Закрыть

Как измерить мощность тока: Как измерить силу тока мультиметром и не получить электротравму?

Содержание

Электротехника

Электротехника
  

Ломоносов В. Ю. и др. Электротехника/В. Ю. Ломоносов, К. М. Поливанов, О. П. Михайлов. — М.: Энергоатомиздат, 1990. — 400 с.

Приводятся основные понятия об элементах электрической цепи, методах расчета простых цепей постоянного и переменного тока. Дается общее описание физических процессов, происходящих в электрическом и магнитном полях. Излагается принцип действия полупроводниковых приборов, электрических машин и аппаратов, электроизмерительных приборов. Приводятся сведения о применении электронных вычислительных устройств в электротехнике.

Для читателей, интересующихся основами электротехники и электроники.



Оглавление

ПРЕДИСЛОВИЕ
ИЗ ПРЕДИСЛОВИЯ КО ВТОРОМУ ИЗДАНИЮ
ГЛАВА ПЕРВАЯ. ТОК И НАПРЯЖЕНИЕ
1.2. ПРОСТЕЙШАЯ ЭЛЕКТРОТЕХНИЧЕСКАЯ УСТАНОВКА
1.3. ПАРАЛЛЕЛЬНОЕ СОЕДИНЕНИЕ
1.4. ПОСЛЕДОВАТЕЛЬНОЕ СОЕДИНЕНИЕ
1.5. ВКЛЮЧЕНИЕ АМПЕРМЕТРА И ВОЛЬТМЕТРА
1.6. МОЩНОСТЬ
1.7. СОПРОТИВЛЕНИЕ ЦЕПИ И ЗАКОН ОМА
1.8. СОПРОТИВЛЕНИЕ ПРОВОДНИКОВ
1.9. ПОЧЕМУ ЦЕПИ, ПОДЧИНЯЮЩИЕСЯ ЗАКОНУ ОМА, НАЗЫВАЮТ ЛИНЕЙНЫМИ
1.10. НЕЛИНЕЙНЫЕ ЦЕПИ
1.11. ЗАВИСИМОСТЬ СОПРОТИВЛЕНИЯ ОТ ТЕМПЕРАТУРЫ И ДАВЛЕНИЯ
1.12. ТЕПЛОВОЕ ДЕЙСТВИЕ ТОКА И ЗАКОН ДЖОУЛЯ — ЛЕНЦА
1.13. НАПРАВЛЕНИЕ ТОКА И ЕГО ХИМИЧЕСКОЕ ДЕЙСТВИЕ
1.14. НАПРАВЛЕНИЕ ТОКА И ВЫПРЯМЛЯЮЩИЕ УСТРОЙСТВА
1.15. АККУМУЛЯТОРЫ И ГАЛЬВАНИЧЕСКИЕ ЭЛЕМЕНТЫ
1.16. ЭЛЕКТРИЧЕСКАЯ ПРОВОДИМОСТЬ
1.17. ТОК В СЛОЖНЫХ ЦЕПЯХ
1.18. ЭЛЕКТРОДВИЖУЩАЯ СИЛА И ПОТЕРЯ НАПРЯЖЕНИЯ
1.19. ЗАЗЕМЛЕНИЕ И ПОТЕНЦИАЛ
1.20. ЗАКОНЫ КИРХГОФА
ГЛАВА ВТОРАЯ. МАГНИТЫ. МАГНИТНОЕ ПОЛЕ. МАГНИТНОЕ ДЕЙСТВИЕ ТОКА
2.1. МАГНИТЫ И МАГНИТНОЕ ПОЛЕ
2.2. МАГНИТНОЕ ДЕЙСТВИЕ ТОКА
2.3. МАГНИТНОЕ ПОЛЕ ДЕЙСТВУЕТ НА ПРОВОДНИК С ТОКОМ
2. 4. МАГНИТНАЯ ИНДУКЦИЯ
2.6. НАГЛЯДНОЕ ИЗОБРАЖЕНИЕ МАГНИТНЫХ ПОЛЕЙ
2.7. ВЗАИМОДЕЙСТВИЕ ТОКОВ
2.8. ИЗМЕНЕНИЕ МАГНИТНОГО ПОЛЯ СОЗДАЕТ ЭЛЕКТРОДВИЖУЩУЮ СИЛУ
2.9. ПРАВИЛО ЛЕНЦА
2.10. МАГНИТНЫЙ ПОТОК
2.11. ЗАКОН НАВЕДЕНИЯ ЭЛЕКТРОДВИЖУЩЕЙ СИЛЫ
2.12. НАВЕДЕНИЕ ЭДС В ПРЯМОЛИНЕЙНОМ ПРОВОДНИКЕ, ДВИЖУЩЕМСЯ В ПОЛЕ
2.13. ВЗАИМНАЯ ИНДУКДИЯ
2.14. САМОИНДУКЦИЯ
2.15. ВЛИЯНИЕ САМОИНДУКЦИИ НА ПЕРЕХОДНЫЕ ПРОЦЕССЫ
2.16. ЭНЕРГИЯ МАГНИТНОГО ПОЛЯ В ЭЛЕКТРИЧЕСКИХ ЦЕПЯХ
ГЛАВА ТРЕТЬЯ. ЖЕЛЕЗО В МАГНИТНОМ ПОЛЕ. МАГНИТНЫЕ ЦЕПИ. ПОСТОЯННЫЕ МАГНИТЫ
3.1. ЗАКОН ПОЛНОГО ТОКА ДЛЯ МАГНИТНОЙ ИНДУКЦИИ ПРИ ОТСУТСТВИИ ЖЕЛЕЗА
3.2. НАМАГНИЧИВАНИЕ ЖЕЛЕЗНОГО КОЛЬЦА
3.3. ОТНОСИТЕЛЬНАЯ МАГНИТНАЯ ПРОНИЦАЕМОСТЬ
3.4. РАСЧЕТ ПОЛЯ В КОЛЬЦЕВОЙ КАТУШКЕ СО СПЛОШНЫМ СЕРДЕЧНИКОМ ПО МАГНИТНЫМ ХАРАКТЕРИСТИКАМ
3.5. ЗАКОН ПОЛНОГО ТОКА ДЛЯ ОДНОРОДНОГО ПОЛЯ В ФЕРРОМАГНИТНОЙ СРЕДЕ
3.6. ЗАКОН ПОЛНОГО ТОКА ДЛЯ ПОЛЯ В НЕОДНОРОДНОЙ СРЕДЕ
3.7. СТАЛЬНОЕ КОЛЬЦО С РАЗРЕЗОМ
3.8. НАПРЯЖЕННОСТЬ МАГНИТНОГО ПОЛЯ, РАСЧЕТ МАГНИТНОЙ
3. 9. НАМАГНИЧЕННОСТЬ
ГЛАВА ЧЕТВЕРТАЯ. ЭЛЕКТРИЧЕСКИЕ ЗАРЯДЫ И ЭЛЕКТРИЧЕСКОЕ ПОЛЕ
4.1. ЭЛЕКТРИЧЕСКИЕ ЗАРЯДЫ
4.2. ИЗОЛЯТОРЫ И ПРОВОДНИКИ
4.3. ПРОСТЕЙШИЕ ОПЫТЫ С НЕПОДВИЖНЫМИ ЭЛЕКТРИЧЕСКИМИ ЗАРЯДАМИ (ЭЛЕКТРОСТАТИКА)
4.4. ЭЛЕКТРИЧЕСКОЕ ПОЛЕ
4.5. НАПРЯЖЕНИЕ (РАЗНОСТЬ ПОТЕНЦИАЛОВ)
4.6. ЭЛЕКТРИЧЕСКАЯ ЕМКОСТЬ. КОНДЕНСАТОРЫ
4.7. КОНДЕНСАТОР В ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
4.8. ДВИЖЕНИЕ ЭЛЕКТРИЧЕСКИХ ЗАРЯДОВ В МАГНИТНОМ ПОЛЕ
ГЛАВА ПЯТАЯ. ПЕРЕМЕННЫЙ ТОК
5.1. ЗАЧЕМ НУЖЕН ПЕРЕМЕННЫЙ ТОК?
5.2. ПОЛУЧЕНИЕ ПЕРЕМЕННОГО ТОКА
5.3. ГЕНЕРАТОР ПЕРЕМЕННОГО ТОКА
5.4. СИНУСОИДА
5.5. ЗАКОН ОМА ДЛЯ ЦЕПИ ПЕРЕМЕННОГО ТОКА
ГЛАВА ШЕСТАЯ. ЦЕПИ ПЕРЕМЕННОГО ТОКА
6.1. КАТУШКА ИНДУКТИВНОСТИ В ЦЕПИ ПЕРЕМЕННОГО ТОКА
6.2. ФАЗОВЫЙ СДВИГ В ИНДУКТИВНОЙ ЦЕПИ
6.3. КОЭФФИЦИЕНТ МОЩНОСТИ
6.4. КОНДЕНСАТОВ В ЦЕПИ ПЕРЕМЕННОГО ТОКА
6.5. КОМПЕНСАЦИЯ СДВИГА ФАЗ
6.6. РАСЧЕТ ПРОСТЕЙШИХ ЦЕПЕЙ ПЕРЕМЕННОГО ТОКА
6.7. РЕЗОНАНС ТОКОВ
6.8. РЕЗОНАНС НАПРЯЖЕНИЙ
ГЛАВА СЕДЬМАЯ. ТРЕХФАЗНЫЙ ТОК
7.1. ТРЕХФАЗНАЯ СИСТЕМА
7.2. РАЗМЕТКА КОНЦОВ ТРЕХФАЗНОЙ СИСТЕМЫ
7.3. СЛОЖЕНИЕ ФАЗНЫХ ЭДС
7.4. СОЕДИНЕНИЕ В ЗВЕЗДУ
7.5. СОЕДИНЕНИЕ ТРЕУГОЛЬНИКОМ
7.6. МОЩНОСТЬ ТРЕХФАЗНОГО ТОКА
7.7. ПОТЕРИ МОЩНОСТИ В ТРЕХФАЗНОЙ ЛИНИИ
ГЛАВА ВОСЬМАЯ. ЭЛЕКТРОТЕХНИЧЕСКИЕ РАСЧЕТЫ НА МИКРОКАЛЬКУЛЯТОРАХ
8.1. КАК РАБОТАЕТ МИКРОКАЛЬКУЛЯТОР
8.2. ПРОСТЕЙШИЕ ЭЛЕКТРОТЕХНИЧЕСКИЕ РАСЧЕТЫ
8.3. О ТОЧНОСТИ ВЫЧИСЛЕНИЙ
8.4. ПРОГРАММИРУЕМЫЕ МИКРОКАЛЬКУЛЯТОРЫ
8.5. РАСЧЕТЫ НА ПРОГРАММИРУЕМЫХ МИКРОКАЛЬКУЛЯТОРАХ
ГЛАВА ДЕВЯТАЯ. ПОЛУПРОВОДНИКОВЫЕ ПРИБОРЫ
9.1. ЭЛЕКТРИЧЕСКИЙ ТОК В ПОЛУПРОВОДНИКАХ
9.2. ПОЛУПРОВОДНИКОВЫЕ ДИОДЫ. ВЫПРЯМИТЕЛИ
9.3. ТРАНЗИСТОРЫ. УСИЛИТЕЛИ ЭЕКТРИЧЕСКИХ СИГНАЛОВ
9.4. ОБРАТНАЯ СВЯЗЬ В УСИЛИТЕЛЯХ
9.5. ГЕНЕРАТОРУ СИНУСОИДАЛЬНЫХ КОЛЕБАНИЙ
9.6. ТИРИСТОРЫ, УПРАВЛЯЕМЫЕ ВЫПРЯМИТЕЛИ
9.7. КЛЮЧИ
9.8. НЕИЗБЕЖНОСТЬ МИКРОЭЛЕКТРОНИКИ
9.9. ОПЕРАЦИОННЫЕ УСИЛИТЕЛИ
ГЛАВА ДЕСЯТАЯ. МАШИНЫ ПОСТОЯННОГО ТОКА
10.1. НАЗНАЧЕНИЕ ЭЛЕКТРИЧЕСКИХ МАШИН
10. 2. МАГНИТНАЯ СИСТЕМА МАШИН ПОСТОЯННОГО ТОМА
10.3. КОЛЛЕКТОР
10.4. ЯКОРНЫЕ ОБМОТКИ
10.5. РАБОЧИЙ РЕЖИМ МАШИН ПОСТОЯННОГО ТОКА
10.6. СПОСОБЫ ВОЗБУЖДЕНИЯ МАШИН
10.7. ОБРАТИМОСТЬ МАШИН ПОСТОЯННОГО ТОКА. РАБОТА ДВИГАТЕЛЯ
10.8. ДВИГАТЕЛИ С ПАРАЛЛЕЛЬНЫМ И ПОСЛЕДОВАТЕЛЬНЫМ ВОЗБУЖДЕНИЕМ
ГЛАВА ОДИННАДЦАТАЯ. ТРАНСФОРМАТОРЫ
11.1. УСТРОЙСТВО И ПРИНЦИП ДЕЙСТВИЯ ТРАНСФОРМАТОРА
11.2. РАБОТА ТРАНСФОРМАТОРА
11.3. ТРАНСФОРМАТОР ТРЕХФАЗНОГО ТОКА
11.4. ПОТЕРИ В ТРАНСФОРМАТОРЕ
11.1. АВТОТРАНСФОРМАТОРЫ
ГЛАВА ДВЕНАДЦАТАЯ. МАШИНЫ ПЕРЕМЕННОГО ТОКА
12.1. ГЕНЕРАТОР ПЕРЕМЕННОГО ТОКА
12.2. СИНХРОННЫЙ ДВИГАТЕЛЬ ПЕРЕМЕННОГО ТОКА
12.3. ТРЕХФАЗНЫЕ МАШИНЫ ПЕРЕМЕННОГО ТОКА
12.4. РАБОТА СИНХРОННЫХ МАШИН
12.5. ПАРАЛЛЕЛЬНАЯ РАБОТА СИНХРОННЫХ ГЕНЕРАТОРОВ
12.6. ВРАЩАЮЩЕЕСЯ МАГНИТНОЕ ПОЛЕ
12.7. АСИНХРОННЫЕ ДВИГАТЕЛИ
12.8. КПД ЭЛЕКТРИЧЕСКИХ МАШИН
ГЛАВА ТРИНАДЦАТАЯ. ЭЛЕКТРИЧЕСКИЕ АППАРАТЫ
13.1. ВЫКЛЮЧАТЕЛИ, КНОПКИ И КЛАВИШИ
13.2. РАБОТА ЭЛЕКТРИЧЕСКИХ КОНТАКТОВ
13. 3. ЭЛЕКТРОМАГНИТЫ
13.4. КОНТАКТОРЫ
13.5. ЭЛЕКТРОМАГНИТНЫЕ РЕЛЕ
13.6. ПРЕДОХРАНИТЕЛИ, РЕЛЕ ТОКА И ТЕПЛОВЫЕ РЕЛЕ
13.7. ПУТЕВЫЕ ВЫКЛЮЧАТЕЛИ
ГЛАВА ЧЕТЫРНАДЦАТАЯ. УПРАВЛЕНИЕ ЭЛЕКТРИЧЕСКИМИ МАШИНАМИ
14.1. КАК СОСТАВЛЯЮТСЯ ЭЛЕКТРИЧЕСКИЕ СХЕМЫ
14.2. ДВА ТИПА ЭЛЕКТРИЧЕСКИХ СХЕМ
14.3. КАК ВКЛЮЧИТЬ ЭЛЕКТРИЧЕСКИЙ ДВИГАТЕЛЬ
14.4. СХЕМЫ ТОРМОЖЕНИЯ
14.5. ЗАЩИТА ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ
14.6. КАК ОПИСАТЬ ЭЛЕКТРИЧЕСКУЮ СХЕМУ
ГЛАВА ПЯТНАДЦАТАЯ. ИЗМЕРЕНИЯ В ЭЛЕКТРОТЕХНИКЕ
15.1. РОЛЬ ИЗМЕРЕНИЙ В ЭЛЕКТРОТЕХНИКЕ
15.2. ПРИБОРЫ ДЛЯ ИЗМЕРЕНИЯ ПОСТОЯННОГО ТОКА
15.3. ШУНТЫ И ДОБАВОЧНЫЕ СОПРОТИВЛЕНИЯ
15.4. ИЗМЕРЕНИЕ ОЧЕНЬ МАЛЫХ ТОКОВ. ГАЛЬВАНОМЕТРЫ
15.5. ПРИБОРЫ ПЕРЕМЕННОГО ТОКА
15.6. КАК ИЗМЕРИТЬ МОЩНОСТЬ ЭЛЕКТРИЧЕСКОГО ТОКА
15.7. ЭЛЕКТРИЧЕСКИЙ СЧЕТЧИК ПЕРЕМЕННОГО ТОКА
15.8. ИЗМЕРЕНИЕ МОЩНОСТИ И ЭНЕРГИИ В ЦЕПЯХ ТРЕХФАЗНОГО ТОКА
15.9. САМОПИСЦЫ И ОСЦИЛЛОГРАФЫ
15.10. ЦИФРОВЫЕ ПРИБОРЫ
15.11. ИЗМЕРЕНИЕ СОПРОТИВЛЕНИЯ ЦЕПИ

§102.

Измерение мощности и электрической энергии

Измерение мощности. В цепях постоянного тока мощность измеряют электро- или ферродинамическим ваттметром. Мощность может быть также подсчитана перемножением значений тока и напряжения, измеренных амперметром и вольтметром.

В цепях однофазного тока измерение мощности может быть осуществлено электродинамическим, ферродинамическим или индукционным ваттметром. Ваттметр 4 (рис. 336) имеет две катушки: токовую 2, которая включается в цепь последовательно, и напряжения 3, которая включается в цепь параллельно.

Ваттметр является прибором, требующим при включении соблюдения правильной полярности, поэтому его генераторные зажимы (зажимы, к которым присоединяют проводники, идущие со стороны источника 1) обозначают звездочками.

Рис. 336. Схема для измерения мощности

Для расширения пределов измерения ваттметров их токовые катушки включают в цепь при помощи шунтов или измерительных трансформаторов тока, а катушки напряжения — через добавочные резисторы или измерительные трансформаторы напряжения.

Измерение электрической энергии. Способ измерения. Для учета электрической энергии, получаемой потребителями или отдаваемой источниками тока, применяют счетчики электрической энергии. Счетчик электрической энергии по принципу своего действия аналогичен ваттметру. Однако в отличие от ваттметров вместо спиральной пружины, создающей противодействующий момент, в счетчиках предусматривают устройство, подобное электромагнитному демпферу, создающее тормозящее усилие, пропорциональное частоте вращения подвижной системы. Поэтому при включении прибора в электрическую цепь возникающий вращающий момент будет вызывать не отклонение подвижной системы на некоторый угол, а вращение ее с определенной частотой.

Число оборотов подвижной части прибора будет пропорционально произведению мощности электрического тока на время, в течение которого он действует, т. е. количеству электрической энергии, проходящей через прибор. Число оборотов счетчика фиксируется счетным механизмом. Передаточное число этого механизма выбирают так, чтобы по показаниям счетчика можно было отсчитывать не обороты, а непосредственно электрическую энергию в киловатт-часах.

Наибольшее распространение получили ферродинамические и индукционные счетчики; первые применяют в цепях постоянного тока, вторые — в цепях переменного тока. Счетчики электрической энергии включают в электрические цепи постоянного и переменного тока так же, как и ваттметры.

Ферродинамический счетчик (рис. 337) устанавливают на э. п. с. постоянного тока. Он имеет две катушки: неподвижную 4 и подвижную 6. Неподвижная токовая катушка 4 разделена на две части, которые охватывают ферромагнитный сердечник 5 (обычно из пермаллоя). Последний позволяет создать в приборе сильное магнитное поле и значительный вращающий момент, обеспечивающий нормальную работу счетчика в условиях тряски и вибраций. Применение пермаллоя способствует уменьшению погрешности счетного механизма 2 от гистерезиса магнитной системы (он имеет весьма узкую петлю гистерезиса).

Чтобы уменьшить влияние внешних магнитных полей на показания счетчика, магнитные потоки отдельных частей токовой катушки имеют взаимно противоположное направление (астатическая система). При этом внешнее поле, ослабляя поток одной части, соответственно усиливает поток другой части и оказывает в целом небольшое влияние на результирующий вращающий момент, создаваемый прибором. Подвижная катушка 6 счетчика (катушка напряжения) расположена на якоре, выполненном в виде диска из изоляционного материала или в виде алюминиевой чаши. Катушка состоит из отдельных секций, соединенных с пластинами коллектора 7 (эти соединения на рис. 337 не показаны), по которому скользят щетки из тонких серебряных пластин.

Ферродинамический счетчик работает принципиально как двигатель постоянного тока, обмотка якоря которого подключена параллельно, а обмотка возбуждения — последовательно с потребителем электроэнергии. Якорь вращается в воздушном зазоре между полюсами сердечника. Тормозной момент создается в результате взаимодействия потока постоянного магнита 1 с вихревыми токами, возникающими в алюминиевом диске 3 при его вращении.

Для компенсации влияния момента трения и уменьшения благодаря этому погрешности прибора в ферродинамических счетчиках устанавливают компенсационную катушку или в магнитном поле неподвижной (токовой) катушки помещают лепесток из пермаллоя, который имеет высокую магнитную проницаемость при малой напряженности поля. При небольших нагрузках этот лепесток усиливает магнитный поток токовой катушки, что приводит к увеличению вращающего момента и компенсации трения. При увеличении нагрузки индукция магнитного поля катушки увеличивается, лепесток насыщается и его компенсирующее действие перестает возрастать.

При работе счетчика на э. п. с. возможны сильные толчки и удары, при которых щетки могут отскакивать от коллекторных пластин. При этом под щетками будет возникать искрение. Для его предотвращения между щетками включают конденсатор С и резистор R1. Компенсация температурной погрешности осуществляется с помощью термистора Rт (полупроводникового прибора, сопротивление которого зависит от температуры). Он включается совместно с добавочным резистором R2 параллельно подвижной катушке. Чтобы уменьшить влияние тряски и вибраций на работу счетчиков, их устанавливают на э. п. с. на резинометаллических амортизаторах.

Индукционный счетчик имеет два электромагнита (рис. 338,а), между которыми расположен алюминиевый диск 7. Вращающий момент в приборе создается в результате взаимодействия переменных магнитных потоков Ф1 и Ф2, созданных катушками электромагнитов, с вихревыми токами Iв1 и Iв2, индуцируемыми ими в алюминиевом диске (так же, как и в обычном индукционном измерительном механизме, см. § 99).

В индукционном счетчике вращающий момент М должен быть пропорционален мощности P=UIcos?. Для этого катушку 6 одного из электромагнитов (токовую) включают последовательно с нагрузкой 5, а катушку 2 другого (катушку напряжения) — параллельно нагрузке. В этом случае магнитный поток Ф1 будет пропорционален току I в цепи нагрузки, а поток Ф2 — напряжению U, приложенному к нагрузке. Для обеспечения требуемого угла сдвига фаз ? между потоками Ф1 и Ф2 (чтобы sin? = cos?) в электромагните катушки напряжения предусмотрен магнитный шунт 3, через который часть потока Ф2 замыкается

Рис. 337. Ферродинамический счетчик электрической энергии

Рис. 338. Индукционный счетчик электрической энергии

помимо диска 7. Угол сдвига фаз между потоками Ф1 и Ф2 точно регулируется изменением положения металлического экрана 1, расположенного на пути потока, ответвляющегося через магнитный шунт 3.

Тормозной момент создается так же, как в ферродинамическом счетчике. Компенсация момента трения осуществляется путем создания небольшой несимметрии в магнитной цепи одного из электромагнитов с помощью стального винта.

Для предотвращения вращения якоря при отсутствии нагрузки под действием усилия, созданного устройством, компенсирующим трение, на оси счетчика укрепляется стальной тормозной крючок. Этот крючок притягивается к тормозному магниту 4, благодаря чему предотвращается возможность вращения подвижной системы без нагрузки.

При работе же счетчика под нагрузкой тормозной крючок практически не влияет на его показания.

Чтобы диск счетчика вращался в требуемом направлении, необходимо соблюдать определенный порядок подключения проводов к его зажимам. Нагрузочные зажимы прибора, к которым подключают провода, идущие от потребителя, обозначают буквами Я (рис. 338,б), генераторные зажимы, к которым подключают провода от источника тока или от сети переменного тока,— буквами Г.

Как измерить ток мультиметром » Electronics Notes

Мультиметр обеспечивает один из самых простых способов измерения переменного и постоянного тока (AC & DC). Мы предлагаем некоторые из ключевых руководящих принципов. . .


Учебное пособие по мультиметру Включает:
Основы работы с измерительным прибором Аналоговый мультиметр Как работает аналоговый мультиметр Цифровой мультиметр цифровой мультиметр Как работает цифровой мультиметр Точность и разрешение цифрового мультиметра Как купить лучший цифровой мультиметр Как пользоваться мультиметром Измерение напряжения Текущие измерения Измерения сопротивления Проверка диодов и транзисторов Поиск неисправностей транзисторных цепей


Часто бывает необходимо знать, как измерить силу тока с помощью мультиметра. Измерения тока выполнить легко, но они выполняются несколько иначе, чем измерения напряжения и другие измерения.

Однако часто необходимо проводить измерения тока, чтобы выяснить, правильно ли работает цепь, или обнаружить другие факты, связанные с ее потреблением тока.

… как цифровые, так и аналоговые мультиметры могут очень легко измерять ток….

Ток является одним из основных электрических/электронных параметров, поэтому часто необходимо измерить ток, протекающий в цепи, чтобы проверить ее работу.

Измерения тока можно выполнять с помощью различных контрольно-измерительных приборов, но наиболее широко используемым оборудованием для измерения тока является цифровой мультиметр.

Эти элементы испытательного оборудования широко доступны и по очень разумным ценам — они также, вероятно, будут доступны в любой мастерской мотыги или профессиональной лаборатории электроники.

Измерение тока: основы

Измерения тока выполняются иначе, чем измерения напряжения и другие измерения. Ток состоит из потока электронов вокруг цепи, и необходимо иметь возможность контролировать общий поток электронов.

Очень простая схема показана ниже. В нем есть батарейка, лампочка, которую можно использовать как индикатор, и резистор. Чтобы изменить уровень тока, протекающего в цепи, можно изменить сопротивление, а количество протекающего тока можно измерить по яркости лампочки.

Простая цепь для измерения тока

При использовании мультиметра для измерения тока единственный способ определить уровень протекающего тока — это разомкнуть цепь, чтобы ток прошел через измеритель.

Хотя иногда это может быть сложно, это лучший вариант. Типичное измерение тока можно выполнить, как показано ниже.

Из этого видно, что цепь, в которой протекает ток, приходится разорвать и в цепь вставить мультиметр.

В некоторых цепях, где часто требуется измерение тока, могут быть добавлены клеммы с перемычкой для облегчения измерения тока.

Как измерить ток с помощью мультиметра

Чтобы мультиметр не влиял на работу цепи при измерении тока, сопротивление мультиметра должно быть как можно меньше.

Для измерения тока около ампера сопротивление мультиметра должно быть намного меньше ома. Например, если измеритель имеет сопротивление в один ом и по нему течет ток в один ампер, то на нем возникнет напряжение в один вольт. Для большинства измерений это было бы неприемлемо высоким.

Поэтому сопротивления счетчиков, используемых для измерения тока, обычно очень малы.

Как измерить ток аналоговым мультиметром

Использовать аналоговый счетчик для измерения электрического тока достаточно просто. Есть несколько незначительных отличий в способах проведения текущих измерений, но используются те же основные принципы.

… аналоговые мультиметры также могут легко и точно измерять ток….

При использовании аналогового мультиметра можно выполнить ряд простых шагов:

  1. Вставьте датчики в правильные разъемы — это необходимо, поскольку может использоваться несколько различных разъемов. Убедитесь, что вы выбрали правильные соединения, так как могут быть отдельные соединения для диапазонов очень низкого или очень сильного тока.
  2. Установите переключатель на правильный тип измерения (т. е. для измерения тока) и диапазон для выполнения измерения. При выборе диапазона убедитесь, что максимум для конкретного выбранного диапазона выше ожидаемого. При необходимости диапазон мультиметра можно уменьшить позже. Однако выбор слишком большого диапазона предотвращает перегрузку измерителя и любое возможное повреждение движения самого измерителя.
  3. При снятии показаний оптимизируйте диапазон для получения наилучших показаний. Если возможно, отрегулируйте его так, чтобы можно было получить максимальное отклонение расходомера. Таким образом, будет получено наиболее точное чтение.
  4. После завершения считывания рекомендуется поместить щупы в гнезда для измерения напряжения и повернуть диапазон в положение максимального напряжения. Таким образом, если счетчик случайно подключен без учета используемого диапазона, вероятность повреждения счетчика мала. Это может быть неправдой, если он остался установленным для показаний тока, а счетчик случайно подключен к точке высокого напряжения!

Как измерить ток цифровым мультиметром

Для измерения тока цифровым мультиметром можно выполнить несколько простых шагов:

  1. Включить счетчик
  2. Вставьте щупы в правильные разъемы — во многих счетчиках есть несколько разных разъемов для щупов. Часто один помечен как общий, в который обычно помещается черный зонд. Другой щуп должен быть вставлен в правильное гнездо для выполнения измерения тока. Иногда имеется специальное соединение для измерения тока, а иногда отдельное соединение для измерения слабого или сильного тока. Выберите правильный вариант для текущего измерения.
  3. Установите главный переключатель на переключателе измерителя на правильный тип измерения (т. е. ток) и диапазон для измерения, которое должно быть выполнено. При выборе диапазона убедитесь, что максимальный диапазон превышает ожидаемое значение. При необходимости диапазон цифрового мультиметра можно уменьшить. Однако выбор слишком высокого диапазона предотвращает перегрузку измерителя.
  4. При измерении тока оптимизируйте диапазон для получения наилучших показаний. Если возможно, разрешите всем старшим цифрам не читать нуль, и таким образом можно будет прочитать наибольшее количество значащих цифр.
  5. После завершения считывания рекомендуется поместить щупы в разъемы для измерения напряжения и установить диапазон на максимальное напряжение. Таким образом, если счетчик случайно подключен без учета используемого диапазона, вероятность повреждения счетчика мала. Это может быть неправдой, если он остался установленным для показаний тока, а счетчик случайно подключен к точке высокого напряжения!

Следуя этим шагам, можно очень легко измерить ток с помощью любого цифрового мультиметра.

Альтернативные методы измерения тока

Наиболее очевидный способ измерения тока мультиметром — это разорвать цепь и запустить измеритель, находящийся внутри цепи. Однако это не единственный метод, который можно использовать.

Можно реализовать несколько методов, не требующих разрыва цепи и последовательного включения счетчика.

Эти методы часто используются там, где важно не разорвать цепь, и используются методы, которые так или иначе определяют ток.

Часто точность может быть почти такой же, как при включении счетчика в цепь, но для этого может потребоваться, чтобы компоненты уже были на месте или использовались различные типы датчиков.

Использование последовательного резистора для измерения тока

Этот метод измерения тока может дать некоторые преимущества при определенных обстоятельствах, когда предполагается, что может потребоваться регулярное измерение тока в цепи.

Этот метод измерения тока предполагает размещение в цепи небольшого резистора подходящего номинала. Обычно один конец резистора находится под потенциалом земли, чтобы избежать риска возникновения высокого напряжения или случайного замыкания на землю во время проверки.

Метод измерения тока с включением последовательного резистора в цепь.

Путем измерения напряжения на резисторе можно легко рассчитать ток.

Например, резистор 10 Ом помещается в цепь, и на нем обнаруживается показание 100 мВ, тогда, используя закон Ома, можно сделать вывод, что ток равен V / R = 0,1 / 10 = 10 мА.

При использовании этого метода измерения тока номинал резистора должен быть достаточно точным для проведения измерений. Любой допуск на резистор e даст аналогичный допуск, а не измерение. К счастью, многие измерения в этой ситуации не требуют предельной точности, и поэтому даже 10% резисторов будут достаточно точными — 2% также могут быть достаточными в зависимости от необходимых допусков.

В показанном случае последовательный резистор, используемый для измерения тока, расположен близко к земле, а также он зашунтирован конденсатором, чтобы исключить любой сигнал на землю. Это особенно важно, если схема используется на радиочастотах, т.к. это поможет предотвратить излучение какого-либо сигнала вдоль проводов измерительного прибора.

Метод измерения тока с помощью датчика тока/катушки

Если взломать цепь никак нельзя, можно использовать датчик тока.

Датчики тока обычно представляют собой датчик, который размещается вокруг проводника с током. Он способен обнаруживать ток, протекающий в проводнике, и таким образом давать показания.

Эти датчики часто входят в состав полного прибора, поэтому часто невозможно использовать стандартный мультиметр для этого типа проверки.

Существует несколько различных типов датчиков/измерителей, которые можно использовать для данного метода измерения тока.

  • Трансформатор тока:   Один из наиболее распространенных типов датчиков тока называется токоизмерительными клещами. Он состоит из разъемного ферритового или мягкого железного кольца, на которое намотана катушка — по одной на каждую половину. Сердечник пропускается над проводником, в котором необходимо измерить ток, и две половины сердечника зажимаются на месте. Таким образом, сборка действует как трансформатор, обмотки зажима улавливают магнитное поле от тока, протекающего в проводнике. Поскольку вся сборка фактически представляет собой трансформатор, этот метод измерения тока работает только для переменного тока. Кроме того, измерители, использующие это, обычно поставляются как отдельные «измерительные клещи».
  • Датчик Холла:   Датчик Холла, использующий другую технологию. Он может измерять как переменный, так и постоянный ток, протекающий в проводнике. Он часто используется в сочетании с осциллографами и цифровыми мультиметрами высокого класса, хотя их использование становится все более распространенным.

Существуют и другие аналогичные методы измерения тока с использованием датчиков, но наиболее распространены токовые клещи и датчики на эффекте Холла.

Как измерить переменный ток мультиметром

Часто необходимо измерять переменный ток. Хотя при измерении переменного тока используются те же основные шаги, что и при обычном измерении постоянного тока, необходимо отметить несколько дополнительных моментов.

  • Требуется настройка переменного тока:   Различия в измерениях возникают из-за того, что мультиметр должен выпрямлять переменный сигнал, чтобы он мог измерять переменный ток. Для цифрового мультиметра основное отличие состоит в том, что переключатель типа измерения должен быть установлен на измерение переменного тока, а не постоянного тока.
  • Для аналоговых мультиметров требуется выпрямитель:   Для аналоговых мультиметров ситуация немного отличается. Поскольку аналоговый мультиметр не содержит какой-либо активной электроники, диодный выпрямитель, используемый для выпрямления переменного сигнала, имеет определенное напряжение включения, и это повлияет на конец низкого напряжения некоторых шкал. Некоторые измерители могут быть не в состоянии измерять переменный ток или иметь очень ограниченные диапазоны.

Несмотря на эти дополнительные требования, практически все цифровые мультиметры и большинство аналоговых мультиметров имеют возможность измерения переменного тока. Для аналоговых счетчиков будет отдельная шкала переменного тока, поскольку ток не может быть получен с использованием полностью линейной шкалы из-за характеристик напряжения диодов, используемых в выпрямителе.

Хотя измерение электрического тока не так распространено, как измерение напряжения, тем не менее очень важно уметь измерять ток.

Понимая, как работает мультиметр, и зная, как измерять ток, можно наилучшим образом использовать мультиметр для разрабатываемой схемы.

Другие тестовые темы:
Анализатор сетей передачи данных Цифровой мультиметр Частотомер Осциллограф Генераторы сигналов Анализатор спектра LCR-метр Измеритель наклона, ГДО Логический анализатор ВЧ измеритель мощности Генератор радиочастотных сигналов Логический пробник PAT-тестирование и тестеры Рефлектометр во временной области Векторный анализатор цепей PXI ГПИБ Граничное сканирование / JTAG Получение данных
    Вернуться в меню «Тест». . .

Как измерить ток | Hioki

Зачем нужно измерять ток? Причины, методы и меры предосторожности

Обзор

Вы не можете увидеть электрический ток своими глазами. Следовательно, для измерения таких свойств, как ток, необходимы специально разработанные измерительные приборы. Но зачем вообще нужно измерять ток? И как это достигается?

Эта страница предлагает подробное объяснение причин измерения тока и методов использования соответствующих инструментов.

Необходимость измерения тока

Электронные устройства чрезвычайно чувствительны и точны. Следовательно, многие устройства необходимо регулярно проверять, и обслуживание является ключевым фактором. Если бы не было измерительных приборов, было бы трудно точно определить проблемы во время обслуживания и поломки оборудования. По этой причине измерение тока является важной частью технического обслуживания электронных устройств и выявления причин неисправностей и отказов.

Существует ряд измерительных приборов, которые можно использовать для измерения силы тока. Наиболее часто используются следующие три:

  • Цифровые мультиметры

  • Токоизмерительные датчики

  • Токоизмерительные клещи

Каждый из этих приборов может использоваться для измерения тока. Важно выбрать лучший инструмент для вашего приложения.

На этой странице объясняется, как измерять ток с помощью каждого типа приборов.

Как измерить силу тока с помощью цифрового мультиметра

Цифровой мультиметр — это инструмент, обеспечивающий выполнение основных измерений электрических цепей, от силы тока до напряжения и сопротивления. Доступны различные типы, от больших моделей до карточных устройств, и они используются в различных сценариях измерения электроэнергии.

Большинство цифровых мультиметров имеют поворотный переключатель для изменения функций, поэтому первым шагом является настройка прибора на текущую функцию.

Затем подключите черную (отрицательную) клемму измерительных проводов к «COM», а красную (положительную) клемму к «A». При подключении измерительных проводов к цепи подсоедините черный провод к отрицательной стороне источника питания, а красный провод к стороне нагрузки, чтобы прибор был последовательно подключен к цепи.

Необходимо соблюдать осторожность, так как подача напряжения, когда измерительный провод вставлен в клемму «А», может повредить цифровой мультиметр. Следовательно, хорошей практикой является отключение питания измеряемой цепи, чтобы случайно не подать напряжение. Затем подключите ток последовательно с измерительными клеммами и снова включите питание.

Как измерять ток с помощью токового пробника

Токовый пробник — это инструмент, который позволяет прибору, например осциллографу, измерять формы тока путем преобразования тока в напряжение. Они полезны в широком диапазоне сценариев измерения тока, поскольку позволяют наблюдать за сигналом снаружи изоляции (без разрезания кабеля или другого проводника) и поскольку они могут выдерживать токи различной величины.

Доступны следующие шесть типов токовых пробников, которые следует выбирать в соответствии с применением.

Тип ТТ

Эти датчики тока предназначены исключительно для измерения переменного тока. Они сравнительно недороги и не требуют источника питания, хотя их нельзя использовать для измерения постоянного тока.

Датчик Холла

Эти датчики тока могут использоваться для измерения переменного и постоянного тока. Они недороги, но имеют недостатки, в том числе сравнительно низкую точность и дрейф, вызванный температурой и временем, что делает их плохо подходящими для приложений, в которых ток должен измеряться в течение длительного периода времени.

Тип Rogowski

Эти датчики измеряют ток путем преобразования напряжения, индуцируемого в катушке с воздушным сердечником переменным магнитным полем, которое возникает вокруг измеряемого тока. Они недороги и могут измерять большие токи, поскольку отсутствие магнитного сердечника устраняет проблему магнитного насыщения. Кроме того, они не страдают от недостатка магнитных потерь. Однако они чувствительны к воздействию шума и поэтому плохо подходят для высокоточных измерений. Кроме того, у них есть недостаток, заключающийся в том, что они не могут измерять постоянные токи из-за принципа их действия.

Датчик переменного тока с нулевым потоком

Эти преобразователи улучшают характеристики преобразователей типа CT в низкочастотном диапазоне. Благодаря малой фазовой ошибке они могут выполнять измерения в широкой полосе частот, что делает их хорошо подходящими для измерения мощности. Однако они используют метод ТТ и поэтому не могут измерять постоянные токи.

Тип AC/DC с нулевым потоком (с датчиком Холла)

Эти датчики сочетают в себе метод ТТ с элементом Холла, что позволяет им измерять как постоянный, так и переменный ток.

Тип AC/DC с нулевым потоком (феррозондовый датчик)

Эти датчики сочетают в себе метод CT с элементом FG (феррозонд), что позволяет им измерять как постоянный, так и переменный ток.
Поскольку благодаря своему принципу работы феррозонд имеет чрезвычайно малый дрейф смещения в широком диапазоне температур, он может обеспечивать исключительно точные и стабильные измерения, что делает этот тип датчика тока идеальным для сопряжения с высокоточными измерителями мощности для бескомпромиссной точности

Как измерить ток токоизмерительными клещами

Для измерения тока токоизмерительными клещами сначала установите поворотный переключатель в положение «А». Затем выполните регулировку нуля и зажмите губки поперек троса. Поскольку токоизмерительные клещи могут измерять ток, просто закрепляя их на кабеле, их также можно использовать для проверки значений тока без отключения цепей. В этих приборах используется тот факт, что магнитное поле, возникающее при протекании тока, пропорционально величине тока; измеряя это поле, можно измерить ток.

Если токоизмерительные клещи зажать вокруг двух проводов туда и обратно, магнитные поля будут компенсировать друг друга. Необходимо избегать зажима счетчика вокруг таких пар проводов, за исключением случаев измерения тока утечки.

Поскольку магнитное поле увеличивается пропорционально количеству витков катушки в том же направлении вокруг сердечника зажима, точность можно повысить, добавив витки к инструменту для усиления магнитного поля.

Выбор лучшего прибора для вашего приложения

Измерительные инструменты необходимы для измерения таких свойств, как сила тока, для поддержания и выявления неисправностей в точных, чувствительных электронных приборах. Для измерения тока часто используются такие инструменты, как цифровые мультиметры, токовые пробники и токоизмерительные клещи. Почему бы не попробовать использовать для измерения тока прибор, соответствующий вашим требованиям и целям?

Применение

Как использовать

Сопутствующие товары

  • Датчик переменного/постоянного тока CT6904A
  • Clamp Logger LR5051
  • Digital Multimeter DT4282
  • AC/DC Clamp Meter CM4375-50
  • Current Probe CT6711
  • Power Quality Analyzer PQ3198

Learn More

  • How to Use a Digital Multimeter How использовать цифровой мультиметр.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *