Закрыть

Как найти сопротивление через мощность и напряжение: Закон ома | Онлайн калькулятор

Содержание

Мощность электрического тока — Основы электроники

Обычно электрический ток сравнивают с течением жид­кости по трубке, а напряжение или разность потенциалов — с разностью уровней жидкости.

В этом случае поток воды, падающий сверху вниз, несет с собой определенное количество энергии. В усло­виях свободного падения эта энергия растрачивается беспо­лезно для человека. Если же направить падающий поток во­ды на лопасти турбины, то последняя начнет вращаться и сможет производить полезную работу.

Работа, производимая потоком воды в течение определен­ного промежутка времени, например, в течение одной секун­ды, будет тем больше, чем с большей высоты падает поток и чем больше масса падающей воды.

Точно так же и электрический ток, протекая по цепи от высшего потенциала к низшему, совершает работу. В каждую данную секунду времени будет совершаться тем больше рабо­ты, чем больше разность потенциалов и чем большее количе­ство электричества ежесекундно проходит через поперечное сечение цепи.

Мощность электрического тока это количество работы, совершаемой за одну секунду времени, или скорость совершения работы.

Количество электричества, проходящего через поперечное сечение цепи в течение одной секунды, есть не что иное, как сила тока в цепи. Следовательно, мощность электрического тока будет прямо пропорциональна разности потенциалов (на­пряжению) и силе тока в цепи.

Для измерения мощности электрического тока принята еди­ница, называемая ватт (Вт).

Мощностью в 1 Вт обладает ток силой в 1 А при разности потенциалов, равной 1 В.

Для вычисления мощности постоянного тока в ваттах нуж­но силу тока в амперах умножить на напряжение в вольтах.

Если обозначить мощность электрического тока буквой P, то приведенное выше правило можно записать в виде формулы

P = I*U. (1)

Воспользуемся этой формулой для решения числового при­мера. Требуется определить, какая мощность электрического тока необходима для накала нити радиолампы, если напряжение накала равно 4 в, а ток накала 75 мА

Определим мощность электрического тока, поглощаемую нитью лампы:

Р= 0,075 А*4 В = 0,3 Вт.

Мощность электрического тока можно вычислить и другим путем. Предположим, что нам известны сила тока в цепи и сопротивление цепи, а напряжение неизвестно.

В этом случае мы воспользуемся знакомым нам соотноше­нием из закона Ома:

U=IR

и подставим правую часть этого равенства (IR) в формулу (1) вместо напряжения U.

Тогда формула (1) примет вид:

P = I*U =I*IR

или

Р = I2*R. (2)

Например, требуется узнать, какая мощность теряется в реостате сопротивлением в 5 Ом, если через него проходит ток, силой 0,5 А. Пользуясь формулой (2), найдем:

P= I2*R = (0,5)2*5 =0,25*5 = 1,25 Вт.

Наконец, мощность электрического тока может быть вычислена и в том слу­чае, когда известны напряжение и сопротивление, а сила тока неизвестна. Для этого вместо силы тока I в формулу (1) подставляется известное из закона Ома отношение U/R и тогда формула (1) приобретает следующий вид:

Р = I*U=U2/R (3)

Например, при 2,5 В падения напряжения на реостате сопро­тивлением в 5 Ом поглощаемая реостатом мощность будет равна:

Р = U2/R=(2,5)2/5=1,25 Вт

Таким образом, для вычисления мощности требуется знать любые две из величин, входящих в формулу закона Ома.

Мощность электрического тока равна работе электрического тока, производимой в течение одной секунды.

P = A/t

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

Добавить комментарий

Основные электротехнические формулы. Мощность. Сопротивление. Ток. Напряжение. Закон Ома.


Навигация по справочнику TehTab.ru:  главная страница  / / Техническая информация / / Физический справочник / / Электрические и магнитные величины / / Понятия и формулы для электричества и магнетизма.  / / Основные электротехнические формулы. Мощность. Сопротивление. Ток. Напряжение. Закон Ома.

Основные электротехнические формулы. Мощность. Сопротивление. Ток. Напряжение. Закон Ома.

Цепь постоянного тока (или, строго говоря, цепь без комплексного сопротивления)

Применимость формул: пренебрегаем зависимостью сопротивлений от силы тока.

P = мощность (Ватт)

U = напряжение (Вольт)

I = ток (Ампер)

R = сопротивление (Ом)

r = внутреннее сопротивление источнка ЭДС

ε = ЭДС источника

Тогда для всей цепи:

  • I=ε/(R +r) — закон Ома для всей цепи.

И еще ниже куча формулировок закона Ома для участка цепи :

Электрическое напряжение:

  • U = R* I — Закон Ома для участка цепи
  • U = P / I
  • U = (P*R)1/2

Электрическая мощность:

  • P= U* I
  • P= R* I2
  • P = U 2/ R

Электрический ток:

  • I = U / R
  • I = P/ E
  • I = (P / R)1/2

Электрическое сопротивление:

  • R = U / I
  • R = U 2/ P
  • R = P / I2

НЕ ЗАБЫВАЕМ: Законы Кирхгофа они же Правила Кирхгофа для тока и напряжения.

Цепь переменного синусоидального тока c частотой ω.

Применимость формул: пренебрегаем зависимостью сопротивлений от силы тока и частоты.

Напомним, что любой сигнал, может быть с любой точностью разложен в ряд Фурье, т.е. в предположении, что параметры сети частотнонезависимы — данная формулировка применима ко всем гармоникам любого сигнала.

Закон Ома для цепей переменного тока:

где:

Естественно, применительно к цепям переменного тока можно говорить и об активной/реактивной мощности.

  • U = U0eiωt  напряжение или разность потенциалов,
  • I  сила тока,
  • Z = Reiφ  комплексное сопротивление (импеданс)
  • R = (Ra2+Rr2)1/2  полное сопротивление,
  • Rr = ωL — 1/ωC  реактивное сопротивление (разность индуктивного и емкостного),
  • Rа  активное (омическое) сопротивление, не зависящее от частоты,
  • φ = arctg Rr/Ra — сдвиг фаз между напряжением и током.
Дополнительная информация:
  1. Электростатика.
  2. Закон Ома.
  3. Законы Кирхгофа они же Правила Кирхгофа для тока и напряжения.
  4. Формулы. Электрическое сопротивление проводника при постоянном токе, зависимость сопротивления проводника от температуры, индуктивное и ёмкостное (реактивное) сопротивление, полное реактивное сопротивление, полное сопротивление цепи при переменном токе
  5. Коэффициент мощности (cos φ, косинус фи ), Полная (кажущаяся), активная и реактивная мощность электродвигателя=электромотора и не только его. Коэффициент мощности для трехфазного электродвигателя.



Нашли ошибку? Есть дополнения? Напишите нам об этом, указав ссылку на страницу.
TehTab.ru

Реклама, сотрудничество: info@tehtab.

ru

Обращаем ваше внимание на то, что данный интернет-сайт носит исключительно информационный характер. Информация, представленная на сайте, не является официальной и предоставлена только в целях ознакомления. Все риски за использование информаци с сайта посетители берут на себя. Проект TehTab.ru является некоммерческим, не поддерживается никакими политическими партиями и иностранными организациями.

формула, расчёт силы тока, напряжения и сопротивления

Напряжение, сопротивление, ток и мощность.

Электричество само по себе невидимо, хотя от этого его опасность ничуть не меньше. Даже наоборот: как раз потому и опаснее. Ведь если бы мы его видели, как видим, например, воду, льющуюся из крана, то наверняка бы избежали множества неприятностей.

Вода. Вот она, водопроводная труба, и вот закрытый кран. Ничего не течет, не капает. Но мы точно знаем: внутри вода. И если система исправно работает, то вода эта там находится под давлением. 2, 3 атмосферы, или сколько там? Неважно. Но давление там есть, иначе система бы не работала. Где-то гудят насосы, гонят воду в систему, создают это самое давление.

А вот наш провод электрический. Где-то далеко, на другом конце тоже гудят генераторы, вырабатывают электричество. И в проводе от этого тоже давление. Нет-нет, не давление, конечно, тут в этом проводе напряжение. Оно тоже измеряется, но в своих единицах: в вольтах.

Давит в трубах на стенки вода, никуда не двигаясь, ждет, когда найдется выход, чтобы ринуться туда мощным потоком. И в проводе молча ждет напряжение, когда замкнется выключатель, чтобы потоки электронов двинулись выполнять свое предназначение.

И вот открылся кран, потекла струя воды. По всей трубе течет, двигаясь от насоса к расходному крану. А как только замкнулись контакты выключателя, в проводах потекли электроны. Что это за движение? Это ток. Электроны текут. И это движение, этот ток тоже имеет свою единицу измерения: ампер.

И еще есть сопротивление. Для воды это, образно говоря, размер отверстия в выпускном кране. Чем больше отверстие, тем меньше сопротивление движению воды. В проводах почти также: чем больше сопротивление провода, тем меньше ток.

Вот, как-то так, если образно представлять себе основные характеристики электричества. А с точки зрения науки все строго: существует так называемый закон Ома. Гласит он следующим образом: I = U/R.
I – сила тока. Измеряется в амперах.
U – напряжение. Измеряется в вольтах.
R – сопротивление. Измеряется в омах.

Есть еще одно понятие – мощность, W. С ним тоже просто: W = U*I. Измеряется в ваттах.

Собственно, это вся необходимая и достаточная для нас теория. Из этих четырех единиц измерения в соответствии с вышеприведенными двумя формулами можно вывести некоторое множество других:

ЗадачаФормулаПример
1Узнать силу тока, если известны напряжение и сопротивление.I = U/RI = 220 в / 500 ом = 0.44 а.
2Узнать мощность, если известны ток и напряжение.W = U*IW = 220 в * 0.44 а = 96.8 вт.
3Узнать сопротивление, если известны напряжение и ток.R = U/IR = 220 в / 0.44 а = 500 ом.
4Узнать напряжение, если известны ток и сопротивление.U = I*RU = 0.44 а * 500 ом = 220 в.
5Узнать мощность, если известны ток и сопротивление.W = I 2 *RW = 0.44 а * 0.44 а * 500 ом = 96.8 вт.
6Узнать мощность, если известны напряжение и сопротивление.W = U 2 /RW = 220 в * 220 в / 500 ом = 96.8 вт.
7Узнать силу тока, если известны мощность и напряжение.I = W/UI = 96. 8 вт / 220 в = 0,44 а.
8Узнать напряжение, если известны мощность и ток.U = W/IU = 96.8 вт / 0.44 а = 220 в.
9Узнать сопротивление, если известны мощность и напряжение.R = U 2 /WR = 220 в * 220 в / 96.8 вт = 500 ом.
10Узнать сопротивление, если известны мощность и ток.R = W/I 2R = 96.8 вт / (0,44 а * 0,44 а) = 500 ом.

Ты скажешь: – Зачем мне это все надо? Формулы, цифры. Я ж не собираюсь заниматься расчетами.

А я так отвечу: – Перечитай предыдущую статью Электроснабжение. Основы.. Как можно быть уверенным, не зная простейших истин и расчетов? Хотя, собственно, в бытовом практическом плане наиболее интересна только формула 7, где определяется сила тока при известных напряжении и мощности. Как правило, эти 2 величины известны, а результат (сила тока) безусловно необходим для определения допустимого сечения провода и для выбора защиты.

Есть еще одно обстоятельство, о котором следует упомянуть в контексте этой статьи. В электроэнергетике используется так называемый “переменный” ток. То есть, те самые электроны движутся в проводах не всегда в одном направлении, они постоянно меняют его: вперед-назад-вперед-назад. И эта смена направления движения – 100 раз в секунду.

Погоди, но ведь везде говорится, что частота 50 герц! Да, именно так и есть. Частота измеряется в количестве периодов за секунду, но в каждом периоде ток меняет свое направление дважды. Иначе сказать, в одном периоде две вершины, которые характеризуют максимальное значение тока (положительное и отрицательное), и именно в этих вершинах происходит смена направления.

Не будем вдаваться в подробности более глубоко, но все же: почему именно переменный, а не постоянный ток?

Вся проблема в передаче электроэнергии на большие расстояния. Тут как раз вступает в силу неумолимый закон Ома. При больших нагрузках, если напряжение 220 вольт, сила тока может быть очень большой. Для передачи электроэнергии с таким током потребуются провода очень большого сечения.

Выход здесь только один: поднять напряжение. Седьмая формула говорит: I = W/U. Совершенно очевидно, что если мы будем подавать напряжение не 220 вольт, а 220 тысяч вольт, то сила тока уменьшится в тысячу раз. А это значит, что сечение проводов можно взять намного меньше.

В этой статье уже не раз я обмолвился о зависимости сечения проводника от силы протекаемого тока. О том, как определить допустимое значение, узнаем в следующей статье Допустимый длительный ток..

Как найти мощность: формула, расчёт силы тока, напряжения и сопротивления

Причиной написания данной статьи явилась не сложность этих формул, а то, что в ходе проектирования и разработки каких-либо схем часто приходится перебирать ряд значений чтобы выйти на требуемые параметры или сбалансировать схему. Данная статья и калькулятор в ней позволит упростить этот подбор и ускорить процесс реализации задуманного. Также в конце статьи приведу несколько методик для запоминания основной формулы закона Ома. Эта информация будет полезна начинающим. Формула хоть и простая, но иногда есть замешательство, где и какой параметр должен стоять, особенно это бывает поначалу.

В радиоэлектронике и электротехнике закон Ома и формула расчёта мощности используются чаше чем какие-либо из всех остальных формул. Они определяют жесткую взаимосвязь между четырьмя самыми ходовыми электрическими величинами: током, напряжением, сопротивлением и мощностью.

Закон Ома. Эту взаимосвязь выявил и доказал Георг Симон Ом в 1826 году. Для участка цепи она звучит так: сила тока прямо пропорциональна напряжению, и обратно пропорциональна сопротивлению

Так записывается основная формула:

Путем преобразования основной формулы можно найти и другие две величины:

Мощность. Её определение звучит так: мощностью называется произведение мгновенных значений напряжения и силы тока на каком-либо участке электрической цепи.

Формула мгновенной электрической мощности:

Ниже приведён онлайн калькулятор для расчёта закона Ома и Мощности. Данный калькулятор позволяет определить взаимосвязь между четырьмя электрическими величинами: током, напряжением, сопротивлением и мощностью. Для этого достаточно ввести любые две величины. Стрелками «вверх-вниз» можно с шагом в единицу менять введённое значение. Размерность величин тоже можно выбрать. Также для удобства подбора параметров, калькулятор позволяет фиксировать до десяти ранее выполненных расчётов с теми размерностями с которыми выполнялись сами расчёты.

Когда мы учились в радиотехническом техникуме, то приходилось запоминать очень много всякой всячины. И чтобы проще было запомнить, для закона Ома есть три шпаргалки. Вот какими методиками мы пользовались.

Первая – мнемоническое правило. Если из формулы закона Ома выразить сопротивление, то R = рюмка.

Вторая – метод треугольника. Его ещё называют магический треугольник закона Ома.

Если оторвать величину, которую требуется найти, то в оставшейся части мы получим формулу для её нахождения.

Третья. Она больше является шпаргалкой, в которой объединены все основные формулы для четырёх электрических величин.

Пользоваться ею также просто, как и треугольником. Выбираем тот параметр, который хотим рассчитать, он находиться в малом кругу в центре и получаем по три формулы для его расчёта. Далее выбираем нужную.

Этот круг также, как и треугольник можно назвать магическим.

Как рассчитать мощность электрического тока?

Большинство бытовых приборов, подключаемых к сети, характеризуются таким параметром, как электрическая мощность устройства. С физической точки зрения мощность представляет собой количественное выражение совершаемой работы. Поэтому для оценки эффективности того или иного устройства вам необходимо знать нагрузку, которую он будет создавать в цепи. Далее мы рассмотрим особенности самого понятия и как найти мощность тока, обладая различными характеристиками самого устройства и электрической сети.

Понятие электрической мощности и способы ее расчета

С электротехнической точки зрения она представляет собой количественное выражение взаимодействия энергии с материалом проводников и элементами при протекании тока в электрической цепи. Из-за наличия электрического сопротивления во всех деталях, задействованных в проведения электротока, направленное движение заряженных частиц встречает препятствие на пути следования. Это и обуславливает столкновение носителей заряда, электроэнергия переходит в другие виды и выделяется в виде излучения, тепла или механической энергии в окружающее пространство. Преобразование одного вида в другой и есть потребляемая мощность прибора или участка электрической цепи.

В зависимости от параметров источника тока и напряжения мощность также имеет отличительные характеристики. В электротехнике обозначается S, P и Q, единица измерения согласно международной системы СИ – ватты. Вычислить мощность можно через различные параметры приборов и электрических приборов. Рассмотрим каждый из них более детально.

Через напряжение и ток

Наиболее актуальный способ, чтобы рассчитать мощность в цепях постоянного тока – это использование данных о силе тока и приложенного напряжения. Для этого вам необходимо использовать формулу расчета: P = U*I

  • P – активная мощность;
  • U – напряжение приложенное к участку цепи;
  • I — сила тока, протекающего через соответствующий участок.

Этот вариант подходит только для активной нагрузки, где постоянный ток не обеспечивает взаимодействия с реактивной составляющей цепи. Чтобы найти мощность вам нужно выполнить произведение силы тока на напряжение. Обе величины должны находиться в одних единицах измерения – Вольты и Амперы, тогда результат также получится в Ваттах. Можно использовать и другие способы кВ, кА, мВ, мА, мкВ, мкА и т.д., но и параметр мощности пропорционально изменит свой десятичный показатель.

Через напряжение и сопротивление

Для большинства электрических устройств известен такой параметр, как внутреннее сопротивление, которое принимается за константу на весь период их эксплуатации. Так как бытовые или промышленные единицы подключаются к источнику с известным номиналом напряжения, определять мощность достаточно просто. Активная мощность находится из предыдущего соотношения и закона Ома, согласно которого ток на участке прямо пропорционален величине приложенного напряжения и имеет обратную пропорциональность к сопротивлению:

I = U/R

Если выражение для вычисления токовой нагрузки подставить в предыдущую формулу, то получится такое выражение для определения мощности:

P = U*(U/R)=U 2 /R

  • P – величина нагрузки;
  • U – приложенная разность потенциалов;
  • R – сопротивление нагрузки.

Через ток и сопротивление

Бывает ситуация, когда разность потенциалов, приложенная к электрическому прибору, неизвестна или требует трудоемких вычислений, что не всегда удобно. Особенно актуален данный вопрос, если несколько устройств подключены последовательно и вам неизвестно, каким образом потребляемая электроэнергия распределяется между ними. Подход в определении здесь ничем не отличается от предыдущего способа, за основу берется базовое утверждение, что электрическая нагрузка рассчитывается как P = U×I, с той разницей, что напряжение нам не известно.

Поэтому ее мы также выведем из закона Ома, согласно которого нам известно, что падение напряжения на каком-либо отрезке линии или электроустановки прямо пропорционально току, протекающему по этому участку и сопротивлению отрезка цепи:

U=I*R

после того как выражение подставить в формулу мощности, получим:

P = (I*R)*I =I 2 *R

Как видите, мощность будет равна квадрату силы тока умноженной на сопротивление.

Полная мощность в цепи переменного тока

Сети переменного тока кардинально отличаются от постоянного тем, что изменение электрических величин, приводит к появлению не только активной, но и реактивной составляющей. В итоге суммарная мощность будет также состоять активной и реактивной энергии:

  • S – полная мощность
  • P – активная составляющая – возникает при взаимодействии электротока с активным сопротивлением;
  • Q – реактивная составляющая – возникает при взаимодействии электротока с реактивным сопротивлением.

Также составляющие вычисляются через тригонометрические функции, так:

P = U*I*cosφ

Q = U*I*sinφ

что активно используется в расчете электрических машин.

Рис. 1. Треугольник мощностей

Пример расчета полной мощности для электродвигателя

Отдельный интерес представляет собой нагрузка, подключенная к трехфазной сети, так как электрические величины, протекающие в ней, напрямую зависят от номинальной нагрузки каждой из фаз. Но для наглядности примера мы не будем рассматривать, как найти мощность несимметричного прибора, так как это довольно сложная задача, а приведем пример расчета трехфазного двигателя.

Особенность питания и асинхронной и синхронной электрической машины заключается в том, что на обмотки может подаваться и фазное и линейное напряжение. Тот или иной вариант, как правило, обуславливается способом соединения обмоток электродвигателя. Тогда мощность будет вычисляться по формуле:

В случае выполнения расчетов с линейным напряжением, чтобы найти мощность формула примет вид:

Активная и реактивная мощности будут вычисляться по аналогии с сетями переменного тока, как было рассмотрено ранее.

Теперь рассмотрим вычисления на примере конкретной электрической машины асинхронного типа. Следует отметить, что официальная производительность, указываемая в паспортных данных электродвигателя – это полезная мощность, которую двигатель может выдать при совершении оборотов вала. Однако полезная кардинально отличается от полной, которую можно вычислить за счет коэффициента мощности.

Рис. 2. Шильд электродвигателя

Как видите, для вычислений с шильда мы возьмем следующую информацию об электродвигателе:

  • полезная производительность – 3 кВт, а в переводе на систему измерения – 3000 Вт;
  • коэффициент полезного действия – 80%, а в пересчете для вычислений будем пользоваться показателем 0,8;
  • тригонометрическая функция соотношения активных и реактивных составляющих – 0,74%;
  • напряжение, при соединении обмоток треугольником составит 220 В;
  • сила тока при том же способе соединения – 13,3 А.

С таким перечнем характеристик можно воспользоваться несколькими способами:

S = 1,732*220*13,3 = 5067 Вт

Чтобы найти искомую величину, сначала определяем активную составляющую:

P = Pполезная / КПД = 3000/0.8 = 3750 Вт

Далее полную по способу деления активной на коэффициент cos φ:

S = P/cos φ = 3750/0.74 = 5067 Вт

Как видите, и в первом, и во втором случае искомая величина получилась одинакового значения.

Примеры задач

Для примера рассмотрим вычисление на участках электрической цепи с последовательным и параллельным соединением элементов. Первый вариант предусматривает ситуацию, когда все детали соединяются друг за другом от одного полюса источника питания до другого.

Рис. 3. Последовательная расчетная цепь

Как видите на рисунке, в качестве источника мы используем батарейку с номинальным напряжением 9 В и три резистора по 10, 20 и 30 Ом соответственно. Так как номинальный ток нам не известен, расчет произведем через напряжение и сопротивление:

P = U 2 /R = 81 / (10+20+30) = 1.35 Вт

Для параллельной схемы подключения возьмем в качестве примера участок цепи с двумя резисторами и одним источником тока:

Рис. 4. Параллельная схема подключения

Как видите, для удобства расчетов нам нужно привести параллельно подключенные резисторы к схеме замещения, из чего получится:

Тогда искомый номинал нагрузки мы можем узнать через значение тока и сопротивления:

Формула напряжения тока

Электротехника как область науки, занимающаяся использованием электроэнергии, в том числе ее получением, распределением и учетом, оперирует значениями тока, напряжения, мощности и сопротивления. Это основные величины. Кроме этого, имеется множество других характеристик и понятий, но в рамках данной статьи будут рассматриваться именно эти основополагающие понятия.

Электрический ток

Согласно определению, ток представляет собой упорядоченное движение заряженных частиц в среде. Такими частицами могут быть свободные электроны или ионы, частицы вещества, в которых число протонов в ядре не равно количеству электронов, то есть имеющие определенный заряд, положительный или отрицательный. Электроток может быть постоянный или переменный.

Электрическое напряжение

Электрическое напряжение – это разность потенциалов на противоположных участках цепи. Точное определение понятия подразумевает работу по переносу электрического заряда между участками цепи.

Сопротивление

Любой проводник в цепи препятствует прохождению через себя тока. Данная характеристика определяет такую физическую величину, как сопротивление. Исходя из величины сопротивления, все вещества относят к проводникам или изоляторам. Точная граница весьма расплывчата, поэтому при некоторых условиях некоторые вещества можно отнести как к изоляторам, так и к проводникам. Участок электросхемы может иметь элемент с определенным значением величины, который именуется резистор.

Мощность

Скорость преобразования, передачи и потребления электрической энергии определяется мощностью.

Взаимосвязь параметров электрической цепи

Все параметры любой электрической цепи строго взаимосвязаны, поэтому в любой момент времени можно точно определить величину любого из них, зная остальные.

К сведению. Основополагающий закон, по которому производится большинство расчетов, – закон Ома, согласно которому сила тока обратно пропорциональна его сопротивлению и прямо пропорциональна приложенной разности потенциалов.

Формула напряжения тока закона Ома выглядит следующим образом:

Так, цепь с большим напряжением пропускает больший ток, а при одинаковом напряжении ампераж будет больше там, где меньше сопротивление.

Принятые обозначения в формуле расчета напряжения и тока понятны во всем мире:

  • I – сила тока;
  • U – напряжение;
  • R – сопротивление.

Путем простейшего математического преобразования находится формула расчета сопротивления через силу тока и напряжение.

Кроме закона Ома, используется формула расчета мощности:

Символом P здесь обозначена мощность тока.

Любая схема может содержать участки, где имеется последовательное соединение, или есть элемент, подключенный параллельно. Расчеты при этом усложняются, но базовые формулы остаются одинаковыми.

Единицы измерения в формуле

Невозможно выполнять расчеты или измерения, не зная, какими величинами оперировать. Общепринятые обозначения, согласно международной системе измерения СИ:

  • Напряжение – Вольт. Обозначается символом В или V в англоязычной литературе;
  • Сила тока – Ампер. Обозначается символом А;
  • Электрическое сопротивление – Ом. Используется обозначение Ом или Ohm;
  • Электрическая мощность – Ватт. Обозначается как Вт или W.

Как работает закон в реальной жизни

Используя совместно формулу расчета мощности и закон Ома, можно производить вычисления, не зная одной из величин. Самый простой пример – для лампы накаливания известны только ее мощность и напряжение. Применяя приведенные выше формулы, можно легко определить параметры нити накаливания и ток через нее.

Сила тока формула через мощность:

Сопротивление:

Такой же результат можно найти из мощности, не прибегая к промежуточным расчетам:

Аналогично можно вычислить любую величину, зная только две из них. Для упрощения преобразований имеется мнемоническое отображение формул, позволяющее находить любые величины.

Внимательно посмотрев на формулы, можно заметить, что, если уменьшить напряжение на лампе в два раза, ожидаемая мощность не снизится аналогично в два раза, а в четыре, согласно формуле:

Это довольно распространенная ошибка среди далеких от электротехники людей, которые неправильно соотносят мощность и напряжение, а также их действие на остальные параметры.

Кстати. Сила тока, найденная через сопротивление и напряжение, справедлива как для постоянного, так и для переменного тока, если в ней не используются такие элементы, как конденсатор или индуктивность.

Облегчить расчеты можно, используя онлайн калькулятор.

Пример с обычной водой

Существуют вещества, которые можно отнести одновременно к проводникам и изоляторам. Самый простой пример – обыкновенная вода. Дистиллированная вода является хорошим изолятором, но наличие в ней практически любых примесей делает ее проводником. Особенно это относится к солям различных металлов. При растворении в воде соли диссоциируются на ионы, их наличие – прямой повод для возникновения тока. Чем больше концентрация солей, тем меньшим сопротивлением будет обладать вода.

Для наглядности можно взять дистиллированную воду для приготовления электролита для автомобильных аккумуляторных батарей. Опустив щупы омметра в воду, можно увидеть, что его показания велики. Добавление всего нескольких кристаллов поваренной соли через некоторое время вызывает резкое уменьшение сопротивления, которое будет тем меньше, чем больше соли перейдет в раствор.

По какой формуле определяется напряжение

Использование той или иной формулы напряжения электрического тока для вычисления зависит от того, какие величины известны:

  • Ток и сопротивление – U=I∙R;
  • Ток и мощность – U=P/I;
  • Мощность и сопротивление – U=√P∙R

Различные используемые величины

Кроме основных величин: вольт, ампер, ом, ватт, используют кратные, большие или меньшие. Для обозначений применяют соответствующие приставки:

  • Кило – 1000;
  • Мега – 1000000;
  • Гига – 1000000000;
  • Милли – 0.001.

Таким образом, получается:

  • Киловольт (кВ) – тысяча вольт;
  • Мегаватт (Мвт) – миллион ватт;
  • Миллиом (мОм) – одна тысячная Ом;
  • Гигаватт (ГВт) – тысяча мегаватт или миллиард ватт.

Как найти напряжение

Формула нахождения напряжения как разности потенциалов в электрическом поле:

U=ϕA-ϕB, где ϕAи ϕB – потенциалы в точках А и В, соответственно.

Также можно записать напряжение как работу по переносу единицы заряда из точки А в точку В в электрическом поле:

U=A/q, где q – величина заряда.

Работа тем больше, чем выше напряженность электрического поля Е, то есть сила, действующая на неподвижный заряд.

Потенциальную энергию заряда в электростатическом поле называют электростатический потенциал.

Гидравлическая аналогия

Чтобы легче усвоить законы электрических цепей, можно представить себе аналогию с гидравлической системой, в которой соединение насоса и трубопроводов образует замкнутую систему. Для этого нужны следующие соответствия:

  • Источник питания – насос;
  • Проводники – трубы;
  • Электроток – движение воды.

Без особых усилий становится понятнее, что чем меньше диаметр труб, тем медленнее по ним движется вода. Чем мощнее насос, тем большее количество воды он способен перекачать. При одинаковой мощности насоса уменьшение диаметра труб приведет к снижению потока воды.

Измерительные приборы

Для измерения параметров электрических цепей служат измерительные приборы:

Наиболее часто используется класс комбинированных устройств, в которых переключателем выбирается измеряемая величина – ампервольтомметры или авометры.

Типичные напряжения

Для стандартизации и возможности использования различного оборудования в быту и технике применяются электрические сети со стандартными значениями:

  • Бытовая сеть –220В;
  • Бортовая сеть автомобиля – 12 или 24В;
  • Батареи и аккумуляторы – 1.5, 3 или 9В.

Потенциал Гальвани

В электрохимии используется понятие потенциала Гальвани, который означает разность потенциала между различными фазами вещества, например, между электродом и электролитом, между электродами из разнородных металлов.

Видео

Особенности расчета мощности по току и напряжению

Чтобы электропроводка и все электрическое оборудование, которое имеется в доме, работало исправно и правильно, необходимо правильно сделать вычисление мощности по току и электронапряжению, поскольку при неправильно подобранных показателях может возникнуть короткое замыкание или возгорание. Как сделать расчёт потребляемой мощности по току и напряжению, как вычисляется сила тока, формула через мощность и напряжение и другое, далее.

Как узнать силу тока, зная мощность и напряжения

Чтобы ответить на вопрос, как определить ток, необходимо поделить электронапряжение на общее число ватт. При этом сделать все необходимые вычисления можно самостоятельно, а можно прибегнуть к специальному онлайн-калькулятору.

Узнать потребление электроэнергии по токовой силе резистора можно умножением первой на сопротивление, выражаемое в Омах. В итоге, получится значение, представленное в вольтах, перемноженных на ом. Получится ампер.

Обратите внимание! Если нет сопротивления, нужно поделить ваттный показатель на токовую энергию, то есть следует поделить ватты на амперы и получится значение электроэнергии в вольтах. Понять мощностное показание через величину электричества с электронапряжением, можно умножив соответствующие показания с устройства.

Формулы для расчета тока в трехфазной сети

Подсчитать токовую энергию в трехфазной сети сложно, поскольку вместе одной фазы есть три. К тому же, сложность заключается в использовании нескольких схем соединения. Трудность состоит в симметрии или ее отсутствии во время распределения нагрузки по фазам.

Для определения силы тока в трехфазной сети, нужно общее число ватт поделить на показатель 1,73, перемноженный на напряжение и косинус мощностного коэффициента, который отражает активную и реактивную составляющую сопротивления нагрузки. Что касается однофазной сети, то из выражения для подсчета убирается показатель 1,73. Остается формула I = P/(U*cos φ).

Как рассчитать ампераж

Ампераж является значением электротока, которое выражена в амперах. Рассчитать ампераж можно так: I=P/U.

Расчет потребляемой мощности

Электромощность является величиной, которая отвечает за факт скорости изменения или передачи электрической энергии. Есть полная и активная мощностная нагрузка, а также активная и реактивная. Полная вычисляется так: S = √ (P2 + Q2), где P является активной частью, а Q реактивной. Для нахождения потребляемого мощностного показателя необходимо знать число электротока, которое потребляется нагрузкой, а также питательное напряжение, которое выдается при помощи источника.

Что касается бытового определения потребляемой электрической энергии, необходимо вычислить общее количество ватт питания электрических приборов и паспортные данные номинальной силы электротока котла. Как правило, все электрические приборы работают с переменным током и напряжением в 220 вольт. Для вычисления тока проще всего воспользоваться амперметром. Зная первый и второй параметры, реально узнать величину потребляемой энергии.

Стоит указать, что измерить мощность через напряжение или сделать расчет мощности по сопротивлению и напряжению возможно не только формулой, но и прибором. Для этого можно воспользоваться мультиметром с токоизмерительными клещами или специализированным измерителем — ваттметром.

Обратите внимание! Оба работают по одному и тому же принципу, указанному в руководстве по их эксплуатации.

Мощность, ток и напряжение — три составляющие расчета проводки в доме. Узнать все необходимые параметры в любой сети просто при помощи формул, представленных выше. От этих значений будет зависеть исправность работы всей домашней электрики и безопасность ее владельца.


Как найти мощность тока — формулы с примерами расчетов

Определение

Мощность – это скалярная величина. В общем случае она равна отношению выполненной работы ко времени:

P=dA/dt

Простыми словами эта величина определяет, как быстро выполняется работа. Она может обозначаться не только буквой P, но и W или N, измеряется в Ваттах или киловаттах, что сокращенно пишется как Вт и кВт соответственно.

Электрическая мощность равна произведению тока на напряжение или:

P=UI

Как это связано с работой? U – это отношение работы по переносу единичного заряда, а I определяет, какой заряд прошёл через провод за единицу времени. В результате преобразований и получилась такая формула, с помощью которой можно найти мощность, зная силу тока и напряжение.

Формулы для расчётов цепи постоянного тока

Проще всего посчитать мощность для цепи постоянного тока. Если есть сила тока и напряжение, тогда нужно просто по формуле, приведенной выше, выполнить расчет:

P=UI

Но не всегда есть возможность найти мощность по току и напряжению. Если вам они не известны – вы можете определить P, зная сопротивление и напряжение:

P=U 2 /R

Также можно выполнить расчет, зная ток и сопротивление:

P=I 2 *R

Последними двумя формулами удобен расчёт мощности участка цепи, если вы знаете R элемента I или U, которое на нём падает.

Для переменного тока

Однако для электрической цепи переменного тока нужно учитывать полную, активную и реактивную, а также коэффициент мощности (соsФ). Подробнее все эти понятия мы рассматривали в этой статье: https://samelectrik.ru/chto-takoe-aktivnaya-reaktivnaya-i-polnaya-moshhnost.html.

Отметим лишь, что чтобы найти полную мощность в однофазной сети по току и напряжению нужно их перемножить:

S=UI

Результат получится в вольт-амперах, чтобы определить активную мощность (ватты), нужно S умножить на коэффициент cosФ. Его можно найти в технической документации на устройство.

P=UIcosФ

Для определения реактивной мощности (вольт-амперы реактивные) вместо cosФ используют sinФ.

Q=UIsinФ

Или выразить из этого выражения:

И отсюда вычислить искомую величину.

Найти мощность в трёхфазной сети также несложно, для определения S (полной) воспользуйтесь формулой расчета по току и фазному напряжению:

А зная Uлинейное:

1,73 или корень из 3 – эта величина используется для расчётов трёхфазных цепей.

Тогда по аналогии чтобы найти P активную:

Определить реактивную мощность можно:

На этом теоретические сведения заканчиваются и мы перейдём к практике.

Пример расчёта полной мощности для электродвигателя

Мощность у электродвигателей бывает полезная или механическая на валу и электрическая. Они отличаются на величину коэффициента полезного действия (КПД), эта информация обычно указана на шильдике электродвигателя.

Отсюда берём данные для расчета подключения в треугольник на Uлинейное 380 Вольт:

Тогда найти активную электрическую мощность можно по формуле:

P=Pна валу/n=160000/0,94=170213 Вт

Теперь можно найти S:

Именно её нужно найти и учитывать, подбирая кабель или трансформатор для электродвигателя. На этом расчёты окончены.

Расчет для параллельного и последовательного подключения

При расчете схемы электронного устройства часто нужно найти мощность, которая выделяется на отдельном элементе. Тогда нужно определить, какое напряжение падает на нём, если речь идёт о последовательном подключении, или какая сила тока протекает при параллельном включении, рассмотрим конкретные случаи.

Здесь Iобщий равен:

На каждом резисторе R1 и R2, так как их сопротивление одинаково, напряжение падает по:

И выделяется по:

Pна резисторе=UI=6*0,6=3,6 Ватта

Тогда при параллельном подключении в такой схеме:

Сначала ищем I в каждой ветви:

И выделяется на каждом по:

Или через общее сопротивление, тогда:

Все расчёты совпали, значит найденные значения верны.

Заключение

Как вы могли убедиться найти мощность цепи или её участка совсем несложно, неважно речь идёт о постоянке или переменке. Важнее правильно определить общее сопротивление, ток и напряжение. Кстати этих знаний уже достаточно для правильного определения параметров схемы и подбора элементов – на сколько ватт подбирать резисторы, сечения кабелей и трансформаторов. Также будьте внимательны при расчёте S полной при вычислении подкоренного выражения. Стоит добавить лишь то, что при оплате счетов за коммунальные услуги мы оплачиваем за киловатт-часы или кВт/ч, они равняются количеству мощности, потребленной за промежуток времени. Например, если вы подключили 2 киловаттный обогреватель на пол часа, то счётчик намотает 1 кВт/ч, а за час – 2 кВт/ч и так далее по аналогии.

Напоследок рекомендуем просмотреть полезное видео по теме статьи:

Также читают:

Как рассчитать мощность электрического тока?

Большинство бытовых приборов, подключаемых к сети, характеризуются таким параметром, как электрическая мощность устройства. С физической точки зрения мощность представляет собой количественное выражение совершаемой работы. Поэтому для оценки эффективности того или иного устройства вам необходимо знать нагрузку, которую он будет создавать в цепи. Далее мы рассмотрим особенности самого понятия и как найти мощность тока, обладая различными характеристиками самого устройства и электрической сети.

Понятие электрической мощности и способы ее расчета

С электротехнической точки зрения она представляет собой количественное выражение взаимодействия энергии с материалом проводников и элементами при протекании тока в электрической цепи. Из-за наличия электрического сопротивления во всех деталях, задействованных в проведения электротока, направленное движение заряженных частиц встречает препятствие на пути следования. Это и обуславливает столкновение носителей заряда, электроэнергия переходит в другие виды и выделяется в виде излучения, тепла или механической энергии в окружающее пространство. Преобразование одного вида в другой и есть потребляемая мощность прибора или участка электрической цепи.

В зависимости от параметров источника тока и напряжения мощность также имеет отличительные характеристики. В электротехнике обозначается S, P и Q, единица измерения согласно международной системы СИ – ватты. Вычислить мощность можно через различные параметры приборов и электрических приборов. Рассмотрим каждый из них более детально.

Через напряжение и ток

Наиболее актуальный способ, чтобы рассчитать мощность в цепях постоянного тока – это использование данных о силе тока и приложенного напряжения. Для этого вам необходимо использовать формулу расчета: P = U*I

Где:

Этот вариант подходит только для активной нагрузки, где постоянный ток не обеспечивает взаимодействия с реактивной составляющей цепи. Чтобы найти мощность вам нужно выполнить произведение силы тока на напряжение. Обе величины должны находиться в одних единицах измерения – Вольты и Амперы, тогда результат также получится в Ваттах. Можно использовать и другие способы кВ, кА, мВ, мА, мкВ, мкА и т.д., но и параметр мощности пропорционально изменит свой десятичный показатель.

Через напряжение и сопротивление

Для большинства электрических устройств известен такой параметр, как внутреннее сопротивление, которое принимается за константу на весь период их эксплуатации. Так как бытовые или промышленные единицы подключаются к источнику с известным номиналом напряжения, определять мощность достаточно просто. Активная мощность находится из предыдущего соотношения и закона Ома, согласно которого ток на участке прямо пропорционален величине приложенного напряжения и имеет обратную пропорциональность к сопротивлению:

I = U/R

Если выражение для вычисления токовой нагрузки подставить в предыдущую формулу, то получится такое выражение для определения мощности:

P = U*(U/R)=U2/R

Где,

  • P – величина нагрузки;
  • U – приложенная разность потенциалов;
  • R – сопротивление нагрузки.

Через ток и сопротивление

Бывает ситуация, когда разность потенциалов, приложенная к электрическому прибору, неизвестна или требует трудоемких вычислений, что не всегда удобно. Особенно актуален данный вопрос, если несколько устройств подключены последовательно и вам неизвестно, каким образом потребляемая электроэнергия распределяется между ними. Подход в определении здесь ничем не отличается от предыдущего способа, за основу берется базовое утверждение, что электрическая нагрузка рассчитывается как P = U×I, с той разницей, что напряжение нам не известно.

Поэтому ее мы также выведем из закона Ома, согласно которого нам известно, что падение напряжения на каком-либо отрезке линии или электроустановки прямо пропорционально току, протекающему по этому участку и сопротивлению отрезка цепи:

U=I*R

после того как выражение подставить в формулу мощности, получим:

P = (I*R)*I =I2*R

Как видите, мощность будет равна квадрату силы тока умноженной на сопротивление.

Полная мощность в цепи переменного тока

Сети переменного тока кардинально отличаются от постоянного тем, что изменение электрических величин, приводит к появлению не только активной, но и реактивной составляющей. В итоге суммарная мощность будет также состоять активной и реактивной энергии:

Где,

  • S – полная мощность
  • P – активная составляющая – возникает при взаимодействии электротока с активным сопротивлением;
  • Q – реактивная составляющая – возникает при взаимодействии электротока с реактивным сопротивлением.

Также составляющие вычисляются через тригонометрические функции, так:

P = U*I*cosφ

Q = U*I*sinφ

что активно используется в расчете электрических машин.

Рис. 1. Треугольник мощностей

Пример расчета полной мощности для электродвигателя

Отдельный интерес представляет собой нагрузка, подключенная к трехфазной сети, так как электрические величины, протекающие в ней, напрямую зависят от номинальной нагрузки каждой из фаз. Но для наглядности примера мы не будем рассматривать, как найти мощность несимметричного прибора, так как это довольно сложная задача, а приведем пример расчета трехфазного двигателя.

Особенность питания и асинхронной и синхронной электрической машины заключается в том, что на обмотки может подаваться и фазное и линейное напряжение. Тот или иной вариант, как правило, обуславливается способом соединения обмоток электродвигателя. Тогда мощность будет вычисляться по формуле:

S = 3*Uф*Iф

В случае выполнения расчетов с линейным напряжением, чтобы найти мощность формула примет вид:

Активная и реактивная мощности будут вычисляться по аналогии с сетями переменного тока, как было рассмотрено ранее.

Теперь рассмотрим вычисления на примере конкретной электрической машины асинхронного типа. Следует отметить, что официальная производительность, указываемая в паспортных данных электродвигателя – это полезная мощность, которую двигатель может выдать при совершении оборотов вала. Однако полезная кардинально отличается от полной, которую можно вычислить за счет коэффициента мощности.

Рис. 2. Шильд электродвигателя

Как видите, для вычислений с шильда мы возьмем следующую информацию об электродвигателе:

  • полезная производительность – 3 кВт, а в переводе на систему измерения – 3000 Вт;
  • коэффициент полезного действия – 80%, а в пересчете для вычислений будем пользоваться показателем 0,8;
  • тригонометрическая функция соотношения активных и реактивных составляющих – 0,74%;
  • напряжение, при соединении обмоток треугольником составит 220 В;
  • сила тока при том же способе соединения – 13,3 А.

С таким перечнем характеристик можно воспользоваться несколькими способами:

S = 1,732*220*13,3 = 5067 Вт

Чтобы найти искомую величину, сначала определяем активную составляющую:

P = Pполезная / КПД = 3000/0.8 = 3750 Вт

Далее полную по способу деления активной  на коэффициент cos φ:

S = P/cos φ = 3750/0.74 = 5067 Вт

Как видите, и в первом, и во втором случае искомая величина получилась одинакового значения.

Примеры задач

Для примера рассмотрим вычисление на участках электрической цепи с последовательным и параллельным соединением элементов. Первый вариант предусматривает ситуацию, когда все детали соединяются друг за другом от одного полюса источника питания до другого.

Рис. 3. Последовательная расчетная цепь

Как видите на рисунке, в качестве источника мы используем батарейку с номинальным напряжением 9 В и три резистора по 10, 20 и 30 Ом соответственно. Так как номинальный ток нам не известен, расчет произведем через напряжение и сопротивление:

P = U2/R = 81 / (10+20+30) = 1.35 Вт

Для параллельной схемы подключения возьмем в качестве примера участок цепи с двумя резисторами и одним источником тока:

Рис. 4. Параллельная схема подключения

Как видите, для удобства расчетов нам нужно привести параллельно подключенные резисторы к схеме замещения, из чего получится:

Rобщ = (R1*R2) / (R1+R2) = (10*15) / (10+15) = 6 Ом

Тогда искомый номинал нагрузки мы можем узнать через значение тока и сопротивления:

P = I2*R = 25*6 = 150 Вт

Видео по теме

Закон Ома — физика процесса на примере движения воды. Формулы зависимости сопротивления, напряжения, силы тока и мощности

Существует всего 2 базовых формулы которые помогут вам понять взаимосвязь между силой тока(Амер), напряжением(Вольт), сопротивлением (Ом) и мощностью (Ватт).
Зная хотя бы два из перечисленных параметра вы всегда можете рассчитать два других.
 

ЗАКОН ОМА

Базовая формула P=I*E E=I*R  
Расчет напряжения E=P/I E=I*R E=SQR(P*R)
Расчет силы тока I=P/E I=E/R I=SQR(P/R)
Расчет мощности P=I*E P=E 2 /R P=I 2 *R
Расчет сопротивления R=E 2 /P R=E/I R=P/I 2
P — Мощность (Ватт)
E — Напряжение (Вольт)
I — Сила тока (Ампер)
R — Электрическое сопротивление (Ом)
SQR — квадратный корень

 


Для справки:

Мы используем переменную E для обозначения напряжения, иногда вы можете встретить  обозначение V для напряжения. Не дайте себя запутать названиям переменных.

Изменение сопротивления:

На следующей схеме вы видите разность сопротивлений между системами изображенными на правой и левой стороне рисунка. Сопротивление давлению воды в кране противодействует задвижка, в зависимости от степени открытия задвижки изменяется сопротивление.

Сопротивление в проводнике изображено в виде сужения проводника, чем более узкий проводник тем больше он противодействует прохождению тока.

Вы можете заметить что на правой и на левой стороне схемы напряжение и давление воды одинаково.

Вам необходимо обратить внимание на самый важный факт.

В зависимости от сопротивления  увеличивается и уменьшается сила тока.

Слева при полностью открытой задвижке мы видим самый большой поток воды. И при самом низком сопротивлении, видим самый большой поток электронов (Ампераж) в проводнике.

Справа задвижка закрыта намного больше и поток воды тоже стал намного больше.

ужение проводника тоже уменьшилось вдвое, я значит вдвое увеличилось сопротивление протеканию тока. Как мы видим через проводник из за выского сопротивления протекает в два раза меньше электронов.


Для справки

Обратите внимание что сужение проводника изображенное на схеме используется только для примера сопротивления протеканию тока. В реальных условиях сужения проводника не сильно влияет на протекающий ток. Значительно большее сопротивление могут оказывать полупроводники и диэлектрики.

Сужающийся проводник на схеме изображен лишь для примера, для понимания сути происходящего процесса.

Формула закона Ома — зависимость сопротивления и силы тока

I = E/R

Как вы видите из формулы, сила тока обратнапропорциональна сопротивлению цепи.

Больше сопротивление = Меньше ток

 

* при условии что напряжение постоянно.
 

Изменение напряжения.

На изображенной схеме во всех системах сопротивление имеет одинаковую величину.
В этот раз на картинке изменяется сопротивление/давление.

Вы можете увидеть что при увеличении напряжения приводит к увеличению протекающего тока даже при постоянном сопротивлении.

Формула закона Ома — зависимость напряжения и силы тока

I = E/R

Обратите внимание что сила тока протекающего в проводнике прямопропорциональна напряжению.

Больше напряжение = Больше сила тока

 

* при условии что сопротивление постоянно.
 

Математический рассчет


Рассмотрим пример.
У нас есть аккумуляторная батарея с напряжением питания 12 Вольт. К ней напрямую подключен резистор (сопротивление) 10 Ом. Для того что бы рассчитать какая мощность приложена к нашему резистору, можно воспользоваться формулой.

P = E2/R
P = 122/10
P = 144/10.
P = 14.4 watts

Мощность рассеиваемая на резисторе состовляет 14,4 Ватта.

Если вы хотите определить величину тока протекающего через проводник, мы используем другую формулу

I = E/R
I = 12/10
I = 1.2 amps

Сила тока протекающего через цепь составляет 1,2 Ампера
—————-
Калькуляторы зависимости напряжения, силы тока и сопротивления.
 

1. Калькулятор рассеиваемой мощности  и протекающей силы тока в зависимости от сопротивления и приложенного напряжения.

 


Демо закона Ома в реальном времени.

Для справки
В данном примере вы можете увеличивать напряжение и сопротивление цепи. Данные изменения в реальном времени будут изменять силу тока протекающего в цепи и мощность рассеиваемую на сопротивлении.

Если рассматривать аудио системы — вы должны помнить что усилитель выдает определенное напряжение на определенную нагрузку (сопротивление). Соотношение двух этих величин определяет мощность.
Усилитель может выдать ограниченную величину напряжения в зависимости от внутреннего блока питания и источника тока. Так же точно ограничена и мощность которую может подать усилитель на определенную нагрузку (к примеру 4 Ома).
Для того что бы получить больше мощности, вы можете подключить к усилителю нагрузку с меньшим сопротивлением (к примеру 2 Ома). Учтите что при использовании нагрузки с меньшим сопротивлением — скажем в два раза (было 4 Ома, стало 2 Ома) — мощность тоже возрастет в два раза.(при условии что данную мощность может обеспечить внутренний блок питания и источник тока).
Если мы возьмем для примера моно усилитель мощностью 100 Ватт на нагрузку 4 Ома, зная что он может выдать напряжение не более 20 Вольт на нагрузку.
Если вы поставите на нашем калькуляторе бегунки
Напряжение 20 Вольт
Сопротивление 4 Ома
Вы получите
Мощность 100 Ватт  
 
Если вы сдвинете бегунок сопротивления на величину 2 Ома, вы увидите как мощность удвоится и составит 200 Ватт.

В общем примере источником тока является аккумуляторная батарея (а не усилитель звука) но зависимости силы тока, напряжения, сопротивления и сопротивления одинаковы во всех цепях.
 

 

Расчеты напряжения, силы, сопротивления, нагрузки электрического тока

Современная структура общества такова, что на бытовом и промышленном уровне повсеместно используется электроэнергия. Генераторные установки, вырабатывающие электроэнергию, преобразующие подстанции работают для того, чтобы передать ее потребителям на бытовые электрические приборы и промышленные электроустановки.

Общая схема передачи электроэнергии потребителям с учетом мощностей

Что такое мощность электроэнергии

В электросетях, по которым передается энергия, существует ряд основных параметров, которые обязательно учитываются при проектировании и эксплуатации электроустановок.

Одним из таких показателей является электрическая мощность, под этим подразумевается способность электроустановки генерировать, передавать или преобразовывать определенную величину электроэнергии за определенный период времени. Преобразованием считается процесс изменения электрической энергии в тепло, механические движения или другой вид энергии. Чтобы сделать расчет мощности, надо знать, как минимум, величины тока, напряжения и ряда других параметров.

Расчет тока и напряжения, мощности иногда не делают, а измеряют параметры на месте. Но такая возможность не всегда предоставляется. Надо знать, как рассчитать мощность, когда цепь обесточена, при проектировании электроустановок, уметь пользоваться таблицей законов Ома и рассчитать силу тока по известным значениям параметров. Рассчитывать мощность нагрузки и ток нагрузки приходится для того, чтобы правильно выбрать сечение проводов в цепи, величину тока срабатывания для защитных автоматов и других нужд.

Законы Ома наглядно показывают, как посчитать ток по мощности и напряжению

Физический смысл электрической мощности в цепях переменного и постоянного тока одинаковый, но от условий нагрузки в цепи мощность может выражаться разными соотношениями. Для стандартизации закономерности явлений вводится понятие мгновенное значение, что указывает на зависимость скорости преобразований электроэнергии от фактора времени.

Электрическая мощность – это величина, выражающая скорость преобразования энергии электричества в другой вид энергии, обозначается буквой «Р».

Мгновенное значение электрической мощности

Определение – электрическая мощность тесно связана с другими параметрами цепи, током и напряжением, при изменении величины одного из них изменяются другие. Поэтому показания мощности фиксируются в короткий промежуток времени – ∆t.

Напряжение в данном случае обозначают буквой «U» – это выражает разность потенциалов зарядов, перемещенных электрическим полем из одной точки в другую за промежуток времени ∆t.

Сила тока обозначается буквой «I» – это поток, переносимый магнитным полем зарядов, другими словами заряд, перенесенный во временной интервал ∆t.

Исходя из этих определений, просматривается пропорциональная зависимость между этими параметрами:

Р = UxI.

При расчетах можно учитывать зависимость мощности от сопротивления нагрузки «R». По законам Ома для участка цепи с постоянным током мощность выражается как:

Р = I2xR или P = U2|R.

Если поставить в схему питания амперметр и вольтметр, то не придется думать, как вычислить силу тока.

Обратите внимание! Амперметр ставится последовательно в цепь по отношению к сопротивлению нагрузки, а вольтметр – параллельно.

В качестве источника питания используется аккумулятор, как нагрузка установлен прожектор. В данном случае не делается расчет силы тока, параллельно нагрузке подключен вольтметр, для измерения напряжения в Вольтах. Амперметр подключается последовательно для измерения тока в Амперах. Зная показания напряжения и тока по формулам, показанным выше, легко рассчитывается мощность.

Для участков цепи с переменным током формулы расчетов сложнее – необходимо учитывать характер нагрузки.

Расчеты мощности для электроцепей переменного тока

Переменный ток и напряжение имеют синусоидальный вид, при различных нагрузках происходит смещение фазы между ними на определенный угол. По этой причине направление тока иногда может быть противоположным, от нагрузки к источнику питания. Это бывает в электродвигателях, когда обмотка начинает генерировать энергию, это негативно сказывается на эффективности работы оборудования, снижается мощность. При большом количестве потребителей в электросети характер нагрузки имеет смешанный вид, в идеале выделяют три типа нагрузки:

  • Активная нагрузка, ее представляют такие электроприборы, как лампы накаливания, нагревательные тэны, спиральные электроплиты;
  • Емкостная нагрузка – это конденсаторы в оборудовании различного назначения;
  • Индуктивная нагрузка представлена катушками в электродвигателях, обмотках электромагнитов, дросселями и трансформаторами, другими приборами, где ток протекает через обмотки.

Емкостные и индуктивные виды выделяют как реактивную энергию в электросетях. Зная вид нагрузки, расчет потребляемой мощности делается точнее.

Расчет мощности в цепи с активной нагрузкой

Это классический случай в однофазной сети 220 В, в качестве нагрузки можно использовать обычные резисторы. Мощность рассчитывается как произведение действующих значений тока и напряжения, умноженное на соsϕ. В данном случае ϕ – угол смещения между фазами тока и напряжения.

Р = UI cos ϕ

График зависимости мощности по току и напряжению при активной нагрузке

Из графика можно узнать, что колебания тока и напряжения одинаковы по частоте и фазе, мощность всегда положительная с частотой в два раза больше.

Активная электрическая мощность характеризует процесс преобразования в сетях с переменным током энергии в тепло, механические движения, излучение света, в любой вид другой энергии. Измеряется активная нагрузка в Вт, кВт.

Расчет реактивной мощности

Как найти мощность в цепях с индуктивной и емкостной нагрузками? Это делается аналогичным образом. Расчет потребляемой мощности, как и в случае с активной нагрузкой, означает, что действующие напряжение и ток перемножаются, и результат умножается на sin ϕ. Где ϕ – угол сдвига фаз тока и напряжения.

Р = UI sin ϕ

Диаграмма, показывающая взаимосвязь параметров цепи при индуктивной нагрузке

График показывает, что мощность может принимать отрицательные значения, в этот момент энергия отдается в сторону источника питания, фактически она бесполезна и расходуется на нагрев.

Реактивная составляющая энергии характеризует работу нагрузки в виде электронного оборудования, электротехнических схем, моторов с наличием емкостной и индуктивной нагрузки. Единица измерения реактивной мощности при подсчете измеряется в Вар, это (Вольт-Ампер реактивный), обозначается буквой «Q».

Треугольник, отображающий отношение мощностей в сети

Зависимость мощности в цепи переменного тока от реактивной и активной составляющих с учетом угла сдвига фаз хорошо отображается на диаграмме, которую называют треугольником мощностей.

Формула расчета полной мощности обозначается буквой «S»

В этом случае учитывается полный импеданс рассчитываемой мощности электрического тока (комплексное сопротивление нагрузки). Тем, кому вычислением заниматься сложно даже на калькуляторе, можно воспользоваться онлайн калькуляторами на сайте https://www.fxyz.ru с вычислением мощности в цепях с различной нагрузкой. Вычисляется все мгновенно, достаточно заполнить таблицу с исходными параметрами. Когда такой калькулятор под рукой, я вычислю быстро нужные мне параметры.

Видео

Оцените статью:

Напряжение, мощность и сопротивление в электрической цепи

Электрической цепью считается комплекс определенных элементов и устройств, специально предназначенных для протекания электрического тока, в которых электромагнитные процессы можно описать, благодаря таким понятиям, как напряжение и сила тока. Изображение электрической цепи условными знаками называется электрической схемой.

Напряжение в электрической цепи

Для рассмотрения напряжения электрической цепи имеет смысл определить такое понятие, как электрический ток. Электроток характеризуется заряженными частицами, пребывающими в каком-то из проводников в упорядоченном движении. Для его возникновения заранее формируется электрическое поле, оказывающее определенное воздействие на заряженные частицы и приводящее их в движение. Возникновение зарядов при этом будет наблюдаться исключительно в том случае, когда различные вещества между собой тесно контактируют.

В некоторых отдельно взятых видах веществ заряды будут свободно перемещаться среди их разных частей, в то же время, в других веществах это не осуществляется. В этих случаях проводящие вещества называют проводниками, а непроводящие считаются диэлектриками (или изоляторами). При этом в физике подобное разделение всего лишь условное. Способностью проводить электричество обладают любые вещества, но одним она присуща в большей степени, другим – в меньшей.

Электрический ток, как явление свободных зарядов в упорядоченном движении, характеризуется силой тока, равнозначной количеству электричества (заряда), проходящему за единицу времени через поперечное сечение вещества. Таким образом, если за время $dt$ по сечению вещества переносится некий заряд $dq = dq + dq$, то ток будет выражен в формуле:

$i = \frac{dq}{dt} = \frac{q}{t}$

Согласно характеру своего проявления, электрические заряды бывают: положительными и отрицательными. Ток в теле, которое было наэлектризовано, будет существовать непродолжительное время, что объясняется постепенным угасанием заряда самого по себе. С целью более продолжительного существования тока в проводнике потребуется обеспечение постоянной поддержки в нем электрического поля.

Электрическое поле может сформировать исключительно какой-либо источник электротока.

Пример 1

Простейшим примером процесса возникновения электрического тока можно назвать соединение одного конца провода с наэлектризованным предварительно телом и другого конца – с землей.

Изобретенная в свое время батарея стала первым стабильным источником электрического тока. Основными величинами выступают:

  • сила тока;
  • сопротивление;
  • напряжение.

Данные величины, имея тесную взаимосвязь между собой, наиболее точным образом могут охарактеризовать происходящие в электрической цепи процессы.

Определение 1

Напряжение в электрической цепи представляет одну из основных характеристик электротока. Током в физике считается упорядоченное движение электронов (заряженных частиц). Поле, формирующее это движение, будет выполнять определенные действия, которые характеризуются, подобно его работе. Чем больший заряд за одну секунду перемещается в цепи, тем больше работы выполняет электрическое поле.

В качестве одного из факторов, воздействующих непосредственно на работу тока, и выступает напряжение, представляющее собой отношение работы к заряду, который пройдет через определенный участок цепи. Единицей измерения работы тока выступает джоуль (Дж), а заряда – кулон (Кл). Единицей напряжения, таким образом, будет 1 Дж/Кл (или один вольт (В)).

Чтобы возникло напряжение, потребуется источник тока. В ситуации с разомкнутой цепью напряжение присутствует только на клеммах источника. Если включить источник в цепь, на ее отдельных участках можно зафиксировать появление напряжения, а, соответственно, и тока. Напряжение можно измерить вольтметром, включенным параллельно в электрическую цепь.

Электрический потенциал $ф$ представляет отношение энергии (работы) $Э$ электрического поля к единичному заряду $q_0$ (малый заряд, который не искажает поле, куда он внесен). Формула получается при этом следующая:

$dф = \frac{dЭ}{dq_0} = \frac{Э}{q_0}$

Электрическое напряжение является разностью потенциалов между двумя точками электрополя (например, 1 и 2), что выражается формулами:

$U_{1-2} = ф_1 — ф_2 = \frac{dЭ_1}{q_0}-\frac{dЭ_2}{q_0} = \frac{dЭ_{1-2}}{q_0}$

$U_{1-2} = \frac{Э_{1-2}}{q_0}$

$U_{2-1} = -\frac{Э_{1-2}}{q_0}$

Таким образом, электрическое напряжение считается работой электрического поля, ориентированного на перемещение единичного заряда из одной точки в другую. В пассивных элементах цепи положительное направление напряжения будет совпадать с положительным направлением тока.

Мощность в электрических цепях

Определение 2

В качестве одного из характеризующих поведение электронов параметров (помимо тока и напряжения) может выступать мощность. Она представляет меру количества работы, которую возможно совершить за единицу времени. Работа зачастую сравнивается с подъемом веса. Так, чем больше окажется вес и высота его подъема, тем больший объем работы выполнен.

Мощность, определяя скорость совершения работы в единицу времени, считается равной произведению напряжения и силы тока:

$P = IU$, где:

  • $P$ – мощность тока,
  • $I$ – сила тока,
  • $U$ – напряжение в цепи.

Мощность является величиной, обозначающей интенсивность передачи электроэнергии. С целью измерения мощности применяются ваттметры. Мощностью определяется работа по перемещению электрических зарядов за единицу времени:

$P = \frac{A}{\delta t}$

Здесь:

  • $A$ – работа,
  • $\delta t$– время, на протяжении которого такая работа совершалась.

Мощность тока в разных приборах и оборудовании будет зависеть параллельно от таких основных величин, как напряжение и сила тока. Чем выше будет ток, тем большим окажется значение мощности, соответственно, она возрастает и если напряжение повысится.

Существует две основных разновидности электрической мощности:

  • активная;
  • реактивная.

В первом случае мощность электротока безвозвратно превращается такие виды энергии, как:

  • механическая;
  • тепловая;
  • световая;
  • прочие.

В производственной и бытовой среде применяются уже более крупные значения: киловатты и мегаватты. К реактивной мощности будет относиться такая степень электрической нагрузки, которая создается в устройствах индуктивными и емкостными колебаниями энергии электромагнитного поля.

Сопротивление в электрической цепи

Электрическое сопротивление является определяющей величиной для силы тока, текущего при заданном напряжении по цепи. Под электрическим сопротивлением $R$ понимается отношение напряжения, возникшего на концах проводника, к силе тока, который течет по проводнику.

$R = \frac{U}{I}$, где

  • $R$- электрическое сопротивление проводника;
  • $U$ — напряжение;
  • $I$ — сила тока.

При расчетах напряжений и токов через элементы электроцепи нужно знать показатель их общего сопротивления. Источники энергии существуют в двух разновидностях: постоянный ток (аккумуляторы, выпрямители, батарейки) и переменный ток (промышленные и бытовые сети). В первом случае ЭДС со временем не изменяется, а во втором она будет изменяться, согласно синусоидальному закону с определенной частотой.

Сопротивление нагрузки существует в активном и реактивном виде. Активное сопротивление $R$ не зависит от частоты сети, что говорит об изменении тока синхронно с напряжением. Реактивное сопротивление бывает индуктивным и емкостным.

Замечание 1

Отличительной чертой реактивной нагрузки считают присутствие опережения или отставания тока от напряжения. Ток в емкостной нагрузке будет опережать напряжение, а в индуктивной – отставать от него. На практике это выглядит, как если бы разряженный конденсатор подключить к источнику постоянного тока, а в момент включения наблюдать максимальное количество тока через него при минимальном напряжении.

Со временем будет фиксироваться уменьшение тока и возрастание напряжения до заряда конденсатора. При подключении к источнику переменного тока конденсатора, он начнет постоянно перезаряжаться с частотой сети, а ток будет увеличиваться раньше напряжения.

Расчет закона Ома с мощностью

В четырех таблицах ниже вы можете ввести два из четырех факторов закона Ома. Это Мощность (P) или (Вт), измеренная в ваттах, напряжение (V) или (E), измеренная в вольтах, , ток или сила тока (I), измеренная в ампер, ( ампер, ), и сопротивление (R), измеренное в Ом . Необходимый коэффициент будет рассчитан для вас, когда вы нажмете кнопку «Рассчитать» для этой таблицы.

Хотя это и не является частью первоначальной теории, в более поздние годы мы также относили коэффициент мощности к Ому.Мощность обычно обозначается сокращенно (Вт) и измеряется в Вт . Формула, обычно приводимая для мощности:
W = V x I или W = I 2 x R или W = V 2 / R. Другие основные формулы, включающие мощность:
I = W / V или I = (W / R) 2
V = (W x R) 2 или V = W / I
R = V 2 / W или R = W / I 2

Для исходных расчетов по закону Ома щелкните здесь .Чтобы проверить цветовую кодировку резисторов, используйте нашу таблицу цветовых кодов резисторов и калькулятор . Этот конвертер требует использования Javascript активных браузеров.

Факторы закона Ома при мощности

Расчет ватт

Вычислить амперы

Расчет напряжения

Рассчитать Ом

Удельное сопротивление (Вт-см) для обычных металлов при комнатной температуре
Алюминий 2.828 х 10 -6
Медь 1,676 x 10 -6
Серебро 1,586 x 10 -6
Золото 2,214 х 10 -6
Вольфрам 5,5 10 x 10 -6

Например, провод 10 калибра — 2.588 мм в диаметре.
Сопротивление на 1 см толстого медного провода составляет
3,186 x 10 -5 Вт / см. Миля этого провода имеет сопротивление 5,13 Вт.

Закон Ома: сопротивление и простые схемы

Цели обучения

К концу этого раздела вы сможете:

  • Объясните происхождение закона Ома.
  • Рассчитайте напряжения, токи или сопротивления по закону Ома.
  • Объясните, что такое омический материал.
  • Опишите простую схему.

Что движет током? Мы можем думать о различных устройствах, таких как батареи, генераторы, розетки и т. Д., Которые необходимы для поддержания тока. Все такие устройства создают разность потенциалов и условно называются источниками напряжения. Когда источник напряжения подключен к проводнику, он прикладывает разность потенциалов В, , которая создает электрическое поле.Электрическое поле, в свою очередь, воздействует на заряды, вызывая ток.

Ток, протекающий через большинство веществ, прямо пропорционален приложенному к нему напряжению В . Немецкий физик Георг Симон Ом (1787–1854) первым экспериментально продемонстрировал, что ток в металлической проволоке прямо пропорционален приложенному напряжению :

[латекс] I \ propto {V} \\ [/ латекс].

Это важное соотношение известно как закон Ома .Его можно рассматривать как причинно-следственную связь, в которой напряжение является причиной, а ток — следствием. Это эмпирический закон, подобный закону трения — явление, наблюдаемое экспериментально. Такая линейная зависимость возникает не всегда.

Сопротивление и простые схемы

Если напряжение увеличивает ток, что ему мешает? Электрическое свойство, препятствующее току (примерно такое же, как трение и сопротивление воздуха), называется сопротивлением R .Столкновения движущихся зарядов с атомами и молекулами вещества передают энергию веществу и ограничивают ток. Сопротивление обратно пропорционально току, или

[латекс] I \ propto \ frac {1} {R} \\ [/ latex].

Таким образом, например, ток уменьшается вдвое, если сопротивление увеличивается вдвое. Комбинируя отношения тока к напряжению и тока к сопротивлению, получаем

[латекс] I = \ frac {V} {R} \\ [/ латекс].

Это соотношение также называется законом Ома.Закон Ома в такой форме действительно определяет сопротивление определенных материалов. Закон Ома (как и закон Гука) не универсален. Многие вещества, для которых действует закон Ома, называются омическими . К ним относятся хорошие проводники, такие как медь и алюминий, и некоторые плохие проводники при определенных обстоятельствах. Омические материалы имеют сопротивление R , которое не зависит от напряжения В и тока I . Объект, который имеет простое сопротивление, называется резистором , даже если его сопротивление невелико.Единица измерения сопротивления — Ом, и обозначается символом Ω (греческая омега в верхнем регистре). Перестановка I = V / R дает R = V / I , и поэтому единицы сопротивления равны 1 Ом = 1 вольт на ампер:

[латекс] 1 \ Omega = 1 \ frac {V} {A} \\ [/ латекс].

На рисунке 1 показана схема простой схемы. Простая схема имеет один источник напряжения и один резистор. Можно предположить, что провода, соединяющие источник напряжения с резистором, имеют незначительное сопротивление, или их сопротивление можно включить в R .

Рис. 1. Простая электрическая цепь, в которой замкнутый путь для прохождения тока обеспечивается проводниками (обычно металлическими), соединяющими нагрузку с выводами батареи, представленной красными параллельными линиями. Зигзагообразный символ представляет собой единственный резистор и включает любое сопротивление в соединениях с источником напряжения.

Пример 1. Расчет сопротивления: автомобильная фара

Каково сопротивление автомобильной фары, через которую проходит 2.50 А при подаче на него 12,0 В?

Стратегия

Мы можем изменить закон Ома в соответствии с формулой I = V / R и использовать его для определения сопротивления.

Раствор

Перестановка I = V / R и замена известных значений дает

[латекс] R = \ frac {V} {I} = \ frac {\ text {12} \ text {.} \ Text {0 V}} {2 \ text {.} \ Text {50 A}} = \ text {4} \ text {.} \ text {80 \ Omega} \\ [/ latex].

Обсуждение

Это относительно небольшое сопротивление, но оно больше, чем хладостойкость фары.Как мы увидим в разделе «Сопротивление и удельное сопротивление», сопротивление обычно увеличивается с повышением температуры, поэтому лампа имеет меньшее сопротивление при первом включении и потребляет значительно больший ток во время короткого периода прогрева.

Сопротивления варьируются от многих порядков. Некоторые керамические изоляторы, например те, которые используются для поддержки линий электропередач, имеют сопротивление 10 12 Ом или более. Сопротивление между руками и ногами у сухого человека может составлять 10 5 Ом, в то время как сопротивление человеческого сердца составляет примерно 10 3 Ом.Кусок медного провода большого диаметра длиной в метр может иметь сопротивление 10 −5 Ом, а сверхпроводники вообще не имеют сопротивления (они неомичны). Сопротивление связано с формой объекта и материалом, из которого он состоит, как будет показано в разделах «Сопротивление и удельное сопротивление». Дополнительное понимание можно получить, решив I = V / R для V , что дает

В = ИК

Это выражение для В, можно интерпретировать как падение напряжения на резисторе, вызванное протеканием тока I .Для этого напряжения часто используется фраза IR drop . Например, фара в Примере 1 выше имеет падение IR на 12,0 В. Если напряжение измеряется в различных точках цепи, будет видно, что оно увеличивается на источнике напряжения и уменьшается на резисторе. Напряжение аналогично давлению жидкости. Источник напряжения подобен насосу, создающему перепад давления, вызывающему ток — поток заряда. Резистор похож на трубу, которая снижает давление и ограничивает поток из-за своего сопротивления.Здесь сохранение энергии имеет важные последствия. Источник напряжения подает энергию (вызывая электрическое поле и ток), а резистор преобразует ее в другую форму (например, тепловую энергию). В простой схеме (схема с одним простым резистором) напряжение, подаваемое источником, равно падению напряжения на резисторе, так как PE = q Δ V , и то же самое q протекает через каждую. Таким образом, энергия, подаваемая источником напряжения, и энергия, преобразуемая резистором, равны.(См. Рисунок 2.)

Рис. 2. Падение напряжения на резисторе в простой цепи равно выходному напряжению батареи.

Установление соединений: сохранение энергии

В простой электрической цепи единственный резистор преобразует энергию, поступающую от источника, в другую форму. Здесь о сохранении энергии свидетельствует тот факт, что вся энергия, подаваемая источником, преобразуется в другую форму одним резистором. Мы обнаружим, что сохранение энергии имеет другие важные применения в схемах и является мощным инструментом анализа схем.

Исследования PhET: закон Ома

Посмотрите, как уравнение закона Ома соотносится с простой схемой. Отрегулируйте напряжение и сопротивление и посмотрите, как изменяется ток по закону Ома. Размеры символов в уравнении изменяются в соответствии с принципиальной схемой.

Щелкните, чтобы запустить моделирование.

Сводка раздела

  • Простая схема — это схема , в которой есть один источник напряжения и одно сопротивление.
  • Одно из утверждений закона Ома дает соотношение между током I , напряжением В и сопротивлением R в простой схеме как [латекс] I = \ frac {V} {R} \\ [/ latex] .
  • Сопротивление выражается в единицах Ом (Ом), относящихся к вольтам и амперам на 1 Ом = 1 В / А.
  • Имеется падение напряжения или IR на резисторе, вызванное протекающим через него током, равным V = IR .

Концептуальные вопросы

  1. Падение напряжения IR на резисторе означает изменение потенциала или напряжения на резисторе.Изменится ли ток при прохождении через резистор? Объяснять.
  2. Как падение IR в резисторе похоже на падение давления в жидкости, протекающей по трубе?

Задачи и упражнения

1. Какой ток протекает через лампочку фонаря на 3,00 В, когда ее горячее сопротивление составляет 3,60 Ом?

2. Вычислите эффективное сопротивление карманного калькулятора с батареей на 1,35 В, через которую протекает ток 0,200 мА.

3.Каково эффективное сопротивление стартера автомобиля, когда через него проходит 150 А, когда автомобильный аккумулятор подает на двигатель 11,0 В?

4. Сколько вольт подается для работы светового индикатора DVD-плеера с сопротивлением 140 Ом при прохождении через него 25,0 мА?

5. (a) Найдите падение напряжения в удлинителе с сопротивлением 0,0600 Ом, через который проходит ток 5,00 А. (b) Более дешевый шнур использует более тонкую проволоку и имеет сопротивление 0.300 Ом. Какое в нем падение напряжения при протекании 5.00 А? (c) Почему напряжение на любом используемом приборе снижается на эту величину? Как это повлияет на прибор?

6. ЛЭП подвешена к металлическим опорам со стеклянными изоляторами, имеющими сопротивление 1,00 × 10 9 Ом. Какой ток протекает через изолятор при напряжении 200 кВ? (Некоторые линии высокого напряжения — постоянного тока.)

Глоссарий

Закон Ома:
— эмпирическое соотношение, указывающее, что ток I пропорционален разности потенциалов V , V ; его часто записывают как I = V / R , где R — сопротивление
сопротивление:
электрическое свойство, препятствующее току; для омических материалов это отношение напряжения к току, R = V / I
Ом:
единица сопротивления, равная 1Ω = 1 В / A
омическое:
тип материала, для которого действует закон Ома
простая схема:
схема с одним источником напряжения и одним резистором

Избранные решения проблем и упражнения

1.0,833 А

3. 7,33 × 10 −2 Ом

5. (а) 0,300 В

(б) 1,50 В

(c) Напряжение, подаваемое на любой используемый прибор, снижается, поскольку общее падение напряжения от стены до конечной мощности прибора является фиксированным. Таким образом, если падение напряжения на удлинителе велико, падение напряжения на приборе значительно уменьшается, поэтому выходная мощность прибора может быть значительно уменьшена, что снижает способность прибора работать должным образом.

Напряжение, ток, сопротивление и закон Ома

Добавлено в избранное Любимый 115

Основы электроэнергетики

Приступая к изучению мира электричества и электроники, важно начать с понимания основ напряжения, тока и сопротивления. Это три основных строительных блока, необходимых для управления электричеством и его использования. Сначала эти концепции могут быть трудными для понимания, потому что мы не можем их «видеть».Невооруженным глазом нельзя увидеть энергию, текущую по проводу, или напряжение батареи, стоящей на столе. Даже молния в небе, хотя и видимая, на самом деле не является обменом энергии между облаками и землей, а является реакцией в воздухе на энергию, проходящую через него. Чтобы обнаружить эту передачу энергии, мы должны использовать измерительные инструменты, такие как мультиметры, анализаторы спектра и осциллографы, чтобы визуализировать, что происходит с зарядом в системе. Однако не бойтесь, это руководство даст вам общее представление о напряжении, токе и сопротивлении, а также о том, как они соотносятся друг с другом.

Георг Ом

Рассмотрено в этом учебном пособии

  • Как электрический заряд соотносится с напряжением, током и сопротивлением.
  • Что такое напряжение, сила тока и сопротивление.
  • Что такое закон Ома и как его использовать для понимания электричества.
  • Простой эксперимент для демонстрации этих концепций.

Рекомендуемая литература

и nbsp

и nbsp

Электрический заряд

Электричество — это движение электронов.Электроны создают заряд, который мы можем использовать для работы. Ваша лампочка, стереосистема, телефон и т. Д. — все используют движение электронов для выполнения работы. Все они работают, используя один и тот же основной источник энергии: движение электронов.

Три основных принципа этого урока можно объяснить с помощью электронов или, более конкретно, заряда, который они создают:

  • Напряжение — это разница в заряде между двумя точками.
  • Текущий — это скорость прохождения заряда.
  • Сопротивление — это способность материала сопротивляться потоку заряда (тока).

Итак, когда мы говорим об этих значениях, мы на самом деле описываем движение заряда и, следовательно, поведение электронов. Цепь — это замкнутый контур, который позволяет заряду перемещаться из одного места в другое. Компоненты схемы позволяют нам контролировать этот заряд и использовать его для работы.

Георг Ом был баварским ученым, изучавшим электричество. Ом начинается с описания единицы сопротивления, которая определяется током и напряжением.Итак, начнем с напряжения и продолжим.

Напряжение

Мы определяем напряжение как количество потенциальной энергии между двумя точками цепи. Одна точка заряжена больше, чем другая. Эта разница в заряде между двумя точками называется напряжением. Он измеряется в вольтах, что технически представляет собой разность потенциалов между двумя точками, которые передают один джоуль энергии на каждый кулон заряда, который проходит через них (не паникуйте, если это не имеет смысла, все будет объяснено).Единица «вольт» названа в честь итальянского физика Алессандро Вольта, который изобрел то, что считается первой химической батареей. Напряжение представлено в уравнениях и схемах буквой «V».

При описании напряжения, силы тока и сопротивления часто используется аналогия с резервуаром для воды. По этой аналогии заряд представлен количеством воды , напряжение представлено давлением воды , а ток представлен потоком воды . Итак, для этой аналогии запомните:

  • Вода = Заряд
  • Давление = Напряжение
  • Расход = Текущий

Рассмотрим резервуар для воды на определенной высоте над землей.Внизу этого бака есть шланг.

Давление на конце шланга может представлять напряжение. Вода в баке представляет собой заряд. Чем больше воды в баке, тем выше заряд, тем больше давление измеряется на конце шланга.

Мы можем рассматривать этот резервуар как батарею, место, где мы накапливаем определенное количество энергии, а затем высвобождаем ее. Если мы сливаем из нашего бака определенное количество жидкости, давление, создаваемое на конце шланга, падает. Мы можем думать об этом как об уменьшении напряжения, например, когда фонарик тускнеет из-за разряда батарей.Также уменьшается количество воды, протекающей через шланг. Меньшее давление означает, что течет меньше воды, что приводит нас к течению.

Текущий

Мы можем представить себе количество воды, протекающей по шлангу из бака, как ток. Чем выше давление, тем выше расход, и наоборот. С водой мы бы измерили объем воды, протекающей через шланг за определенный период времени.18 электронов (1 кулон) в секунду проходят через точку в цепи. Ампер в уравнениях обозначается буквой «I».

Допустим, у нас есть два резервуара, в каждом из которых идет шланг снизу. В каждом резервуаре одинаковое количество воды, но шланг одного резервуара уже, чем шланг другого.

Мы измеряем одинаковое давление на конце любого шланга, но когда вода начинает течь, расход воды в баке с более узким шлангом будет меньше, чем расход воды в баке с более узким шлангом. более широкий шланг.С точки зрения электричества, ток через более узкий шланг меньше, чем ток через более широкий шланг. Если мы хотим, чтобы поток через оба шланга был одинаковым, мы должны увеличить количество воды (заряд) в резервуаре с помощью более узкого шланга.

Это увеличивает давление (напряжение) на конце более узкого шланга, проталкивая больше воды через резервуар. Это аналогично увеличению напряжения, которое вызывает увеличение тока.

Теперь мы начинаем видеть взаимосвязь между напряжением и током.Но здесь следует учитывать третий фактор: ширину шланга. В этой аналогии ширина шланга — это сопротивление. Это означает, что нам нужно добавить еще один термин в нашу модель:

  • Вода = заряд (измеряется в кулонах)
  • Давление = напряжение (измеряется в вольтах)
  • Расход = ток (измеряется в амперах, или сокращенно «амперах»)
  • Ширина шланга = сопротивление

Сопротивление

Снова рассмотрим наши два резервуара для воды, один с узкой трубой, а другой с широкой.

Само собой разумеется, что мы не можем протолкнуть через узкую трубу такой же объем, как более широкая, при том же давлении. Это сопротивление. Узкая труба «сопротивляется» потоку воды через нее, даже если вода находится под тем же давлением, что и резервуар с более широкой трубой.

С точки зрения электричества это представлено двумя цепями с одинаковым напряжением и разным сопротивлением. Цепь с более высоким сопротивлением позволит протекать меньшему количеству заряда, то есть в цепи с более высоким сопротивлением будет меньше тока, протекающего через нее.18 электронов. Это значение обычно обозначается на схемах греческой буквой «& ohm;», которая называется омега и произносится как «ом».

Закон Ома

Объединив элементы напряжения, тока и сопротивления, Ом разработал формулу:

Где

  • V = Напряжение в вольтах
  • I = ток в амперах
  • R = Сопротивление в Ом

Это называется законом Ома.Скажем, например, что у нас есть цепь с потенциалом 1 вольт, током 1 ампер и сопротивлением 1 Ом. Используя закон Ома, мы можем сказать:

Допустим, это наш резервуар с широким шлангом. Количество воды в баке определяется как 1 В, а «узость» (сопротивление потоку) шланга определяется как 1 Ом. Используя закон Ома, это дает нам ток (ток) в 1 ампер.

Используя эту аналогию, давайте теперь посмотрим на резервуар с узким шлангом. Поскольку шланг более узкий, его сопротивление потоку выше.Определим это сопротивление как 2 Ом. Количество воды в резервуаре такое же, как и в другом резервуаре, поэтому, используя закон Ома, наше уравнение для резервуара с узким шлангом составляет

а какой ток? Поскольку сопротивление больше, а напряжение такое же, это дает нам значение тока 0,5 А:

Значит, в баке с большим сопротивлением ток меньше. Теперь мы видим, что, зная два значения закона Ома, мы можем решить третье.Продемонстрируем это на эксперименте.

Эксперимент по закону Ома

Для этого эксперимента мы хотим использовать 9-вольтовую батарею для питания светодиода. Светодиоды хрупкие и могут пропускать только определенное количество тока, прежде чем они перегорят. В документации к светодиоду всегда будет «текущий рейтинг». Это максимальное количество тока, которое может пройти через конкретный светодиод, прежде чем он перегорит.

Необходимые материалы

Для проведения экспериментов, перечисленных в конце руководства, вам потребуется:

ПРИМЕЧАНИЕ. Светодиоды — это так называемые «неомические» устройства.Это означает, что уравнение для тока, протекающего через сам светодиод, не так просто, как V = IR. Светодиод вызывает в цепи то, что называется «падением напряжения», тем самым изменяя величину протекающего через нее тока. Однако в этом эксперименте мы просто пытаемся защитить светодиод от перегрузки по току, поэтому мы пренебрегаем токовыми характеристиками светодиода и выбираем номинал резистора, используя закон Ома, чтобы быть уверенным, что ток через светодиод безопасно ниже 20 мА.

В этом примере у нас есть батарея на 9 В и красный светодиод с номинальным током 20 мА, или 0.020 ампер. В целях безопасности мы предпочли бы не управлять максимальным током светодиода, а его рекомендуемым током, который указан в его техническом описании как 18 мА или 0,018 ампер. Если просто подключить светодиод напрямую к батарее, значения закона Ома будут выглядеть так:

следовательно:

, а поскольку сопротивления еще нет:

Деление на ноль дает бесконечный ток! Что ж, на практике не бесконечно, но столько тока, сколько может доставить аккумулятор. Поскольку мы НЕ хотим, чтобы через светодиод проходил такой большой ток, нам понадобится резистор.Наша схема должна выглядеть так:

Мы можем использовать закон Ома точно так же, чтобы определить значение резистора, которое даст нам желаемое значение тока:

следовательно:

вставляем наши значения:

решение для сопротивления:

Итак, нам нужно сопротивление резистора около 500 Ом, чтобы ток через светодиод не превышал максимально допустимый.

500 Ом не является обычным значением для стандартных резисторов, поэтому в этом устройстве вместо него используется резистор 560 Ом.Вот как выглядит наше устройство вместе.

Успех! Мы выбрали номинал резистора, который достаточно высок, чтобы ток через светодиод не превышал его максимального номинала, но достаточно низкий, чтобы ток был достаточным, чтобы светодиод оставался красивым и ярким.

Этот пример светодиодного / токоограничивающего резистора является обычным явлением в хобби-электронике. Вам часто придется использовать закон Ома, чтобы изменить величину тока, протекающего по цепи. Другой пример такой реализации — светодиодные платы LilyPad.

При такой настройке вместо того, чтобы выбирать резистор для светодиода, резистор уже встроен в светодиод, поэтому ограничение тока выполняется без необходимости добавлять резистор вручную.

Ограничение тока до или после светодиода?

Чтобы немного усложнить ситуацию, вы можете разместить токоограничивающий резистор по обе стороны от светодиода, и он будет работать точно так же!

Многие люди, впервые изучающие электронику, борются с идеей, что резистор, ограничивающий ток, может находиться по обе стороны от светодиода, и схема по-прежнему будет работать как обычно.

Представьте себе реку в непрерывной петле, бесконечную, круглую, текущую реку. Если бы мы построили в нем плотину, вся река перестала бы течь, а не только с одной стороны. Теперь представьте, что мы помещаем водяное колесо в реку, которое замедляет течение реки. Неважно, где в круге находится водяное колесо, оно все равно замедлит поток на всей реке .

Это чрезмерное упрощение, поскольку токоограничивающий резистор нельзя размещать где-либо в цепи ; он может быть размещен на с любой стороны светодиода для выполнения своей функции.

Чтобы получить более научный ответ, мы обратимся к закону напряжения Кирхгофа. Именно из-за этого закона резистор, ограничивающий ток, может располагаться по обе стороны светодиода и при этом иметь тот же эффект. Для получения дополнительной информации и некоторых практических задач с использованием KVL посетите этот веб-сайт.

Ресурсы и дальнейшее развитие

Теперь вы должны понять концепции напряжения, тока, сопротивления и их взаимосвязь. Поздравляю! Большинство уравнений и законов для анализа цепей можно вывести непосредственно из закона Ома.Зная этот простой закон, вы понимаете концепцию, лежащую в основе анализа любой электрической цепи!

Эти концепции — лишь верхушка айсберга. Если вы хотите продолжить изучение более сложных приложений закона Ома и проектирования электрических цепей, обязательно ознакомьтесь со следующими руководствами.

Закон Ома для начинающих и новичков

Закон Ома для начинающих и новичков
Основной закон Ома

HTML от: http: // www.btinternet.com/~dtemicrosystems/beginner.htm

ЧТО ЭТО. КАК И ГДЕ ПРИМЕНЯТЬ


Хотя закон Ома применим не только к резисторам — как мы увидим позже — кажется, логично включить его сейчас, так как он будет хорошей точкой отсчета для резистора подробности приведены выше.

ЧТО ТАКОЕ ЗАКОН ОМС? :
На диаграмме слева закон Ома определяется как; «При условии, что температура остается постоянным, отношение разности потенциалов (стр.г) на концах проводника (R) к току (I), протекающему в этом проводнике, также будет постоянным ». проповедь!

Из этого мы заключаем, что; Ток равен напряжению, разделенному на сопротивление (I = V / R), Сопротивление равно напряжению, разделенному на ток (R = V / I), а напряжение равно току, умноженному на Сопротивление (V = IR).
Важным фактором здесь является температура. Если расчеты по закону Ома должны давать точные результаты, это должно оставаться постоянным. В «реальном» мире это почти никогда делает, и с точки зрения новичка вам не нужно беспокоиться об этом. более того, поскольку схемы, с которыми вы, вероятно, столкнетесь в данный момент, — и около 95% все те, с которыми вы столкнетесь в будущем — будут работать нормально, даже если они горячие или холодно!

ЗАКОН ОМ ПРОСТОЙ ПУТЬ:
На рисунке 1 слева показан наиболее распространенный треугольник закона Ома.Начиная с любого раздела треугольник, его можно читать в любом направлении — по часовой стрелке, против часовой стрелки, сверху вниз или снизу вверх — и он всегда предоставит вам расчет, который вы требовать.


Если рассматривать (слегка диагональные) горизонтальные линии как знаки разделения, а короткие вертикальная линия как знак умножения, и всегда начинайте расчет с любого количества вы ищете, т.е. «V =», «I =» или «R =» у вас будет все возможные формулы, основанные на этом конкретном законе Ома.Это; V = IxR, I = V / R, R = V / I. Это должно быть очевидно, что формула работает и в обратном направлении, то есть; IxR = V, RxI = V, V / I = R и V / R = I.

Эти объяснения могут показаться немного сложными, но их легко применить на практике. Как правило, для начинающих будет более понятен полезный пример, а не эти причудливые столы, так что поехали.

ПОЯСНЕНИЕ НА ПРИМЕРЕ:
Допустим, друг просит вас установить красную сигнальную лампу на приборную панель его / ее автомобиля.Будучи энтузиастом электроники, вы решили использовать красный светоизлучающий диод (LED), поскольку они излучают достаточно чистый красный свет, не выделяют чрезмерного тепла лампы накаливания, они также дешевы по сравнению с ними и выглядят высокотехнологичными!

С точки зрения принципиальной схемы расположение будет таким, как показано слева.
ОГРАНИЧИТЕЛЬ ТОКА РЕЗИСТОР:
Стандартные светодиоды не могут получать питание напрямую от 12 В без установки ограничения тока. резистор включен последовательно с одним из выводов, но какое значение вы используете? Как общее правило на практике, вашему среднему светодиоду требуется около 15 мА тока для получения приемлемого света. выход.Учитывая это, теперь у нас есть две известные величины для использования в наших расчетах: напряжение и ток. Используя треугольник закона Ома, требуемое сопротивление равно рассчитывается по формуле «R = V / I», которая дает нам 12 / 0,015 = 800 Ом (см. ниже для ‘Vf’). Не забывайте, ток измеряется в амперах.

На первый взгляд может показаться, что это проблема, поскольку 800 Ом не является стандартным значением. доступен в диапазоне E12. Однако в этом типе цепи сопротивление не критического, и ближайшего предпочтительного значения будет вполне достаточно, а именно 820 Ом.

НЕ ЗАБУДЬТЕ О «Vf»:
Все электронные компоненты демонстрируют — в большей или меньшей степени — то, что известно как ‘выбывать’. Он имеет различные сокращения в зависимости от типа компонента, к которому он ссылается, но обычно они означают одно и то же. На самом деле это количество напряжения, которое используется компонентом для работы. Для стандартного светодиода это значение составляет около 1,5 — 3 вольт, и для наших целей мы примем 2 В.

Это означает, что из ваших 12 вольт от аккумулятора 2 вольта будут израсходованы светодиодом. Сама по себе, поэтому ваш расчет закона Ома должен быть основан на 10 вольт.Истинная формула должно быть на самом деле; (12-Vf) /0.015=666.66 Ом (повторяется для математиков среди ты!). Ближайшее значение в диапазоне E12 составляет 680 Ом, поэтому в идеале это должно быть ценность для использования. В целях безопасности, когда ваши результаты заканчиваются непонятными значениями, такими как при этом всегда выбирайте ближайшее значение выше, а не следующее ниже.

РЕЗИСТОРЫ ПОСЛЕДОВАТЕЛЬНО И ПАРАЛЛЕЛЬНО

Возможно «изготовление» стандартных и нестандартных номиналов резисторов на соответствовать вашим потребностям, если требуемое значение отсутствует.Это достигается подключением два или более из них параллельно, последовательно или их комбинация. Однако вам нужно заранее знать, как они взаимодействуют друг с другом в этих конфигурациях.

РЕЗИСТОРЫ СЕРИИ:
На рисунке слева показаны три последовательно включенных резистора. Это самый простой способ получить «фабричные» значения. Формула прямой для расчет окончательного значения; «R» = R1 + R2 + R3. Другими словами, независимо от количества резисторов или их индивидуальных значений, окончательное значение «R» всегда будет их суммой.Расчет по ноге изображения работает для любого количества значений, соединенных последовательно, вы просто продолжаете добавлять их в список других.

ПАРАЛЛЕЛЬНЫЕ РЕЗИСТОРЫ:
При параллельном соединении резисторов расчеты сложнее. На рисунке слева показаны три резистора, включенных параллельно. Мы будем не заботиться о трех отдельных ценностях, а сосредоточиться на том, что окончательное значение «R» будет с использованием примеров значений.Расчет у подножия изображение работает для любого количества значений, подключенных параллельно, вы просто продолжаете добавлять их в список других в скобках. Для наших целей предположим, что R1 составляет 47K, R2 — это 150 КБ, а R3 — 820 КБ. Формула прямой линии для окончательного значения: «R» = 1 / ( (1 / R1) + (1 / R2) + (1 / R3)).
В этой формуле содержится много ненужных скобок (скобок), и вот причина; почти для всех расчетов электроники вам нужно использовать калькулятор, который отдает приоритет функциям умножения и деления, а также наиболее научным калькуляторы работают именно так.К сожалению, многие «простые» калькуляторы этого не делают, поэтому дополнительные скобки были показаны, чтобы компенсировать те, которые вычисляют цифры в порядок их ввода. С научным калькулятором вы можете использовать упрощенный формула прямой линии; «R» = 1 / (1 / R1 + 1 / R2 + 1 / R3).

Важно определить значения в скобках перед применением окончательного Функция «1 /». Если вы этого не сделаете, то формула станет 1 / R1 + 1 / R2 + 1 / R3 =? если ты попробуйте это на своем калькуляторе, используя наши примеры значений, вы, вероятно, подумаете, что у вас есть неправильный ответ (0.02916 …), а у вас нет. На самом деле у вас точно есть право ответ, ему просто не хватает последней функции «1 /».

Если в вашем калькуляторе есть «1 / X» (единица, разделенная на все, что показано в display), затем нажмите эту кнопку сейчас. Если эта функция недоступна, поместите результат в памяти (убедившись, что раньше там ничего не было), очистите дисплей а затем введите «1 MR =» или другую подобную последовательность. Результат должен быть 34,29 кОм (34 290,29005 Ом), что правильно.Итак, итоговое значение всех трех параллельно включенные резисторы — 34,29К.

ДЛЯ ЧЕГО ДРУГОЙ ТРЕУГОЛЬНИК?

На рис. 2 слева показан второй по величине часто используемый треугольник закона Ома. К этому можно подойти точно так же, как и к выше, только на этот раз он используется для расчета мощности, напряжения и тока. В объяснения здесь таковы; Ток равен мощности, деленной на напряжение (I = P / V), мощность равна Ток, умноженный на напряжение (P = VxI), и напряжение равно мощности, деленной на ток (V = P / I).


ДЕМОНСТРАЦИЯ НА ПРИМЕРЕ:
Чтобы продемонстрировать использование этого треугольника, мы применим его к обычному электрическому / электронному компонент — трансформатор. Их характеристики обычно цитируются с точки зрения выходное напряжение их вторичной обмотки вместе с возможной мощностью (в ВА) это напряжение. Термин «VA» означает ватты и происходит от формулы «Вольт на Ампер» (отсюда — ВА). Это обозначается буквой «P» в треугольник закона Ома.

КАКОЙ ТРАНСФОРМАТОР ДЕЛАТЬ НУЖНО ?
Допустим, у вас есть цепь на 9 В, которая потребляет 1.5 ампер тока. Вы хотите знать, если трансформатор с номиналом 9 В при 25 ВА будет достаточным для питания вашей цепи. Ты уже есть две величины от трансформатора — напряжение (В) и мощность (P или VA), и по ним вы хотите узнать, какой будет доступный ток (I).


Используя формулу «I = P / V» из треугольника, результат: 25/9 = 2,77 усилители. Таким образом, этот трансформатор подойдет для ваших нужд на 1,5 А. В целях безопасности если цепь будет постоянно потреблять определенное количество тока, независимо от каким может быть этот ток, тогда всегда используйте трансформатор, доступный как минимум на 50% больше ток, чем требует ваша схема.Никогда не используйте тот, у которого «ровно достаточно» тока, потому что он станет слишком горячим, что приведет к изменению характеристик напряжения и текущий указан. Эти изменения сложны, и мы не будем их объяснять в этой статье. раздел для начинающих, но будьте осторожны при выборе трансформаторов.

Ток, сопротивление, напряжение и мощность

Текущий
Ток — это мера потока электрического заряда через материал.Материал, который может переносить поток заряда, называется проводником. Ток определяется как количество заряда, которое проходит через проводник за определенное время. Единицей измерения тока является ампер (А), который равен одному кулону в секунду (кулон — единица заряда),

Символ I используется для представления тока (хотя J часто используется в инженерные источники). Ток I через проводник зависит от его площади A , концентрации n носителей заряда, величины заряда q каждого носителя и величины их средней (или «дрейфующей») скорости. v d ,

Плотность тока — это количество тока, протекающего через проводник, деленное на его площадь,

Направление потока тока определяется в терминах потока положительных зарядов (даже если фактические носители заряда отрицательны).Единица измерения плотности тока — Амперы на квадратный метр (А / м 2 ).

Удельное сопротивление
Некоторые проводники переносят заряд легче, чем другие. Удельное сопротивление материала описывает, насколько легко может течь заряд. Хорошие проводники имеют небольшое удельное сопротивление, а хорошие изоляторы — большое. Удельное сопротивление ρ (греческая буква «ро») равно величине электрического поля в материале, деленной на плотность тока,

Единицей измерения величины электрического поля является Вольт на метр (В / м. ), а единицей измерения плотности тока является Ампер на квадратный метр (А / м 2 ), поэтому единицей измерения удельного сопротивления является Вольт-метр на Ампер,

Многие проводники подчиняются закону Ома.Материалы, которые подчиняются закону Ома, имеют постоянное удельное сопротивление независимо от значений электрического поля E и плотности тока J. Формулы, относящиеся к цепям, верны для «омических» материалов, а «неомические» материалы в этом курсе не обсуждаются.

Удельное сопротивление омического проводника зависит от температуры материала. Зависящее от температуры удельное сопротивление ρ (T) можно найти по формуле:

Для этой формулы требуется ρ 0 , удельное сопротивление при эталонной температуре T 0 .Температурный коэффициент удельного сопротивления α различен для каждого материала. Для температур в градусах Цельсия (℃) температурный коэффициент удельного сопротивления имеет единицы: 1 / ℃ = (℃) (-1)

Сопротивление
Удельное сопротивление — это свойство материала, а сопротивление — это свойство определенного куска этого материала. Сопротивление куска проводника зависит от его длины L, площади A и удельного сопротивления ρ,

Единицей измерения сопротивления является Ом, который обозначается греческой буквой Ω («омега»).Один Ом равен одному Вольту на Ампер,

Сопротивление зависит от температуры так же, как и удельное сопротивление,

Для этой формулы требуется R 0 , сопротивление при эталонной температуре T 0 . Температурный коэффициент α отличается для каждого материала, как описано в разделе Сопротивление .

Резистор — это устройство, которое используется в электрических цепях и имеет определенное фиксированное сопротивление. Резисторы изготавливаются путем выбора куска материала с определенным удельным сопротивлением, длиной и площадью и обертывания его изолятором с проводами, выходящими из каждого конца.На принципиальных схемах он представлен символом

Напряжение
Напряжение — это разница в электрическом потенциале между двумя точками. Если электрическое поле однородно через проводник, разность потенциалов будет равна,

Используя уравнения в Ток, Удельное сопротивление, и Сопротивление секций, можно найти другое уравнение для разности потенциалов,

Уравнение V = IR означает, что разность потенциалов или напряжение на резисторе можно найти, умножив его сопротивление на ток, протекающий через него.Единицей измерения разности потенциалов является вольт (В), который равен джоуля на кулон (Дж / Кл).

Источник напряжения — это устройство, используемое в электрических цепях, которое имеет фиксированную разность потенциалов между его концами. Источником напряжения может быть батарея или другой источник постоянного тока с фиксированной разностью потенциалов. На принципиальных схемах он представлен символом

Если концы источника напряжения соединены через цепь с любым количеством резисторов или других компонентов, образуется полная цепь, и ток может течь от одного вывода к другой.Если ток течет, он будет одинаковым на обоих выводах источника напряжения.

Источник напряжения, который является частью полной цепи, может создавать электродвижущую силу, которая обозначается символом ε («скрипт e»). Единицей измерения электродвижущей силы является вольт (В), который равен джоуля на кулон (Дж / Кл). Для идеального источника электродвижущая сила равна разности напряжений,

Настоящие источники, такие как батареи, не идеальны, поэтому существует некоторое внутреннее сопротивление.Если внутреннее сопротивление батареи равно r, то разница напряжений на батарее составляет

Это также называется напряжением на клеммах батареи. Если полная цепь сделана с использованием резистора с сопротивлением R, ток, протекающий по цепи, можно найти с помощью уравнения V = IR,

Ток равен электродвижущему. сила источника, деленная на полное сопротивление цепи.

Мощность
Мощность (P) — это мера скорости, с которой энергия передается или используется элементом схемы. Источники напряжения обеспечивают питание, а резисторы используют мощность (рассеивая ее в виде тепла). Мощность равна напряжению на элементе схемы, умноженному на ток, протекающий через него,

Единицей измерения мощности является ватт (Вт), который равен джоулям в секунду,

Это соотношение может быть найденная по формуле для мощности,

Мощность, потребляемая или рассеиваемая резистором, может быть найдена по формуле V = IR.Эта формула может использоваться для замены напряжения или тока в формуле мощности,

,

и,

Выходная мощность батареи с внутренним сопротивлением может быть найдена по формуле V = ε-Ir и формула мощности,

Исследование закона Ома | BCHydro Power Smart для школ

Обзор

Посмотрите видео, объясняющее закон Ома, затем постройте схему и проведите демонстрацию, чтобы учащиеся могли наблюдать взаимосвязь между напряжением, током и сопротивлением.

Инструкции
Разъяснение закона Ома

Посмотрите видеоролик «Разъяснение закона Ома» , чтобы познакомить студентов с законом Ома.

Представьте тему

Настройте схему, как показано здесь:

Просмотрите рабочий лист «Изучение закона Ома» со студентами.

Проведите демонстрацию
  • Используя амперметр и вольтметр, покажите учащимся, как считывать значения тока и напряжения в цепи.Пока вы проводите измерения, запишите данные на доске и попросите учащихся записать данные на своих рабочих листах. Напомните им преобразовать мА в А; 1 ампер = 1000 миллиампер.
  • Последовательно добавьте сухую ячейку и повторите измерения.
  • Если у вас больше сухих ячеек, добавляйте их последовательно по одной и повторяйте измерения каждый раз.
Постройте график сопротивления

Используя данные из таблицы, попросите учащихся построить график зависимости напряжения от тока (В противЯ). Убедитесь, что они помечают все части своего графика. Объясните, какая линия лучше всего подходит, и попросите учащихся нарисовать ее на своем графике.

Попросите учащихся вычислить наклон линии по наиболее подходящей линии:

  • Выберите две точки на прямой (точка A и точка B).
  • Рассчитайте разницу между напряжениями в двух точках (НАРАЩИВАНИЕ наклона).
  • Вычислите разницу между током в двух точках (ПЕРЕДАЧА НАКЛОНА).
  • Разделите ПОДЪЕМ на БЕГ. Это наклон линии.

Сопротивление цепи математически отображается в виде алгебраического уравнения:

  • Сопротивление = напряжение / ток.
Интерпретация данных

Сравните наклон графиков, созданных вашими учениками, с заявленным сопротивлением резистора, который вы использовали. Цифры должны быть похожими (разные числа являются результатом индивидуальных различий в выборе наиболее подходящей линии).

Связь между напряжением и током — это закон Ома, а наклон линии на графике этих двух величин является значением сопротивления в цепи. Уравнение закона Ома можно представить тремя способами:

  • R = V / I (сопротивление = напряжение, деленное на ток)
  • V = I x R (напряжение = ток x сопротивление)
  • I = V / R (ток = напряжение, деленное на сопротивление)

Калькулятор закона Ома

Укажите любые 2 значения и нажмите «Рассчитать», чтобы получить другие значения в уравнениях закона Ома V = I × R и P = V × I.

Связано: счетчик резисторов

Закон Ома

Закон

Ома гласит, что ток через проводник между двумя точками прямо пропорционален напряжению. Это верно для многих материалов в широком диапазоне напряжений и токов, а сопротивление и проводимость электронных компонентов, изготовленных из этих материалов, остаются постоянными. Закон Ома верен для цепей, содержащих только резистивные элементы (без конденсаторов или катушек индуктивности), независимо от того, является ли управляющее напряжение или ток постоянным (DC) или изменяющимся во времени (AC).Его можно выразить с помощью ряда уравнений, обычно всех трех вместе, как показано ниже.

Где:

В — напряжение в вольтах
R — сопротивление в Ом
Я ток в амперах

Электроэнергетика

Мощность — это скорость, с которой электрическая энергия передается по электрической цепи за единицу времени, обычно выражается в ваттах в Международной системе единиц (СИ). Электроэнергия обычно вырабатывается электрическими генераторами и поставляется предприятиям и домам через электроэнергетику, но также может поступать от электрических батарей или других источников.

В резистивных цепях закон Джоуля можно объединить с законом Ома для получения альтернативных выражений для количества рассеиваемой мощности, как показано ниже.

Где:

P — мощность в ваттах

Колесо формул закона Ома

Ниже приведено колесо формул для соотношений по закону Ома между P, I, V и R. Это, по сути, то, что делает калькулятор, и просто представление алгебраической манипуляции с уравнениями выше. Чтобы использовать колесо, выберите переменную для поиска в середине колеса, затем используйте соотношение для двух известных переменных в поперечном сечении круга.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *