, прямо пропорциональна силе тока в проводнике и векторному произведению элемента длины проводника на магнитную индукцию

    ЛЕВОЙ РУКИ ПРАВИЛО– если вектор магнитной индукции входит в левую ладонь перпендикулярно, 4 пальца направлены по току то оставленный на 90 градусов большой палец , большой палец укажит направление силы Ампера.

    15. Гипотеза Ампера. Магнитные свойства вещества. Ферромагнетики.

    Ферромагнетики — вещества (как правило, в твёрдом кристаллическом или аморфном состоянии), в которых ниже определённой критической температуры (точки Кюри) устанавливается дальний ферромагнитный порядок магнитных моментов атомов или ионов (в неметаллических кристаллах) или моментов коллективизированных электронов (в металлических кристаллах).

    Гипотеза Ампера – о происхождении магнитных свойств: каждый атом имеет свое собственное магнитное поле, т.е. движение электронов по орбитам направленное и его и его можно применить за круговой ток.

    16. Электромагнитная индукция. Опыты Фарадея. Закон электромагнитной индукции. Правило Ленца.

    Электромагнитная индукция— явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него.

    Закон электромагнитной индукции— Индукционный ток, возникающий в замкнутом проводящем контуре, имеет такое направление, что создаваемое им магнитное поле противодействует тому изменению магнитного потока, которым был вызван данный ток.

    Правило Ленца – индукционный ток в замкнутой катушки, имеет такое направление, что созданный им магнитный поток, припятствует изменению магнитного поля, вызвало данный ток.

    Опыт Фарадея.Индукционный ток появляется при относительном движении катушки и магнита

    17. Основные положения теории Максвелла. Вихревое электрическое поле. Токи Фуко

    Вихревые токи или токи Фуко́ (в честь Ж. Б. Л. Фуко)— вихревые индукционные токи, возникающие в проводниках при изменении пронизывающего их магнитного потока

    Токи Фуко(в честь Фуко, Жан Бернар Леон) — это вихревые замкнутые электрические токи в массивном проводнике, которые возникают при изменении пронизывающего его магнитного потока. Вихревые токи являются индукционными токами и образуются в проводящем теле либо вследствие изменения во времени магнитного поля, в котором находится тело, либо вследствие движения тела в магнитном поле, приводящего к изменению магнитного потока через тело или какую-либо его часть. Величина токов Фуко тем больше, чем быстрее меняется магнитный поток.

    Идеи Максвелла:

    1.Переменное магнитное поле порождает в пространстве вихревое переменное магнитное поле

    2. Переменное магнитное поле порождает в пространстве переменное вихревое электрическое поле

    Вехривое электрическое поле – 1. Создается переменным магнитным полем; 2. Силовые линии замкнуты, нет ни начала ни конца.; 3. Работа на замкнутом пути равна ЭДС и не равна 0

    18. Явление самоиндукции. Индуктивность. Энергия магнитного поля салиноида.

    Самоиндукция – порождение индукционного тока в том же самом проводнике, по которому течет переменный ток

    Индукти́вность (или коэффициент самоиндукции) — коэффициент пропорциональности между электрическим током, текущим в каком-либо замкнутом контуре, и магнитным потоком, создаваемым этим током через поверхность[1], краем которой является этот контур.

    Солено́ид— разновидность электромагнитов. Соленоид — это односложная катушка цилиндрической формы, витки которой намотаны вплотную, а длина значительно больше диаметра. Характеризуется значительным соотношением длины намотки к диаметру оправки, что позволяет создать внутри катушки относительно равномерное магнитное поле.

    studfile.net

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *