Закрыть

Измерение сопротивления изоляции мегаомметром: Измерение сопротивления изоляции мегаомметром

Измерение сопротивления изоляции мегаомметром

Как пользоваться мегаомметром, измерение сопротивления изоляции мегаомметром

 

Все мегаомметры в каталоге. Мегаомметр прибор для измерения сопротивления изоляции кабеля, изоляцию обмотки двигателя, диэлектрических материалов приборов. Современные мегаомметры позволяют вычеслять сразу коэффициент абсорбции и поляризации. Коэффициент абсорбции показывает степень увлажнения изоляции кабелей, трансформаторов, электродвигателей. Коэффициент поляризации показывает степень старения изоляции. Работа мегаомметра основана на измерении протекающего тока, при подаче стабильного высокого напряжения. У цифровых мегаомметров переключение диапазонов и определение единиц измерения производятся автоматически. Мегаомметры с испытательным напряжение которое создает ШИМ преобразователь не могут измерять сопротивления изоляции обмоток двигателя, цепи с высокой индуктивностью, например промышленный магнит.

 

 

При коэффициенте поляризации менее 1 изоляция проводника изношенная необходимо заменить, при значении от 1 до 2 проводник изношенный, но эксплуатация возможна.

При значении более 2 эксплуатация проводника разрешена. Коэффициент абсорбции вычисляется измерением скорости заряда абсорбционной емкости изоляции при приложении испытательного напряжения. Если коэффициент абсорбции меньше 1,3 изоляция считается неудовлетворительной, необходимо сушить изоляцию.

 

Для работы с мегаомметром необходимо:

  1. выбрать испытательное напряжение в настройках прибора, чем больше испытательное напряжение чем больше максимальное значение сопротивления;
  2. выбрать время измерения. Из-за нестабильности сопротивления требуется проводить измерения не менее 1 минуты.

 

Клемму «минус», «GUARD», «0 V» необходимо подключать к тому проводнику, который заземлен. Измерения рекомендуется проводить дважды со сменной полярности испытательного напряжения для получения среднего результата. Полярность испытательного напряжения указана на гнёздах мегаомметра. Результаты измерений может выглядеть как на картинке ниже. Минимальное сопротивления изоляции проводки для бытовой сети 0,5 МОм, а для промышленной сети и производственного оборудования 1 МОм.

 

 

Для измерения сопротивления изоляции двухжильного кабеля необходимо клеммы плюс и минус мегаомметра подсоединить к проводникам. Если кабель одножильный тогда клеммы плюс и минус мегаомметра подключают к проводнику и экрану соответственно. При измерении сопротивления более 10 ГОм необходимо использовать экранированный измерительный кабель, экран измерительного кабеля подключается в соответствующее гнездо. 

 

Если изоляция кабеля загрязненная и при больших значения сопротивления изоляции более 10 ГОм, для исключения влияния поверхностных токов утечки необходимо использовать схему подключения с тремя измерительными кабелями. Или экраннированным кабелем как у мегаомметра Е6-32, в комплекте не поставляется. К изоляции одного из проводников необходимо намотать колечко из фольги, обжать крокодилом и подключить крокодил к клемме заземления мегаомметра. При измерении сопротивления изоляции обмотки трансформатора, для исключения влияния поверхностных токов утечки так же необходимо использовать схему подключения с тремя измерительными кабелями.

Клемма заземления в данном случае подключается к сердечнику трансформатора.

 

Нормы сопротивления изоляции. Измерения необходимо производить при нормальных климатических условиях при температуре 25±10 °С и влажности воздуха не более 80%. Если в кабеле провода без экрана, то сопротивление изоляции измереяется между жилами проводов. Если провода с экраном в виде оплетки или фольги, то тогда сопротивление изоляции измеряется между жилой и экраном. Испытания проводят при отключеных электроустановках. 

Электроустановки

Значение сопротивления,

не менее

Испытательное

напряжение

Указания

до 500 В

более 0,5 Мом

500 В 

Сопротивление изоляции должно быть стабильным 1 минуту

500 . .. 1000 В

более 1 Мом

1000 В

Сопротивление изоляции должно быть стабильным 1 минуту

 

Все мегаомметры в каталоге. 

Методика измерения сопротивления изоляции | БЭТЛ (Ярославль)

Содержание

  1. Общие положения
  2. Нормативные ссылки
  3. Характеристика измеряемой величины, нормативные значения измеряемой величины
  4. Условия измерений
  5. Требования безопасности
  6. Подготовка к выполнению измерений
    Схема проверки изоляции мегаомметром
  7. Выполнение измерений
  8. Оформление результатов испытаний

Если Вам требуется технический отчёт, Вы можете заказать услугу замер сопротивления изоляции в нашей лаборатории.

1. Общие положения

1.1. Настоящий документ устанавливает методику выполнения измерения сопротивления изоляции электрооборудования, проводов и кабелей в действующих и реконструируемых электроустановках для всех потребителей электроэнергии независимо от их ведомственной принадлежности.

1.2. Настоящий документ разработан для применения персоналом электроизмерительной лаборатории ООО «БЭТЛ» при проведении приемосдаточных и периодических испытаний в электроустановках, напряжением до и выше 1000 В.

1.3. В электроустановках напряжением выше 1000 В измерения производятся по наряду, а в установках напряжением до 1000 В по распоряжению. В тех случаях, когда измерения мегаомметром входят в содержание работ, оговаривать эти измерения в наряде или распоряжении не требуется.

1.4. К выполнению измерений и испытаний допускают лиц, прошедших специальное обучение и аттестацию, имеющих запись о допуске к испытаниям и измерениям в электроустановках до 1000 В

1.5. Измерение сопротивления изоляции должен проводить только квалифицированный персонал единолично или в составе бригады. Производитель работ должен иметь группу по электробезопасности не ниже III. В состав бригады может включаться ремонтный персонал с группой по электробезопасности не ниже II.

2. Нормативные ссылки

При разработке методики использованы следующие нормативные документы:

2.1. Мегаомметры ЭСО202/1-Г, ЭСО202/2-Г. Паспорт Ба 2.722.056ПС.

2.2. Правила технической эксплуатации электроустановок потребителей (ПТЭЭП).

2.3. Правила устройства электроустановок (ПУЭ).

2.4. Межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок. ПОТ Р М — 016-2001. РД 153-34.0-03.150-00.

2.6. ГОСТ Р 50571.1-93 «Электроустановки зданий».

2.7. ГОСТ Р 50571.16-99 «Электроустановки зданий. Испытания».

2.8. ГОСТ Р 8.563-96 «Методики выполнения измерений»

3. Характеристика измеряемой величины, нормативные значения измеряемой величины.

3.1. Объектом измерения являются электрооборудование и электропроводки напряжением до и выше 1000 В

3.2. Измеряемой величиной является сопротивление изоляции.

3.3. Измеренное сопротивление изоляции электрооборудования напряжением до 1000 В должно быть не ниже, минимально допустимого значения, приведенного в таблице.

Минимально допустимые значения сопротивления изоляции элементов электрических сетей напряжением до 1000 В

Наименование элемента

Напряжение мегаомметра, В

Сопротивление изоляции, МОм

Примечание

Электроизделия и аппараты на номинальное напряжение, В:
 
Должно соответствовать указаниям изготовителей, но не менее 0,5 При измерениях полупроводниковые приборы в изделиях должны быть зашунтированы

до 50

100

свыше 50 до 100

250

свыше 100 до 380

500-1000

свыше 380

1000-2500

Распределительные устройства, щиты и токопроводы

1000-2500

не менее 1 Измерения производятся на каждой секции распределительного устройства
Электропроводки, в том числе осветительные сети

1000

не менее 0,5 Измерения сопротивления изоляции в особо опасных помещениях и наружных установках производятся 1 раз в год. В остальных случаях измерения производятся 1 раз в 3 года. При измерениях в силовых цепях должны быть приняты меры для предотвращения повреждения устройств, в особенности микроэлектронных и полупроводниковых приборов. В осветительных сетях должны быть вывинчены лампы, штепсельные розетки и выключатели присоединены.
Вторичные цепи распределительных устройств, цепи питания приводов выключателей и разъединителей, цепи управления, защиты, автоматики, телемеханики и т.п.

1000-2500

не менее 1 Измерения производятся со всеми присоединенными аппаратами (катушки, контакторы, пускатели, выключатели, реле, приборы, вторичные обмотки трансформаторов напряжения и тока)
Краны и лифты

1000

не менее 0,5 Производится не реже 1 раза в год
Стационарные электроплиты

1000

не менее 1 Производится при нагретом состоянии плиты не реже 1 раза в год
Шинки постоянного тока и шинки напряжения на щитах управления

500-1000

не менее 10 Производится при отсоединенных цепях
Цепи управления, защиты, автоматики, телемеханики, возбуждения машин постоянного тока на напряжение 500-1000 В, присоединенных к главным цепям

500-1000

не менее 1 Сопротивление изоляции цепей напряжением до 60 В, питающихся от отдельного источника, измеряется мегаомметром на напряжение 500 В и должно быть не менее 0,5 МОм
Цепи, содержащие устройства с микроэлектронными элементами, рассчитанные на рабочее напряжение, В:      
до 60

100

не менее 0,5  
выше 60

500

не менее 0,5  

4.

Условия измерений

4.1 Измерение проводят в помещениях при температуре 25±10°С и относительной влажности воздуха не более 80%, если в стандартах или технических условиях на кабели, провода, шнуры и оборудование не предусмотрены другие условия.

4.2 Значение электрического сопротивления изоляции соединительных проводов измерительной схемы должно превышать не менее чем в 20 раз минимально допускаемое значение электрического сопротивления изоляции испытуемого изделия.

4.3. Характеристики изоляции электрооборудования рекомендуется измерять по однотипным схемам и при одинаковой температуре. Сравнение характеристик изоляции должно производиться при одной и той же температуре изоляции или близких ее значениях (разница температур не более 5°С). Если это невозможно, то должен производиться температурный пересчет.

5. Требования безопасности

ВНИМАНИЕ! Не приступайте к измерениям, не убедившись в отсутствии напряжения на измеряемом объекте.

5.1. Перед началом испытаний необходимо убедиться в отсутствии людей, работающих на той части электроустановки, к которой присоединен испытательный прибор, запретить находящимся вблизи него лицам прикасаться к токоведущим частям и, если нужно, выставить охрану.

5.2. Измерение сопротивления изоляции мегаомметром должно осуществляться на отключенных токоведущих частях, с которых снят заряд путем предварительного их заземления. Заземление с токоведущих частей следует снимать только после подключения мегаомметра.

5.3. При измерении мегаомметром сопротивления изоляции токоведущих частей соединительные провода следует присоединять к ним с помощью изолирующих держателей (штанг).

5.4. При работе с мегаомметром прикасаться к токоведущим частям, к которым он присоединен, не разрешается. После окончания работы следует снять с токоведущих частей остаточный заряд путем их кратковременного заземления.

6. Подготовка к выполнению измерений

Для выполнения измерений используются мегаомметры ЭСО202/1-Г или ЭСО202/2-Г в зависимости от требований к испытательному напряжению.

6.1. Перед началом измерений необходимо изучить электроустановку здания и убедиться в отсутствии напряжения на испытываемом объекте, принять меры препятствующие допуску на испытуемый объект лиц, не участвующих в испытаниях, при необходимости выставить наблюдающего. Произвести отключение электроприборов, снять предохранители, отключить аппараты (автоматические выключатели, переключатели), отсоединить электронные схемы и электронные приборы, электрические части электроустановки с пониженной изоляцией или пониженным испытательным напряжением.

6.2. Установить на мегаомметре переключатель измерительных напряжений в нужное положение (в соответствии с требованиями к испытательному напряжению), а переключатель диапазонов в положение I.

Схема проверки изоляции мегаомметром

Измерение сопротивления:

Измерение изоляции кабеля:

6.3. Проверить исправность мегаомметра. При вращении ручки генератора должен светиться индикатор «ВН».

7. Выполнение измерений

7.1. Убедившись в отсутствии напряжения на объекте, подключить объект к гнездам «rx». При необходимости экранирования, для уменьшения влияния токов утечки, экран объекта подсоединить к гнезду «Э». Для уменьшения времени установления показаний перед измерением сопротивления по шкале II в течении 3-5 сек. вращать ручку генератора при закороченных зажимах «rx».

7.2. Для проведения измерений вращать рукоятку генератора со скоростью 120-144 оборотов в минуту.

7.3. Отсчет значений электрического сопротивления изоляции при измерении проводят по истечении 1 мин с момента приложения измерительного напряжения к образцу, но не более чем через 5 мин, если в стандартах или технических условиях на конкретные кабельные изделия или на другое измеряемое оборудование не предусмотрены другие требования. Перед повторным измерением все металлические элементы кабельного изделия должны быть заземлены не менее чем за 2 мин.

7.4. При измерении параметров изоляции электрооборудования должны учитываться случайные и систематические погрешности, обусловленные погрешностями измерительных приборов и аппаратов, дополнительными емкостями и индуктивными связями между элементами измерительной схемы, воздействием температуры, влиянием внешних электромагнитных и электростатических полей на измерительное устройство, погрешностями метода и т. п

7.5. Электрическое сопротивление изоляции многожильных кабелей, проводов и шнуров должно быть измерено:

— для изделий без металлической оболочки, экрана и брони — между каждой токопроводящей жилой и остальными жилами, соединенными между собой или между каждой токопроводящей; жилой и остальными жилами, соединенными между собой и заземлением.

— для изделий с металлической оболочкой, экраном и броней — между каждой токопроводящей жилой и остальными жилами, соединенными между собой и с металлической оболочкой или экраном, или броней.

8. Оформление результатов испытаний (измерений).

8.1. Результаты проверки отражаются в протоколе соответствующей формы.

8.2. Перечень замеченных недостатков должен предъявляться заказчику для принятия мер по их устранению.

8.3. Протокол испытаний и измерений оформляется в виде электронного документа и хранится в соответствующей базе данных. Второй экземпляр протокола распечатывается и хранится в архиве электроизмерительной лаборатории.

8.4. Копии протоколов испытаний и измерений подлежат хранению в архиве электролаборатории не менее 3 лет.

Используйте меггер для измерения сопротивления изоляции — бесплатная электротехника

Эксперимент №: 4

Эксперимент Название:

Megger для измерения устойчивости к изоляции

. для измерения сопротивления изоляции ПВХ-кабеля на напряжение 1100 В

Теория:

Для измерения сопротивления изоляции используется мегомметр, питающийся от встроенного генератора постоянного тока с ручным приводом или батареи более высокого диапазона напряжения, он называется Мегаомметр. Устройство позволяет нам измерять утечку тока в проводе, результаты очень надежны, так как мы будем пропускать электрический ток через устройство во время тестирования. Оборудование в основном используется для проверки уровня электрической изоляции любого устройства, такого как двигатели, кабели, генераторы, обмотки и т. д. Это очень популярный тест, который проводится очень давно. Не обязательно, что он показывает нам точную площадь электрического прокола, но показывает величину тока утечки и уровень влажности в электрическом оборудовании/обмотке/системе.

Схема мегомметра:

Разъем для измерения сопротивления изоляции:

Конструкция:

Меггер представляет собой генератор постоянного тока. Он состоит из трех клемм

  • Линейная клемма,
  • Защитная клемма,
  • и клемма заземления.

В приведенной выше схеме защитный кожух подключен к изолятору, клемма линии подключена к проверяемому проводнику, а контакт заземления заземлен.

Более высокое сопротивление = более высокая изоляция = отсутствие тока.

Порядок действий:

  • Подключите цепь, как показано на схеме выше.
  • Рукоятка мегомметра вращается вручную со скоростью около 160 об/мин, таким образом, мегомметр генерирует от 500 до 1000 В постоянного тока.
  • Ток протекает по кабелю, на шкале указано сопротивление, которое находится в диапазоне от 35 до 100 МОм.
  • Обратите внимание на поддержание этого контакта в течение 30–60 секунд.
  • Acceptable IR for electrical cable = 1 Mega Ohm for 1000 V.

Observation:

Tested for Insulation Resistance
60 sec 50 Mega Ohm

Observation Таблица:

Сл. № Наименование аппарата Спецификация Количество Имя производителя
1. Изоляционная тестер Аналог, 0-200- Мом, 500 В, ручное управление 1 CIE
2. Кабель 2.5 SQ. MM. 1 катушка Maru

Примечания: Если указанный диапазон составляет от 35 до 100 МОм, это означает, что это хороший изолятор.

Основы измерения сопротивления изоляции

Опубликовано автором Weschler Instruments

Существует два распространенных метода проверки изоляции кабелей, проводки и электрооборудования. Один использует мегомметр для измерения сопротивления изоляции. Другой использует тестер Hipot для проверки на пробой изоляции. Оба подают высокое напряжение переменного или постоянного тока на тестируемое устройство (ИУ) и измеряют результирующий ток.

Мегаомметры
Современный мегомметр (или мегомметр) подает постоянное напряжение на ИУ и измеряет постоянный ток (наноампер или микроампер). Применяя закон Ома, соответствующее значение сопротивления отображается на аналоговом или цифровом дисплее измерителя. Этот инструмент часто называют мегомметром, что является торговой маркой Megger Group в 1907 году.

В обычном мегомметре пользователь может выбрать один из нескольких уровней напряжения. Для кабелей или оборудования с номинальным напряжением до 500 В максимальный испытательный уровень постоянного тока обычно в два раза превышает номинальное напряжение. При напряжении выше 500 В максимальный уровень ближе к номинальному напряжению (например, 5000 В для системы на 4100 В). У производителя оборудования могут быть более конкретные рекомендации по испытаниям.

Из-за емкостных и диэлектрических эффектов в тестируемом устройстве требуется время, чтобы показания стабилизировались после подачи напряжения. Первоначально в показаниях преобладает зарядка емкости. Токи поглощения могут быть значительными в течение 20 секунд и более. Обычно ИК-показания снимаются через 60 секунд, чтобы эти эффекты прекратились.

Методы
Два метода могут помочь в оценке состояния изоляции. Во-первых, подавать напряжение поэтапно. Поврежденная изоляция будет показывать снижение значения IR по мере увеличения испытательного напряжения. Для получения точных результатов следует контролировать время выдержки на каждом шаге. Для упрощения проверки некоторые мегомметры имеют функцию автоматического повышения напряжения через запрограммированные интервалы времени.

Другой метод оценки заключается в сравнении показаний ИК с результатами предыдущих испытаний. Поскольку мегомметр использует очень низкий испытательный ток, он не повреждает изоляцию. Периодические ИК-тесты выявляют ухудшение изоляции с течением времени и необходимость профилактического обслуживания. Точное сравнение требует измерений при одном и том же напряжении и времени выдержки. Влага влияет на показания ИК, поэтому следует соблюдать осторожность при проведении испытаний при одинаковых условиях температуры и влажности.

Параметры
Из измерений сопротивления изоляции получают два параметра: коэффициент диэлектрической абсорбции (DAR) и индекс поляризации (PI). Современные цифровые мегаомметры имеют специальные функции для измерения и отображения этих параметров. DAR представляет собой IR на 60-й секунде, деленное на IR на 30-й секунде. Значение меньше 1 показывает, что сопротивление уменьшается со временем, что указывает на неисправность тестируемого устройства. Индекс поляризации используется в двигателях и генераторах для оценки количества примесей в обмотках и их чистоты. PI представляет собой IR через 10 минут, деленное на IR через 1 минуту. В некоторых стандартах на оборудование указаны минимальные значения PI. Соотношение больше 1,5 обычно является адекватным.

Портативные мегомметры на напряжение до 1000 В доступны от нескольких производителей. Мобильные устройства могут подавать напряжение до 15 кВ. Универсальные приборы сочетают ИК-измерения с другими функциями тестирования, такими как мультиметр. На этой фотографии показаны типичный ручной мегомметр, портативный мегомметр, мегомметр/цифровой мультиметр и тестер Hipot.


Тестер Hipot
Тест Hipot (сокращение от высокого потенциала) определяет способность электрической изоляции выдерживать обычно возникающие переходные процессы перенапряжения. Тестер Hipot подает высокое напряжение на изоляционный барьер тестируемого устройства и проверяет отсутствие пробоя. Это простое испытание на соответствие/несоответствие, проводимое как типовое испытание на репрезентативной пробной единице или как стандартное производственное испытание. Максимально допустимая утечка обычно находится в диапазоне от 0,1 до 5 мА или соответствует стандарту испытаний. Фактическое значение утечки для каждого тестируемого устройства может быть записано для обеспечения качества.

Многие стандарты (например, IEC 60950) определяют испытательное напряжение переменного тока, которое в два раза превышает рабочее напряжение плюс 1000 В. Большинство из них позволяют использовать переменное или постоянное напряжение. Схема испытаний и процедуры идентичны для переменного и постоянного тока, хотя уровень постоянного тока должен быть равен пиковому напряжению переменного тока. Время тестирования обычно составляет 1 минуту, но в некоторых ситуациях, например, при больших объемах производственных испытаний, может быть разрешено более короткое время тестирования при более высоком напряжении.

Как правило, тест Hipot проводится на силовой проводке электрооборудования. Один провод тестера подключен к защитному заземлению (земле). Другой провод подключается к линии и нейтральному проводу питания. Часто тестер Hipot имеет встроенную розетку переменного тока для выполнения этих подключений (как показано на фотографии).

Если в тестируемой цепи есть сетевой фильтр, тестер переменного тока может указать на неисправность из-за протекания тока на землю через Y-конденсаторы. Стандарт безопасности обычно позволяет пользователю отключать эти конденсаторы перед испытанием или увеличивать верхний предел тока, чтобы компенсировать дополнительную утечку.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *