Правильная схема подключения светодиодов: последовательно или параллельно
Главная > Схемы и чертежи > Какая схема подключения светодиодов лучше — последовательная или параллельная
Самое правильное подключение нескольких светодиодов — последовательное. Сейчас объясню почему.
Дело в том, что определяющим параметром любого светодиода является его рабочий ток. Именно от тока через светодиод зависит то, какова будет мощность (а значит и яркость) светодиода. Именно превышение максимального тока приводит к чрезмерному повышению температуры кристалла и выходу светодиода из строя — быстрому перегоранию либо постепенному необратимому разрушению (деградации).
Ток — это главное. Он указан в технических характеристиках светодиода (datasheet). А уже в зависимости от тока, на светодиоде будет то или иное напряжение. Напряжение тоже можно найти в справочных данных, но его, как правило, указывают в виде некоторого диапазона, потому что оно вторично.
Для примера, заглянем в даташит светодиода 2835:
Как видите, прямой ток указан четко и определенно — 180 мА. А вот напряжение питания светодиодов при таком токе имеет некоторый разброс — от 2.9 до 3.3 Вольта.
Получается, что для того, чтобы задать требуемый режим работы светодиода, нужно обеспечить протекание через него тока определенной величины. Следовательно, для питания светодиодов нужно использовать источник тока, а не напряжения.
Источник тока (или генератор тока) — источник электрической энергии, который поддерживает постоянное значение силы тока через нагрузку с помощью изменения напряжения на своем выходе. Если сопротивление нагрузки, например, возрастает, источник тока автоматически повышает напряжение таким образом, чтобы ток через нагрузку остался неизменным и наоборот. Источники тока, которыми запитывают светодиоды, еще называют драйверами.
Конечно, к светодиоду можно подключить источник стабилизированного напряжения (например, выход лабораторного блока питания), но тогда нужно точно знать какой величины должно быть напряжение для получения заданного тока через светодиод.
Например, в нашем примере со светодиодом 2835, можно было бы подать на него где-то 2.5 В и постепенно повышать напругу до тех пор, пока ток не станет оптимальным (150-180 мА).
Так делать можно, но в этом случае придется настраивать выходное напряжение блока питания под каждый конкретный светодиод, т.к. все они имеют технологический разброс параметров. Если, подключив к одному светодиоду 3.1В, вы получили максимальный ток в 180 мА, то это не значит, что поменяв светодиод на точно такой же из той же партии, вы не сожжёте его (т.к. ток через него при напряжении 3.1В запросто может превысить максимально допустимое значение).
К тому же необходимо очень точно поддерживать напряжение на выходе блока питания, что накладывает определенные требования к его схемотехнике. Превышение заданного напряжения всего на 10% почти гарантированно приведет к перегреву и выходу светодиода из строя, так как ток при этом превысит все мыслимые значения.
Вот прекрасная иллюстрация к вышесказанному:
А самое неприятное то, что проводимость любого светодиода (который по сути является p-n-переходом) находится в очень сильной зависимости от температуры. На практике это приводит к тому, что по мере разогрева светодиода, ток через него начинает неумолимо возрастать. Чтобы вернуть ток к требуемому значению, придется понижать напряжение. В общем, как ни крути, а без контроля тока никак не обойтись.
Поэтому самым правильным и простым решением будет использовать для подключения светодиодов драйвера тока (он же источник тока). И тогда будет совершенно неважно, какой вы возьмете светодиод и каким будет прямое напряжение на нем. Нужно просто найти драйвер на нужный ток и дело в шляпе.
Теперь, возвращаемся к главному вопросу статьи — почему все-таки последовательное подключение, а не параллельное? Давайте посмотрим, в чем разница.
Параллельное подключение
При параллельном подключении светодиодов, напряжение на них будет одинаковым. А так как не существует двух диодов с абсолютно одинаковыми характеристиками, то будет наблюдаться следующая картина: через какой-то светодиод будет идти ток ниже номинального (и светить он будет так себе), зато через соседний светодиод будет херачить ток в два раза превышающий максимальный и через полчаса он сгорит (а может и быстрее, если повезет).
Очевидно, что такого неравномерного распределения мощностей нужно избегать.
Для того, чтобы существенно сгладить разброс в ТТХ светодиодов, лучше подключать их через ограничительные резисторы. Напряжение блока питания при этом может быть существенно выше прямого напряжения на светодиодах. Как подключать светодиоды к источнику питания показано на схеме:
Проблема такой схемы подключения светодиода в том, что чем больше разница между напряжением блока питания и напряжением на диодах, тем больше бесполезной мощности рассеивается на ограничительных резисторах и тем, соответственно, ниже КПД всей схемы.
Ограничение тока происходит по простой схеме: повышение тока через светодиод приводит к повышению тока и через резистор тоже (т.к. они включены последовательно). На резисторе увеличивается падение напряжения, а на светодиоде, соответственно, уменьшается (т.к. общее напряжение постоянно). Уменьшение напряжения на светодиоде автоматически приводит к снижению тока. Так все и работает.
В общем, сопротивление резисторов рассчитывается по закону Ома. Разберем на конкретном примере. Допустим, у нас есть светодиод с номинальным током 70 мА, рабочее напряжение при таком ток равно 3.6 В (это все берем из даташита к светодиоду). И нам нужно подключить его к 12 вольтам. Значит, нам нужно рассчитать сопротивление резистора:
Получается, что для питания светодиода от 12 вольт нужно подключить его через 1-ваттный резистор на 120 Ом.
Точно таким же образом, можно посчитать, каким должно быть сопротивление резистора под любое напряжение. Например, для подключение светодиода к 5 вольтам сопротивление резистора надо уменьшить до 24 Ом.
Значения резисторов под другие токи можно взять из таблицы (расчет производился для светодиодов с прямым напряжением 3.3 вольта):
Uпит | ILED | ||||||||
---|---|---|---|---|---|---|---|---|---|
5 мА | 10 мА | 20 мА | 30 мА | 50 мА | 70 мА | 100 мА | 200 мА | 300 мА | |
5 вольт | 340 Ом | 170 Ом | 85 Ом | 57 Ом | 34 Ом | 24 Ом | 17 Ом | 8. 5 Ом | 5.7 Ом |
12 вольт | 1.74 кОм | 870 Ом | 435 Ом | 290 Ом | 174 Ом | 124 Ом | 87 Ом | 43 Ом | 29 Ом |
24 вольта | 4.14 кОм | 2.07 кОм | 1.06 кОм | 690 Ом | 414 Ом | 296 Ом | 207 Ом | 103 Ом | 69 Ом |
При подключении светодиода к переменному напряжению (например, к сети 220 вольт), можно повысить КПД устройства, взяв вместо балластного резистора (активного сопротивления) неполярный конденсатор (реактивное сопротивление). Подробно и с конкретными примерами мы разбирали этот момент в статье про подключение светодиода к 220 В.
Последовательное подключение
При последовательном же подключении светодиодов через них протекает один и тот же ток. Количество светодиодов не имеет значение, это может быть всего один светодиод, а может быть 20 или даже 100 штук.
Например, мы можем взять один светодиод 2835 и подключить его к драйверу на 180 мА и светодиод будет работать в нормальном режиме, отдавая свою максимальную мощность. А можем взять гирлянду из 10 таких же светодиодов и тогда каждый светодиод также будет работать в нормальном паспортном режиме (но общая мощность светильника, конечно, будет в 10 раз больше).
Ниже показаны две схемы включения светодиодов, обратите внимание на разницу напряжений на выходе драйвера:
Так что на вопрос, каким должно быть подключение светодиодов, последовательным или параллельным, может быть только один правильный ответ — конечно, последовательным!
Количество последовательно подключенных светодиодов ограничено только возможностями самого драйвера.
Идеальный драйвер может бесконечно повышать напряжение на своем выходе, чтобы обеспечить нужный ток через нагрузку, поэтому к нему можно подключить бесконечное количество светодиодов. Ну а реальные устройства, к сожалению, имеют ограничение по напряжению не только сверху, но и снизу.
Вот пример готового устройства:
Мы видим, что драйвер способен регулировать выходное напряжение только лишь в пределах 64…106 вольт. Если для поддержания заданного тока (350 мА) нужно будет поднять напряжение выше 106 вольт, то облом. Драйвер выдаст свой максимум (106В), а уж какой при этом будет ток — это от него уже не зависит.
И, наоборот, к такому led-драйверу нельзя подключать слишком мало светодиодов. Например, если подключить к нему цепочку из 10-ти последовательно включенных светодиодов, драйвер никак не сможет понизить свое выходное напряжение до необходимых 32-36В. И все десять светодидов, скорее всего, просто сгорят.
Наличие минимального напряжения объясняется (в зависимости от схемотехнического решения) ограничениями мощности выходного регулирующего элемента либо выходом за предельные режимы генерации импульсного преобразователя.
Разумеется, драйверы могут быть на любое входное напряжение, не обязательно на 220 вольт. Вот, например, драйвер превращающий любой источник постоянного напряжения (блок питания) от 6 до 20 вольт в источник тока на 3 А:
Вот и все. Теперь вы знаете, как включить светодиод (один или несколько) — либо через токоограничительный резистор, либо через токозадающий драйвер.
Как выбрать нужный драйвер?
Тут все очень просто. Выбирать нужно всего лишь по трем параметрам:
- выходной ток;
- максимальное выходное напряжение;
- минимальное выходное напряжение.
Выходной (рабочий) ток драйвера светодиодов — это самая важная характеристика. Ток должен быть равен оптимальному току для светодиодов.
Например, в нашем распоряжении оказалось 10 штук полноспектральных светодиодов для фитолампы:
Номинальный ток этих диодов — 700 мА (берется из справочника). Следовательно, нам нужен драйвер тока на 700 мА. Ну или чуточку меньше, чтобы продлить срок жизни светодиодов.
Максимальное выходное напряжение драйвера должно быть больше, чем суммарное прямое напряжение всех светодиодов. Для наших фитосветодиодов прямое напряжение лежит в диапазоне 3.
Минимальное напряжение, соответственно, рассчитывается по минимальному значению прямого напряжения на светодиодах. То есть оно должно быть не более 3В х 10 = 30 Вольт. Другими словами, наш драйвер должен уметь снижать выходное напряжение до 30 вольт (или ниже).
Таким образом, нам нужно подобрать схему драйвера, рассчитанного на ток 650 мА (пусть будет чуть меньше номинального) и способного по необходимости выдавать напряжение в диапазоне от 30 до 40 вольт.
Следовательно, для наших целей подойдет что-нибудь вроде этого:
Разумеется, при выборе драйвера диапазон напряжений всегда можно расширять в любую сторону. Например, вместо драйвера с выходом на 30-40 В прекрасно подойдет тот, который выдает от 20 до 70 Вольт.
Примеры драйверов, идеально совместимых с различными типами светодиодов, приведены в таблице:
Светодиоды | Какой нужен драйвер |
---|---|
60 мА, 0. 2 Вт (smd 5050, 2835) | см. схему на TL431 |
150мА, 0.5Вт (smd 2835, 5630, 5730) | драйвер 150mA, 9-34V (можно одновременно подключить от 3 до 10 светодиодов) |
300 мА, 1 Вт (smd 3528, 3535, 5730-1, LED 1W) | драйверы 300мА, 3-64V (на 1-24 последовательно включенных светодиода) |
700 мА, 3 Вт (led 3W, фитосветодиоды) | драйвер 700мА (для 6-10 светодиодов) |
3000 мА, 10 Ватт (XML2 T6) | драйвер 3A, 21-34V (на 7-10 светодиодов) или см. схему |
Кстати, для правильного подключения светодиодов вовсе не обязательно покупать готовый драйвер, можно просто взять какой-нибудь подходящий блок питания (например, зарядник от телефона) и прикрутить к нему простейший стабилизатор тока на одном транзисторе или на LM317.
Готовые схемы стабилизаторов тока для светодиодов можно взять из этой статьи.
Что такое светодиод, подключение светодиодов, подбор гасящего резистора
Главное свойство диода, в том, что он пропускает ток только в одном направлении. Это основная, функция диода, но диоды бывают разные, и для некоторых из них односторонняя проводимость является далеко не главным свойством.
Вот, например, Светодиод.
Обозначение светодиода
Практически тот же диод, и проводимость у него односторонняя, но при пропускании прямого тока он светится. И это уже его основная функция. И так, светодиод, это диод, который при пропускании через него прямого тока излучает свет.
Светодиоды мы встречаем часто, — индикаторы у различной аппаратуры, бывают светодиодные фонарики, ёлочные гирлянды, рекламные табло, осветительные лампы и даже светофоры.
Рис. 1. Как выглядит обычный индикаторный светодиод, обозначение на схемах.
На рисунке 1 показано как выглядит обычный индикаторный светодиод. Конечно больше он похож на лампочку с двумя проволочными выводами. Но! У этой «лампочки» есть анод и катод, и горит она только если анод подключен к плюсу источника питания, а катод к минусу (анодный вывод обычно длиннее катодного).
Но и это еще не все! В отличие от лампочки светодиод нельзя подключать непосредственно к источнику питания, а только через токоограничительный резистор. Поскольку светодиод все же диод, он имеет довольно низкое прямое сопротивление и диодную характеристику.
То есть, существует такая странная вещь, как Падение прямого напряжения на диоде. Так вот, в отличие от номинального напряжения лампочки, здесь зависимость тока от напряжения работает совсем не по Закону Ома. То есть, хорошо пропускать ток в прямом направлении диод начинает только тогда, когда напряжение на нем больше некоторого значения.
И при этом, ток резко возрастает, что может привести к повреждению диода или светодиода. Поэтому, если вы подключите светодиод прямо к батарейке (без токоограничительного резистора), то очень высока вероятность того, что светодиод перегорит.
Подключение светодиода
На рисунке 2 показано как обычно подключают светодиод. Здесь взят светодиод с напряжением падения 1,6V (Un). Батарейка на 4,5V, поэтому чтобы не сжечь светодиод последовательно ему включен резистор R1, на котором падает избыток напряжения (4,5 -1,6 = 2,9V).
Рис. 2. Схема подключения светодиода через гасящий резистор.
Теперь попробуем рассчитать сопротивление резистора R1. Допустим, номинальный ток через светодиод 10mA, напряжение падения 1,6V, напряжение источника питания 4,5V. То есть, сопротивление резистора R1 должно быть таким, чтобы на нем падало 2,9V, и был ток 10mA (0,01 А).
Переходим к Закону Ома: R= U/I = 2,9 / 0,01 = 290 Ом. То есть, вполне нормально будет поставить R1 сопротивлением 300 Ом. Бывают светодиоды разных цветов, — красные, зеленые, желтые, синие, белые. Еще конечно различаются по яркости света, по напряжению падения, по току.
Что такое двухцветный светодиод
Интересная вещь — двухцветный светодиод. Практически это два светодиода в одном корпусе. Бывают они с двумя и с тремя выводами (рис. 3).
Рис. 3. Светодиоды с двумя и тремя выводами, обозначения на схемах.
Двухвыводный двухцветный светодиод представляет собой два светодиода разных цветов (обычно, красный и зеленый), включенных встречно-параллельно.
Подключение двухцветных светодиодов
Цвет свечения такого светодиода зависит от направления тока через него. Это показано на рисунке 4.
Рис. 4. Цвет свечения двухцветного светодиода зависит от направления тока через него.
Трехвыводные двухцветные светодиоды тоже содержат в одном корпусе два светодиода (красный и зеленый), но у них один общий вывод от катода (или анода), а аноды (или катоды) выведены на разные выводы (рис.5). Фактически такие светодиоды трехцветные.
На рисунке 5 показано как переключаются цвета трехвыводного светодиода с общим катодом, — если включен S1 то горит один цвет, например, красный. Если включен S2 — горит другой цвет, например, зеленый. Ну, а если включить оба S1 и S2 то будут гореть оба цвета, что даст желтый цвет.
Рис. 5. Схема подключения трехвыводного двухцветного светодиода.
Мигающий светодиод
Кроме светодиодов постоянного свечения, существуют и мигающие. Одноцветный мигающий светодиод это почти то же, что обычный одноцветный, но в нем есть электронный прерыватель тока, который периодически выключает светодиод. Поэтому он мигает. Существуют двух, трех и многоцветные мигающие светодиоды.
Внутри такого светодиода есть несколько разноцветных светодиодов, и схема электронного переключателя, которая их поочередно переключает.
Выглядит одно- или многоцветный мигающий светодиод как обычный, — прозрачный корпус и два вывода. Подключать его тоже нужно через токоограничительный резистор.
Любопытно то, что во время мигания, в промежутках когда мигающий светодиод гаснет ток через него резко снижается. Поэтому мигающие светодиоды иногда используют как генераторы импульсов. На одних схемах мигающий светодиод обозначают как обычный, на других в его обозначение вводят символ выключателя (рис. 6).
Рис. 6. Обозначение на схемах и подключение мигающего светодиода.
Мигающий светодиод может служить не только индикатором, но и ключом для прерывания тока. Например, для того чтобы мигала гирлянда из нескольких светодиодов.
Если гирлянда состоит из нескольких последовательно включенных светодиодов, то чтобы она замигала достаточно чтобы один из этих светодиодов был мигающим. На рисунке 7 показана схема оригинального сигнального устройства для легкового автомобиля.
Рис. 7. Схема сигнального устройства на светодиодах для легкового автомобиля.
Это стояночное сигнальное устройство, оно потребляет незначительный ток от автомобильного аккумулятора. Состоит гирлянда из четыех светодиодов, которые нужно установить в фары автомобиля. Свечение светодиодов ночью очень заметно, особенно если они мигают.
Поэтому автомобиль, припаркованный в темном дворе перестает быть «невидимкой» для других машин или прохожих. И риск случайного повреждения машины снижается.
В схеме на рисунке 7 мигающий светодиод один — HL2. Остальные обычные. Так как включены последовательно мигают все. Светодиоды НL1, HL3, HL4 — любое индикаторные, красные, HL2 — любой мигающий красный.
Другие светодиоды, токоограничительный резистор
Сейчас уже ноябрь, и возникает необходимость в подготовке к новогодним торжествам. Вот здесь и могут помочь светодиоды. Лампы накаливания, конечно, тоже заслуживают уважения, как заслуженные ветераны новогодних торжеств.
Но светодиоды по многим характеристикам выгоднее и лучше ламп накаливания, особенно если дело касается не только освещения, но декоративного украшения новогодней ёлки.
Светодиоды бывают разные, на ёлке наиболее эффектно будут выглядеть сверхяркие разных цветов. Такими светодиодами можно украсить не только маленькую настольную ёлку, но полноразмерную. Они бывают красные, желтые, белые, синие, зеленые, оранжевые.
Еще бывают мигающие, причем, есть такие мигающие, которые мигают двумя или тремя разными цветами. Выглядит это очень интересно, в отличие от лампы накаливания, которая менять свой цвет не может
Но перед началом мастерить гирлянды следует усвоить некоторые отличия светодиодов от ламп накаливания. А связаны эти отличия с тем, что светодиоды, это, по сути дела, диоды, только такие, которые светятся при пропускании через них прямого тока.
В отличие от лампы накаливания светодиод полярная вещь, — у него есть анод (плюс) и катод (минус). Кроме того, вольт-амперная характеристика у светодиода как у диода, то есть, при возрастании прямого напряжения больше напряжения падения на диоде, очень сильно увеличивается ток. Вообще, это выглядит как борьба двух «упрямцев» — источника питания и светодиода.
Светодиод стремится понизить напряжение источника до своего номинального прямого напряжения, а источник стремится повысить напряжение падения на светодиоде до напряжения на своем выходе.
Чаще всего этот «поединок» проигрывает светодиод. Поэтому, если светодиод подключить к источнику тока непосредственно, его можно испортить. Вот поэтому последовательно со светодиодом включают токоограничительные резисторы (рис.8).
Резистор служит демпфером между этими «упрямцами», и каждый из них остается при своем напряжении.
Рис. 8. Как подключить токоограничительный резистор к светодиоду, схема.
Чтобы рассчитать токоограничительный резистор для светодиода, воспользуйтесь формулами и калькулятор из статьи — Расчёт резистора для светодиода, формулы и калькулятор.
Гирлянда на светодиодах
На рисунке 9 показана гирлянда из восьми светодиодов. Номинальное напряжение падения на каждом около 2V. Резистор R1 ограничивает ток.
А питаться гирлянда может от источника напряжением 20-25V. Чтобы гирлянда мигала достаточно чтобы одни из светодиодов был мигающим. HL1 во время мигания прерывает ток в цепи, поэтому одновременно с ним мигают и остальные семь светодиодов.
Рис. 9. Схема самодельной гирлянды из восьми светодиодов.
На рисунке 10 показана гирлянда состоящая из практически неограниченного числа светодиодов. Здесь светодиоды включены параллельно (через токоограничительные резисторы). Это значит, что каждый из них живет своею собственной жизнью и на работу остальных не влияет.
Здесь можно использовать самые разные светодиоды, — разных цветов, мигающие и немигающие. При этом, немигающие будут гореть ровно, а мигающие будут мигать.
Можно поставить двух или трехцветные мигающие, — они будут переливаться разными цветами. В общем, гирлянда будет вся сверкать, переливаться… очень красиво. И чем разнообразнее светодиоды, тем красивее.
Рис. 10. Схема гирлянды, состоящей из практически неограниченного числа светодиодов.
Однако, нужно учитывать и мощность источника питания. Если при резисторах сопротивлением по 510 Ом и напряжении источника питания 12V (а можно от 6 до 18V), ток через каждый светодиод будет где-то около 0.02А.
То есть, если светодиодов десять, то ток 0.2А, а если эта гирлянда из ста светодиодов, то ток, соответственно, будет целых 2 А. Поэтому выбирайте источник, который способен выдать необходимый ток. Например, сетевой адаптер от ноутбука дает ЗА, а источник питания игровой приставки «Денди» только 0,3 А (300 мА).
Так что блок от «Денди» может питать только 15 светодиодов. Впрочем, сопротивления резисторов можно увеличить. Тогда ток снизится (согласно закону Ома), но и яркость свечения светодиодов тоже снизится.
Но число светодиодов можно увеличить и не увеличивая ток. На рисунке 11 показана гирлянда вроде той, что на рисунке 10. Но в ней светодиоды включены по три последовательно.
Такая гирлянда может питаться напряжением 9-18V, потребляя ток всего около 0,02А на каждую тройку светодиодов. Таким образом, число светодиодов увеличивается втрое, при том же потреблении тока. При этом чтобы тройка светодиодов мигала, достаточно чтобы в ней был один мигающий светодиод.
Рис. 11. Схема светодиодной гирлянды, в которой светодиоды включены по три последовательно.
В каждой ветви (рис. 11) может быть светодиодов и больше и меньше трех. Важно то, чтобы суммарное напряжение падения светодиодов было как минимум на 10% меньше напряжения источника питания, в противном случае, светодиоды гореть не будут либо будут гореть очень слабо.
Сопротивление гасящего резистора, включенного последовательно светодиоду или светодиодам нужно выбирать таким, чтобы сила тока через светодиод была не более допустимого для него значения, но такой, чтобы свечение было достаточно ярким.
Рассчитать гасящее сопротивление для цепи со светодиодами можно по формуле:
R = (U — Uc) /1, где U — напряжение питания.
Uc — суммарное напряжение падения последовательно включенных светодиодов, I -сила тока.
Например, напряжение питания 12V, последовательно включены три светодиода, с напряжениями падения 1,9V, 2,4V и 2,1V. Требуется сила тока через светодиоды 17мА.
Считаем Uc = 1,9 + 2,4 + 2,1 = 6,4V. Затем вычисляем R = (12 — 6,4) / 0,017 = 329,4 Ом, то есть, нужен резистор на 330 Ом.
В этой формуле разность (U — Uc) не должна быть отрицательной или равной нулю. То есть, напряжение питания всегда должно быть больше напряжения падения на светодиодах.
Однако нужно учесть и то, что если в цепи есть мигающий светодиод, то напряжение питания не должно быть больше максимально допустимого для мигающего светодиода, находящегося в выключенном состоянии.
К сожалению, этот параметр не всегда приводится в справочниках, но подавляющее большинство мигающих светодиодов нормально переносят прямое напряжение до 30V в выключенном состоянии. А вот при большем напряжении некоторые выходят из строя.
Детали
В приведенных здесь схемах можно использовать практически любые светодиоды. Желательно сверхяркие. Мигающие светодиоды, включенные в последовательных цепях должны быть одноцветными.
Двух или трехцветный мигающий светодиод скорее не мигает, а переключает свои цвета, и существенных импульсов в цепи не создает, поэтому включенные последовательно с ним немигающие светодиоды мигать не будут. В лучшем случае их свечение будет только подрагивать.
У всех новых светодиодов (не выпаянных из плат) анод обозначен более длинным выводом. А короткий — катод. У выпаянных назначение выводов нужно проверять мультиметром (так как прозванивают обычные диоды).
Андреев С. РК-11-2018.
Как подключить резисторную нагрузку в светодиодных светильниках
••• Hemera Technologies/PhotoObjects. net/Getty Images
Обновлено 24 апреля 2017 г. . Таким образом, их нельзя подключить напрямую к обычной бытовой батарее, не рискуя перегореть от слишком большого тока. Чтобы предотвратить перегорание одного светодиода (или цепочки светодиодов), в цепь помещается резисторная нагрузка, ограничивающая величину тока, протекающего через светодиод (светодиоды). Типичные светодиоды работают в диапазоне нескольких миллиампер тока и ниже 3 вольт постоянного тока от батареи. Резисторная нагрузка примерно 100 Ом предотвратит перегорание обычного красного светодиода диаметром 5 мм.
- Резистор 100 Ом
- Батарея от 1,5 до 3,0 В
- Красный светодиод 5 мм, рассчитанный на 28 миллиампер медная проволока
Варьируйте номиналы используемых резисторов. Большие резисторы заставят светодиод светиться тусклее. Меньшие резисторы заставят светодиод светиться ярче. Однако слишком маленький резистор (или слишком большая батарея) приведет к тому, что светодиод нагреется и перегорит.
Паяльники достаточно горячие, чтобы вызвать серьезные ожоги 3-й степени; используйте с осторожностью при пайке.
Избегайте вдыхания паров плавящегося припоя. Пары припоя содержат следы свинца, известного нейротоксина.
Залудите резистор на 100 Ом и красный светодиод, расплавив припоем их выводы.
Припаяйте один вывод резистора к короткому выводу красного светодиода. Резисторы неполярные, поэтому подойдет любой конец. Однако светодиоды полярны; поэтому при подключении необходимо соблюдать полярность. Короткий вывод светодиода является катодным (отрицательным) выводом.
Припаяйте один конец медного провода к оставшемуся выводу резистора. Припаяйте один конец второго медного провода к длинному проводу красного светодиода. Длинный вывод — это катодный (положительный) вывод светодиода.
Подсоедините медный/светодиодный провод отрицательной стороны к отрицательной клемме батареи напряжением от 1,5 до 3,0 вольт. Поднесите положительный светодиод/медный провод к положительной клемме аккумулятора. Красный светодиод загорится и не перегорит.
Вещи, которые вам понадобятся
Предупреждения
Связанные статьи
Ссылки
- «Понимание основ электроники»; Ларри Д. Вольфганг; 2006
- «Начало работы в области электроники»; Форрест М. Миммс, III; 1991
Наконечники
- Варьируйте номиналы используемых резисторов. Большие резисторы заставят светодиод светиться тусклее. Меньшие резисторы заставят светодиод светиться ярче. Однако слишком маленький резистор (или слишком большая батарея) приведет к тому, что светодиод нагреется и перегорит.
Предупреждения
- Паяльники достаточно горячие, чтобы вызвать серьезные ожоги 3-й степени; используйте с осторожностью при пайке.
- Избегайте вдыхания паров расплавленного припоя. Пары припоя содержат следы свинца, известного нейротоксина.
Об авторе
С 1999 года Тимоти Бойер работает писателем-фрилансером. Его карьера началась в качестве научного обозревателя в журнале The Northwest Explorer и научного писателя в серии образовательных статей Power Web издательства McGraw-Hill. Бойер имеет докторскую степень. по молекулярной и клеточной биологии Аризонского университета.
Авторы фотографий
Hemera Technologies/PhotoObjects.net/Getty Images
do-it-up.com | Как установить нагрузочные резисторы для светодиодных указателей поворота:
Последнее изменение: 29 января 2022 г.
Чтобы добавить нагрузочный резистор к указателю поворота, его необходимо подключить к каждой светодиодной лампочке параллельно. т.е. Нагрузочный резистор проходит через соединения лампочки, между питанием и землей.
Нагрузочный резистор требуется для каждой светодиодной лампочки в цепи указателя поворота (вы можете обновить только заднюю часть автомобиля? В этом случае, если вы меняете 2 лампы накаливания, вам понадобятся 2 нагрузочных резистора) .
50 Вт 6 ОМ -нагрузочный резисторТемы:
- Меры предосторожности:
- Светодиодные диаграммы резисторов:
- Рассчитайте размер нагрузочного резистора:
- . Раз. Объяснение. Мощность важна:
- Покупка светодиодных ламп и нагрузочных резисторов:
Меры предосторожности:
- Любая установка осуществляется на ваш страх и риск. Каждое транспортное средство может быть другим или могло быть ранее модифицировано.
- Отсоединяйте аккумуляторную батарею при проводке автомобиля.
- Если вы не уверены, обратитесь к квалифицированному автоэлектрику. Электроника современных автомобилей легко выходит из строя.
Не забывайте, что нагрузочные резисторы могут выделять много тепла, поэтому размещайте их осторожно.
Видео: установка нагрузочного резистора для светодиодных фонарей.
Схемы подключения нагрузочного резистора светодиода: Схема подключения нагрузочного резистора светодиодного сигнала поворота (только сигнал поворота)Схема подключения нагрузочного резистора светодиодного сигнала поворота (стоп/сигнал поворота)
Типичный нагрузочный резистор для лампы указателя поворота мощностью 21 Вт будет иметь мощность 50 Вт, 6 Ом.
Примечание:
- Это только пример. Поэтому, пожалуйста, свяжитесь с вашим поставщиком, чтобы убедиться, что получен правильный размер.
Расчет размера нагрузочного резистора:
Для тех, кто знаком с электроникой, расчет размера нагрузочного резистора может быть простым. Но кого-то другого это может немного сбить с толку…
Поэтому я не буду слишком подробно объяснять, а просто поясню, как рассчитывается размер.
- Объяснение нагрузки:
- Расчет размера:
- Почему мощность важна:
Нагрузочный резистор заменяет нагрузку, потерянную при замене лампы накаливания светодиодная лампочка.
Другими словами:
Расчет сопротивления нагрузки Расчет размера нагрузочного резистора:Для расчета размера нагрузочного резистора можно использовать расчеты.
Сначала нам нужно рассчитать разницу между лампой накаливания и светодиодной лампочкой в ваттах:
A = размер лампы накаливания (в ваттах).
B = Размер светодиодной лампочки (в ваттах).
Разность = A – B
Используя закон Ватта и вычисленную выше разницу между лампочкой накаливания и светодиодной лампочкой (в ваттах), мы можем найти ток (ампер), необходимый для имитации лампочки накаливания.
Расчет нагрузочного резистора (ток)Затем мы используем рассчитанный выше ток (амперы) для определения сопротивления (Ом или Ом) нагрузочного резистора.
Расчет нагрузочного резистора (сопротивление) Почему важна мощность нагрузочного резистора:Сопротивление и количество ватт — это два параметра, необходимые для получения размера нагрузочного резистора.
Мощность нагрузочного резистора — это значение, используемое в приведенном выше расчете…
Лампа накаливания (Вт) – Лампа светодиодная (ватт).
Это даст вам самый низкий показатель мощности, но нагрузочный резистор будет сильно нагреваться (точно так же, как лампочка накаливания). Таким образом, тепло должно рассеиваться с помощью нагрузочного резистора гораздо большей мощности (по крайней мере, в два раза).
Одна из проблем с этим расчетом заключается в том, что спецификация светодиодной лампы часто недоступна или немного расплывчата. Что затем затрудняет расчеты (догадки).
Поиск в Интернете показал, что типичный нагрузочный резистор для замены 21-ваттной лампы указателя поворота будет использовать нагрузочный резистор на 50 Вт с сопротивлением 6 Ом (Ом).
Примечание:
- Мощность 50 Вт предназначена для рассеивания тепла.
Хороший поставщик нагрузочных резисторов также может посоветовать и помочь с выбором, если вы не уверены, что купить.
Покупка светодиодных ламп и нагрузочных резисторов:
Если вы не уверены, что хотите, иногда вам нужно посмотреть, что есть в наличии? Приведенный ниже список может дать вам некоторое представление о том, что можно купить…
Нагрузочные резисторы и светодиодные лампы
Артикул | Местоположение | Ссылка |
---|---|---|
Нагрузочные резисторы | Австралия | https://ebay. |