Как проверить транзистор mosfet – АвтоТоп
Для проверки исправности полевого транзистора можно воспользоваться любым цифровым мультиметром с функцией «прозвонки» диодов. Данная функция работает таким образом, что позволяет измерить прямое падение напряжения на p-n-переходе, которое и будет отображено на дисплее мультиметра в ходе тестирования.
В процессе данной проверки мультиметр способен пропустить через проверяемую цепь ток в пределах нескольких миллиампер, и если падение напряжения окажется при этом слишком малым, то в случае наличия у прибора функции звукового оповещения, он запищит. А поскольку в любом полевом транзисторе присутствуют p-n-переходы, то можно рассчитывать на вполне адекватный результат.
Прежде чем проверять полевой транзистор на исправность, замкните на секунду фольгой все его выводы чтобы снять статический заряд, чтобы разрядить все его переходные емкости, включая емкость затвор-исток.
Проверка встроенного обратного диода
Практически в любом современном полевом транзисторе, за исключением специальных их типов, параллельно цепи сток-исток включен внутренний «защитный» диод.
Наличие этого диода внутри полевика обусловлено особенностями технологии производства мощных транзисторов. Иногда он мешает, считается паразитным, однако в большинстве полевых транзисторов без него, как части цельной структуры электронного компонента, не обойтись. Следовательно, в исправном полевом транзисторе данный диод тоже должен быть исправным. В n-канальном полевом транзисторе данный диод включен катодом к стоку, анодом — к истоку, а в p-канальном — анодом к стоку, катодом — к истоку.
Включите мультиметр в режим «прозвонки» диодов. Если полевой транзистор является n-канальным, то красный щуп мультиметра приложите к его истоку (source), а черный — к стоку (drain).
Обычно сток находится посередине и соединен с проводящей подложкой транзистора, а истоком является правый вывод (уточните это в datasheet). В случае если внутренний диод исправен, на дисплее мультиметра отобразится прямое падение напряжения на нем – в районе 0,4-0,7 вольт. Если теперь положение щупов изменить на противоположное, то прибор покажет бесконечность. Если все так, значит внутренний диод исправен.
Проверка цепи сток-исток
Полевой транзистор управляется электрическим полем затвора. И если емкость затвор-исток зарядить, то проводимость в направлении сток-исток увеличится.
Итак, если транзистор является n-канальным, приложите черный щуп к затвору (gate), а красный — к истоку, и через секунду измените расположение щупов на противоположное — красный к затвору, а черный — к истоку. Так мы сначала наверняка разрядили затвор, а после — зарядили его. Затвор обычно слева, а исток — справа (см. datasheet).
Теперь красный щуп переместите с затвора — на сток, а черный пусть останется на истоке. Если транзистор исправен, то как только вы переместите красный щуп с затвора на сток, мультиметр покажет что на стоке есть падение напряжения (не бесконечное, но может увеличиваться) — это значит, что транзистор перешел в проводящее состояние.
Теперь красный щуп на исток, а черный — на затвор (разряжаем затвор противоположной полярностью), после чего снова красный щуп на сток, а черный — на исток. Прибор должен показать бесконечность — транзистор закрылся. Для p-канального полевого транзистора щупы просто меняются местами.
Если прибор запищит
Если на этапе проверки сток-исток прибор запищит, это может быть вполне нормальным, ведь у современных полевых транзисторов сопротивление сток-исток в открытом состоянии бывает очень маленьким. Главное — чтобы не было звона затвор-исток и сток-исток, особенно в тот момент когда затвор заряжен противоположной полярностью. Как вариант, можно соединить затвор с истоком и в таком положении прозвонить сток-исток (для n-канального красный на сток, черный — на исток), прибор должен показать бесконечность.
Поделитесь этой статьей с друзьями:
Вступайте в наши группы в социальных сетях:
Для проверки полевого транзистора понадобятся мультиметр и источник питания 9-12 вольт. Проверяться будет полевой транзистор n-типа IRF740. Расположение выводов и иные параметры на IRF740 можно посмотреть в datasheet.
Для проверки транзисторов черный щуп подключается к гнезду “COM” мультиметра, красный – к гнезду “V/ Ω”. Мультиметр включается в режим проверки полупроводников.
Пинцетом или перемычкой замкните кратковременно исток и затвор транзистора. Потенциалы затвора и истока уравняются, транзистор будет гарантированно закрыт.
Присоедините красный щуп мультиметра к истоку, черный к стоку. Если транзистор исправен, мультиметр покажет падение напряжения на паразитном диоде (этот диод образуется при изготовлении транзистора).
Присоедините красный щуп мультиметра к стоку, черный к истоку. Если транзистор исправен, мультиметр покажет отсутствие замыкания и утечки.
Соедините минус источника питания (9-12 вольт) с истоком транзистора, на секунду присоедините плюс источника питания к затвору транзистора, при этом исправный транзистор откроется.
Далее присоедините красный щуп мультиметра к истоку, черный к стоку. Если транзистор исправен, мультиметр покажет короткое замыкание.
Присоедините красный щуп мультиметра к стоку, черный к истоку. Если транзистор исправен, мультиметр покажет короткое замыкание.
Для проверки полевых транзисторов n-типа можно собрать несложную схему. При нажатии кнопки лампочка загорается, при отпускании тухнет.
В этом видео показано как проверить полевой транзистор мультиметром:
В радиоэлектронике и электротехнике транзисторы относятся к одним из основных элементов, без которых не будет работать ни одна схема. Среди них, наиболее широкое распространение получили полевые транзисторы, управляемые электрическим полем. Само электрическое поле возникает под действием напряжения, следовательно, каждый полевой транзистор является полупроводниковым прибором, управляемым напряжением. Наиболее часто применяются элементы с изолированным затвором. В процессе эксплуатации радиоэлектронных устройств и оборудования довольно часто возникает необходимость проверить полевой транзистор мультиметром, не нарушая общей схемы и не выпаивая его. Кроме того, на результаты проверки оказывает влияние модификация этих устройств, которые технологически разделяются на п- или р-канальные.
Устройство и принцип действия полевых транзисторов
Полевые транзисторы относятся к категории полупроводниковых приборов. Их усиливающие свойства создаются потоком основных носителей, который протекает через проводящий канал и управляется электрическим полем. Полевые транзисторы, в отличие от биполярных, для своей работы используют основные носители заряда, расположенные в полупроводнике. По своим конструктивным особенностям и технологии производства полевые транзисторы разделяются на две группы: элементы с управляющим р-п-переходом и устройства с изолированным затвором.
К первому варианту относятся элементы, затвор которых отделяется от канала р-п-переходом, смещенным в обратном направлении. Носители заряда входят в канал через электрод, называемый истоком. Выходной электрод, через который носители заряда уходят, называется стоком. Третий электрод – затвор выполняет функцию регулировки поперечного сечения канала.
Когда к истоку подключается отрицательное, а к стоку положительное напряжение, в самом канале появляется электрический ток. Он создается за счет движения от истока к стоку основных носителей заряда, то есть электронов. Еще одной характерной особенностью полевых транзисторов является движение электронов вдоль всего электронно-дырочного перехода.
Между затвором и каналом создается электрическое поле, способствующее изменению плотности носителей заряда в канале. То есть, изменяется величина протекающего тока. Поскольку управление происходит с помощью обратно смещенного р-п-перехода, сопротивление между каналом и управляющим электродом будет велико, а мощность, потребляемая от источника сигнала в цепи затвора, очень мала. За счет этого обеспечивается усиление электромагнитных колебаний не только по току и напряжению, но и по мощности.
Существуют полевые транзисторы, у которых затвор отделяется от канала слоем диэлектрика. В состав элемента с изолированным затвором входит подложка – полупроводниковая пластина, имеющая относительно высокое удельное сопротивление. В свою очередь, она состоит из двух областей с противоположными типами электропроводности. На каждую из них нанесен металлический электрод – исток и сток. Поверхность между ними покрывает тонкий слой диэлектрика. Таким образом, в полученную структуру входят металл, диэлектрик и полупроводник. Данное свойство позволяет проверить полевой транзистор мультиметром не выпаивая. Поэтому данный вид транзисторов сокращенно называют МДП. Они различаются наличием индуцированных или встроенных каналов.
Проверка мультиметром
Перед началом проверки на исправность полевого транзистора мультиметром, рекомендуется принять определенные меры безопасности, с целью предотвращения выхода транзистора из строя. Полевые транзисторы обладают высокой чувствительностью к статическому электричеству, поэтому перед их проверкой необходимо организовать заземление. Для снятия с себя накопленных статических зарядов, следует воспользоваться антистатическим заземляющим браслетом, надеваемым на руку. В случае отсутствия такого браслета можно просто коснуться рукой батареи отопления или других заземленных предметов.
Хранение полевых транзисторов, особенно с малой мощностью, должно осуществляться с соблюдением определенных правил. Одно из них заключается в том, что выводы транзисторов в этот период, находятся в замкнутом состоянии между собой. Конфигурация цоколей, то есть расположение выводов в различных моделях транзисторов может отличаться. Однако их маркировка остается неизменной, в соответствии с общепринятыми стандартами. Затвор по-английски означает Gate, сток – Drain, исток – Source, а для маркировки используются соответствующие буквы G, D и S. Если маркировка отсутствует необходимо воспользоваться специальным справочником или официальным документом от производителя электронных компонентов.
Проверку можно выполнить с помощью стрелочного омметра, но более удобной и эффективной будет прозвонка цифровым мультиметром, настроенным на тестирование p-n-переходов. Полученное значение сопротивления, отображаемое на дисплее, на пределе х100 численно будет соответствовать напряжению на р-п-переходе в милливольтах. После подготовки можно переходить к непосредственной проверке. Прежде всего нужно знать, что исправный транзистор обладает бесконечным сопротивлением между всеми его выводами. Прибор должен показывать такое сопротивление независимо от полярности щупов, то есть прикладываемого напряжения.
Современные мощные полевые транзисторы имеют встроенный диод, расположенный между стоком и истоком. В результате, при решении задачи, как прозвонить полевой транзистор мультиметром, канал сток-исток, ведет себя аналогично обычному диоду. Отрицательным щупом черного цвета необходимо коснуться подложки – стоку D, а положительным красным щупом – вывода истока S. Мультиметр покажет наличие прямого падения напряжения на внутреннем диоде до 500-800 милливольт. В обратном смещении, когда транзистор закрыт, прибор будет показывать бесконечно высокое сопротивление.
Далее, черный щуп остается на месте, а красный щуп касается вывода затвора G и вновь возвращается к выводу истока S. В этом случае мультиметр покажет значение, близкое к нулю, независимо от полярности приложенного напряжения. Транзистор откроется в результате прикосновения. Некоторые цифровые устройства могут показывать не нулевое значение, а 150-170 милливольт.
Если после этого, не отпуская красного щупа, коснуться черным щупом вывода затвора G, а затем возвратить его к выводу подложки стока D, то в этом случае произойдет закрытие транзистора, и мультиметр вновь отобразит падение напряжения на диоде. Такие показания характерны для большинства п-канальных устройств, используемых в видеокартах и материнских платах. Проверка р-канальных транзисторов осуществляется таким же образом, только со сменой полярности щупов мультиметра.
Как проверить полевой моп (mosfet) — транзистор цифровым мультиметром — интернет-журнал «электрон» выпуск №5
Модуль измерения электролитических конденсаторов (+ C и ESR)
Для проверки электролитических конденсаторов был собран узел по схеме (рис. 3):
Как и в предыдущей схеме, на вход (резистор R1) подается сигнал с движка переключателя частот генератора-делителя (схема рис.1), при этом схему можно включать параллельно с предыдущим модулем. Резистор R1 подбирается в зависимости от типа транзистора Т1 и чувствительности используемой измерительной головки. В отличие от других модулей, здесь требуется пониженное стабильное питание 1,2 — 1,8 В (схема такого стабилизатора будет приведена ниже, на рис.6). При измерениях полярность подключения конденсаторов к клеммам «+Сх» и «Общ» не имеет значения, а измерения можно проводить без выпайки конденсаторов из схемы. Перед началом измерений прибор калибруется, то есть стрелка устанавливается на нулевую отметку шкалы резистором R4.
Узел измерения ESR содержит отдельный генератор на 100 кГц, собранный на МС типа 561ЛА7 (ЛЕ5), по такой же схеме, как и задающий генератор на рис.1. Можно, конечно же, использовать и уже имеющуюся частоту 100 кГц, которая присутствует на нашем основном генераторе с делителями частоты. Но при пользовании прибором оказалось гораздо удобнее иметь независимый генератор для этого модуля, так как это упрощает коммутацию.
Здесь частота может быть в пределах 80-120 кГц, поэтому применение кварца не требуется. От величины ESR подключенного к клеммам конденсатора зависит ток, протекающий через обмотку I трансформатора ( он намотан на ферритовом кольце диаметром 15 — 20 мм. Марка феррита роли не играет, но, возможно, число витков первичной обмотки нужно будет подкорректировать. Поэтому лучше будет сначала намотать обмотку II, а первичную — сверху неё).
Переменное напряжение 100 кГц, наведённое во вторичной обмотке, выпрямляется диодом VD5 и подаётся на измерительную головку (см. модуль индикации на рис.4). Диоды VD3, VD4 нужны для защиты стрелочной головки от перегрузки и могут быть любые, а VD1, VD2 также желательно применить германиевые.
В этой схеме при измерениях также не важна полярность подключения конденсаторов и измерять параметры конденсаторов можно прямо в схеме, без выпайки. Пределы измерения задаются при настройке и их можно менять в широких пределах подстроечником R5, от десятых долей Ома, до нескольких Ом.
Примечание: при измерении ESR конденсаторов ЛЮБЫМ прибором важно учитывать влияние сопротивления измерительных щупов и проводов от клемм «ESR» и »Общ». Они должны быть как можно короче и большого сечения
Если этот модуль будет расположен вблизи с другим источником импульсных сигналов (например рядом с генератором рис.1), возможен срыв генерации узла на МС. Поэтому этот узел (измерения «ESR»), лучше собрать на отдельной небольшой плате и поместить в экран (из жести, например), соединённый с общим проводом. Питание микросхемы измерителя ESR может быть как и у предыдущих схем.
Величины типовых (максимально допустимых) значений ESR различных конденсаторов даны ниже в таблице (позаимствованно из открытых источников).
Как проверить полевой транзистор?
В норме сопротивление между любыми выводами ПТ бесконечно велико.
И, если тестер показывает какое-то небольшое сопротивление, то ПТ, скорее всего, пробит и подлежит замене.
Во многих ПТ имеется встроенный диод между стоком и истоком для защиты канала от обратного напряжения (напряжения обратной полярности).
Таким образом, если поставить «+» тестера (красный щуп, соединенный с «красным» входом тестера) на исток, а «-» (черный щуп, соединенный с черным входом тестера) на сток, то канал будет «звониться», как обычный диод в прямом направлении.
Это справедливо для ПТ с n-каналом. Для ПТ с p-каналом полярность щупов будет обратной.
Как проверить диод с помощью цифрового тестера, описано в соответствующей статье. Т.е. на участке «сток — исток» будет падать напряжение 500-600 мВ.
Если поменять полярность щупов, к диоду будет приложено обратное напряжение, он будет закрыт и тестер это зафиксирует.
Однако исправность защитного диода еще не говорит об исправности транзистора в целом. Более того, если «прозванивать» ПТ, не выпаивая из схемы, то из-за параллельно подключенных цепей не всегда можно сделать однозначный вывод даже об исправности защитного диода.
В таких случаях можно выпаять транзистор, и, используя небольшую схему для тестирования, однозначно ответить на вопрос – исправен ли ПТ или нет.
В исходном состоянии кнопка S1 разомкнута, напряжение на затворе относительно стока равно нулю. ПТ закрыт, и светодиод HL1 не светится.
При замыкании кнопки на резисторе R3 появляется падение напряжения (около 4 В), приложенное между истоком и затвором. ПТ открывается, и светодиод HL1 светится.
Эту схему можно собрать в виде модуля с разъемом для ПТ. Транзисторы в корпусе D2 pack (который предназначен для монтажа на печатную плату) в разъем не вставишь, но можно припаять к его электродам проводники, и уже их вставить в разъем. Для проверки ПТ с p-каналом полярность питания и светодиода нужно изменить на обратную.
Иногда полупроводниковые приборы выходят из строя бурно, с пиротехническими, дымовыми и световыми эффектами.
В этом случае на корпусе образуются дыры, он трескается или разлетается на куски. И можно сделать однозначный вывод об их неисправности, не прибегая к приборам.
В заключение скажем, что буквы MOS в аббревиатуре MOSFET расшифровываются как Metal — Oxide — Semiconductor (металл – оксид – полупроводник). Такова структура ПТ – металлический затвор («кран») отделен от канала из полупроводника слоем диэлектрика (оксида кремния).
Надеюсь, с «трубами», «кранами» и прочей «сантехникой» вы сегодня разобрались.
Однако, теория, как известно, без практики мертва! Надо обязательно поэкспериментировать с полевиками, поковыряться, повозиться с их проверкой, пощупать, так сказать.
Кстати, купить полевые транзисторы можно .
Неисправности, вызванные окислением контактов из-за вытекшей жидкости из термопрокладок
Вытекшая из термопрокладок жидкость — это не только безвредное загрязнение видеокарт, но и потенциальная возможность получить замыкание из-за налипшей токопроводящей грязи, а также ухудшение проводимости на участках, окисленных вытекшей субстанцией. Так как при обычной установке карт в риге жидкость вытекает в основном на контакты видеокарты, вставляющиеся в райзер, то начинаются проблемы, связанные с тем, что материнская плата не может определить видеокарту и подвисает на этапе определения устройств PCI-E в BIOS. Иногда из-за плохих контактов появляются ошибки с кодом 43, операционная система после загрузки часто подвисает, даже при отсутствии разгона появляются ошибки с определением температуры и т.д.
Обычно такая неисправность вызывается использованием некачественных термопроводящих прокладок (серые) и слишком высокой температурой при эксплуатации видеокарт (более 70 градусов).
Проверка на наличие коротких замыканий в контрольных точках на плате видеокарты в этом случае показывает нормальное сопротивление, BIOS у видеокарт также в норме. Контакты разъемов при этом покрыты окислами, имеют следы коррозии.
Устранение неисправности в этом случае заключается в очистке/восстановлении контактов. Очистку контактов можно делать спиртом (медицинским или изопропиловым), бензином «Калоша».
Для профилактики таких неисправностей не стоит превышать рабочую температуру видеокарты выше 65 градусов, при проведении профилактической чистки менять засохшие серые термопрокладки на более качественные.
Как проверить полевой транзистор?
MOSFET: N-канальный полевой транзистор.
S — исток, D — сток, G — затвор
На мультиметре выставляем режим проверки диодов.
Транзистор закрыт: сопротивление — 502 ома
MOSFET — это Metal-Oxide-Semiconductor Field-Effect Transistor. Для диагностики полевых транзисторов N-канального вида ставим мультиметр на проверку диодов (обычно он пищит на этом положении), черный щуп слева на подложку (D — сток), красный на дальний от себя вывод справа (S — исток), тестер показывает 502 Ома — полевой транзистор закрыт (Рис.4). Далее, не снимая черного щупа, касаемся (Рис.5) красным щупом ближнего вывода (G — затвор) и опять возвращаем его на дальний (S — исток), тестер показывает 0 Ом: полевой транзистор открылся прикосновением (Рис.6).
Если сейчас черным щупом коснуться нижней (G — затвор) ножки, не отпуская красного щупа (Рис.7), и вернуть его на подложку (D — сток), то полевой транзистор закроется и снова будет показывать сопростивление около 500 Ом (Рис. 8). Это верно для большинства N-канальных полевиков в корпусе DPAK и D²PAK, применяемых на материнских платах и видеокартах.
В цепи сток-исток имеется диод. Кстати его наличие обусловлено технологией производства.
Тестером можно подтвердить наличие этого диода.
0.5В — это падение напряжение на внутреннем диоде Шоттки. Если поменять щупы местами, то должен быть «обрыв».
А теперь можно проверить и затвор.
Тестер должен показывать «обрыв» при проверке затвор-исток и затвор-сток, причем полярность щупов не имеет значения.
Но вот что интересно, если черный щуп («-«) держать на истоке, а красным щупом («+») коснуться затвора, то транзистор откроется. В чем мы можем убедится, опять проверив
Тестер покажет почти нулевое сопротивление.
Теперь поместим щуп «+» на сток, а черный щуп на затвор и проверим сток-исток. Тестер опять будет показывать или падение напряжения на диоде или «обрыв», т.е транзистор закрылся!
Кстати есть еще одна тонкость — если мы откроем транзистор и измерим сопротивление сток-исток, но только не сразу, а через некоторое время, то тестер будет показывать сопротивление отличное от нуля. И чем больше пройдет времени, тем больше будет сопротивление.
Почему же так происходит? А все очень просто — емкость между затвором и стоком достаточно большая (обычно единицы нанофарад) и когда мы открываем MOSFET транзистор, эта емкость заряжается. А так как полевой транзистор управляется полем а не током, то пока не разрядится конденсатор, транзистор будет открыт.
P-канальный MOSFET транзистор можно проверить по такому же принципу, только полярность затвора другая.
В современной радиоэлектронной аппаратуре все чаще находят применение полевые транзисторы. Как доказала практика, конструктивная надежность данных компонентов обуславливает высокую практичность работоспособности всевозможной бытовой техники. В процессе ремонтных работ, которые все же случаются, возникает необходимость тестирования того или иного компонента на предмет его исправности. Например, как проверить полевой транзистор, который выпаяли из неисправного блока, вышедшего из строя аппарата. Самый простой метод проверки с применением стрелочного тестера. У исправного транзистора между всеми его выводами прибор показывает бесконечное сопротивление, кроме современных, имеющих диод между стоком и истоком, который и ведет себя, как обычный диод. Второй способ проверки с применение современного цифрового мультиметра. Черный щуп, являющийся отрицательным, прикладываем к выводу стока транзистора. Красный щуп, являющийся положительным, прикладываем к выводу истока. Мультиметр показывает прямое падение напряжения на внутреннем диоде около 450мВ, в обратном – бесконечное сопротивление. В данный момент транзистор закрыт. Что мы делаем далее. Не снимая черного щупа, прикладываем красный к затвору, и вновь возвращаем на вывод истока. Мультиметр показывает 280мВ, т.е. он открылся прикосновением. Теперь, если прикоснуться затвора черным щупом, не отпуская красного щупа и вернуть его на вывод стока, то полевой транзистор закроется, и прибор снова покажет падение напряжения на диоде. Диагностика произведена, в результате чего мы убедились в исправности тестируемого транзистора. Для образца мы применили N-канальный полевой транзистор. Чтобы проверить исправность P-канального транзистора, необходимо, всего лишь, поменять местами щупы мультиметра.
ЗЫ: Взял где взял, обобщил и добавил немного. (не отвлекайтесь и откликайтесь кому это не по зубам) — Копипаста? Да! . обобщённая и дополненная.
Простите за качество некоторых картинок (чем богаты).
Схема проверки полевого транзистора n-канального типа мультиметром
Перед тем, как проверить исправность полевого транзистора, необходимо учитывать, что в современных радиодеталях типа MOSFET между стоком и истоком есть дополнительный диод. Этот элемент обычно присутствует на схеме прибора. Его полярность зависит от типа транзистора.
Работоспособность катушки зажигания определяют проверкой сопротивлений на первичной и вторичной обмотках с помощью мультиметра.
Порядок проверки исправности n-канального транзистора мультиметром следующий:
- Снять статическое электричество с транзистора.
- Перевести мультиметр в режим проверки диодов.
- Подключить черный провод мультиметра к минусу измерительного прибора, а красный – к плюсу.
- Подключить красный провод к истоку, а черный – к стоку транзистора. Если транзистор исправен, то мультиметр покажет напряжение на переходе 0,5 — 0,7 В.
Подключить красный провод мультиметра к стоку, а черный – к истоку транзистора. При исправном приборе мультиметр покажет единицу, что означает бесконечность.
Подключить черный провод к истоку, а красный – к затвору. Таким образом, осуществляется открытие транзистора.
Черный провод оставляется на истоке, а красный подсоединяется к стоку. При исправном приборе мультиметр покажет напряжение от 0 до 800 мВ.
При смене полярности щупов мультиметра величина показаний не должна измениться.
Подключить красный провод к истоку, а черный – к затвору. Произойдет закрытие транзистора.
При этом транзистор возвратиться в состояние, соответствующее п.п.4 и 5.
По проделанным измерениям можно сделать вывод, что если полевой транзистор открывается и закрывается с помощью постоянного напряжения с мультиметра, то он исправен.
Полевой транзистор имеет большую входную емкость, которая разряжается довольно долго. Это используется при проверке транзистора, когда вначале его открывают напряжением мультиметра (п.6), а затем в течение некоторого времени, пока не разрядилась входная емкость, проводят дополнительные измерения (п.п. 7,8).
Конструкция и принцип работы
Ранее вместо транзисторов в электрических схемах использовались специальные малошумящие электронные лампы, но они были больших габаритов и работали за счет накаливания. Биполярный транзистор ГОСТ 18604.11-88 – это полупроводниковый электрический прибор, который является управляемым элементом и характеризуется трехслойной структурой, применяется для управления СВЧ. Может находиться в корпусе и без него. Они бывают p-n-p и n–p–n типа. В зависимости от порядка расположения слоев, базой может быть пластина p или n, на которую наплавляется определенный материал. За счет диффузии во время изготовления получается очень тонкий, но прочный слой покрытия.
Фото — мпринципиальные схемы включения
Чтобы определить, какой перед Вами транзистор, нужно найти стрелку эммитерного перехода. Если её направление идет в сторону базы, то структура pnp, если от неё – то npn. Некоторые полярные импортные аналоги (IGBT и прочие) могут иметь буквенное обозначение перехода. Помимо этого бывают еще биполярные комплементарные транзисторы. Это устройства, у которых одинаковые характеристики, но разные типы проводимости. Такая пара нашла применение в различных радиосхемах. Данную особенность нужно учитывать, если необходима замена отдельных элементов схемы.
Фото — конструкция
Область, которая находится в центре, называется базой, с двух сторон от неё располагаются эммитер и коллектор. База очень тонкая, зачастую её толщина не превышает пары 2 микрон. В теории существует такое понятие, как идеальный биполярный транзистор. Это модель, у которой расстояние между эммитерной и коллекторной областями одинаковое. Но, зачастую, эммиторный переход (область между базой и эммитером) в два раза больше коллекторного (участок между основой и коллектором).
Фото — виды биполярных триодов
По виду подключения и уровню пропускаемого питания, они делятся на:
- Высокочастотные;
- Низкочастотные.
По мощности на:
- Маломощные;
- Средней мощности;
- Силовые (для управления необходим транзисторный драйвер).
Принцип работы биполярных транзисторов основан на том, что два срединных перехода расположены по отношению друг к другу в непосредственной близости. Это позволяет существенно усиливать проходящие через них электрические импульсы. Если приложить к разным участкам (областям) электрическую энергию разных потенциалов, то определенная область транзистора сместится. Этим они очень похожи на диоды.
Фото — пример
Например, при положительном открывается область p-n, а при отрицательном она закрывается. Главной особенностью действия транзисторов является то, что при смещении любой области база насыщается электронами или вакансиями (дырками), это позволяет снизить потенциал и увеличить проводимость элемента.
Существуют следующие ключевые виды работы:
- Активный режим;
- Отсечка;
- Двойной или насыщения;
- Инверсионный.
Перед тем, как определить режим работы в биполярных триодах, нужно разобраться, чем они отличаются друг от друга. Высоковольтные чаще всего работают в активном режиме (он же ключевой режим), здесь во время включения питания смещается переход эмиттера, а на коллекторном участке присутствует обратное напряжение. Инверсионный режим – это антипод активного, здесь все смещено прямо-пропорционально. Благодаря этому, электронные сигналы значительно усиливаются.
Во время отсечки исключены все типы напряжения, уровень тока транзистора сведен к нулю. В этом режиме размыкается транзисторный ключ или полевой триод с изолированным затвором, и устройство отключается. Есть еще также двойной режим или работа в насыщении, при таком виде работы транзистор не может выступать как усилитель. На основании такого принципа подключения работают схемы, где нужно не усиление сигналов, а размыкание и замыкание контактов.
Из-за разности уровней напряжения и тока в различных режимах, для их определения можно проверить биполярный транзистор мультиметром, так, например, в режиме усиления исправный транзистор n-p-n должен показывать изменение каскадов от 500 до 1200 Ом. Принцип измерения описан ниже.
Основное назначение транзисторов – это изменение определенных сигналов электрической сети в зависимости от показателей тока и напряжения. Их свойства позволяют управлять усилением посредством изменения частоты тока. Иными словами, это преобразователь сопротивления и усилитель сигналов. Используется в различной аудио- и видеоаппаратуре для управления маломощными потоками электроэнергии и в качестве УМЗЧ, трансформаторах, контроля двигателей станочного оборудования и т. д.
Видео: как работает биполярные транзисторы
Дополнения
Составной транзистор Т1 (КТ829, схема рис. 3) можно заменить двумя транзисторами меньшей мощности по типовой схеме, а для питания 1,4 В можно собрать простой стабилизатор на одном транзисторе. Эти схемы показаны на рис. 5 и 6 соответственно.
Кремниевые диоды VD1-VD3 здесь применены в качестве стабилитрона, примерно на 1,5 В. В отличие от стабилитрона, включать диоды следует в прямом направлении.
При желании можно дополнить прибор модулем для быстрой проверки работоспособности и цоколёвки транзисторов. С его помощью можно проверять любые биполярные транзисторы, а также полевые транзисторы малой и средней мощности. Причём биполярные транзисторы можно проверять без выпайки их из схемы. Схема представлена на рис.7.
В зависимости от применённых светодиодов нужно подобрать сопротивление R5 по оптимальной яркости их свечения (или же поставить дополнительный гасящий резистор в цепь питания 9 В, а вообще эта схема работает с питающим напряжением, начиная от 2 В). Когда к клеммам «Э», «Б», «К» ничего не подключено, оба светодиода мигают (частота миганий может быть изменена номиналами конденсаторов С1 и С2). При подключении к клеммам исправного транзистора, один из светодиодов погаснет (в зависимости от типа его проводимости p-n-p / n-p-n). Если транзистор неисправен, то оба светодиода будут мигать (внутренний обрыв) или оба погаснут (замыкание).
Прибор с применением всех перечисленных модулей был собран в корпусе размерами 140х110х40 мм и позволяет проверить практически все основные типы радиодеталей чаще всего используемых на практике, с достаточной для радиолюбителей точностью. Используется несколько лет и нареканий не вызывает.
Какие случаются неисправности
Полевые транзисторы могут быть перегружены током во время проведения проверки и, в результате перегрева прийти в неисправное состояние.
Важно! Они уязвимы к статическому напряжению. В процессе проведения работы нужно обеспечить, чтобы оно не попадало на проверяемую деталь
При работе в составе схемы может произойти пробой, в результате которого полевой транзистор становится неисправным и подлежит замене. Его можно обнаружить по низкому сопротивлению p-n-переходов в обоих направлениях.
Определить то, насколько транзистор является работоспособным можно, если прозвонить его с помощью цифрового мультиметра.
Назначение выводов
Это нужно делать следующим образом (для примера используется широко распространённая модель М-831, рассматривается полевой транзистор с каналом n-типа):
- Мультиметр нужно переключить в режим диодной проверки. Он отмечен на панели схематическим изображением диода.
- К прибору присоединены два щупа: чёрный и красный. На лицевой панели имеются три гнезда. Чёрный устанавливают в нижнее, красный — в среднее. Первый из них соответствует отрицательному полюсу, второй — положительному.
- Нужно на тестируемом полевом транзисторе определить, какие выходы соответствуют истоку, затвору и стоку.
- В некоторых моделях дополнительно предусмотрен внутренний диод, защищающий деталь от перегрузки. Сначала нужно проверить то, как он работает. Для этого красный провод присоединяют к истоку, а чёрный — к стоку.
Проверка диода в прямом направлении
На индикаторе должно появиться значение, входящее в промежуток 0,5-0,7. Если провода поменять местами, то на экране будет указана единица, что означает, что ток в этом направлении не проходит.
Проверка диода в обратном направлении
- Дальше осуществляется проверка работоспособности транзистора.
Если присоединить щупы к истоку и стоку, то ток не будет проходить по ним. Чтобы открыть затвор. Необходимо подать положительное напряжение на затвор. Нужно учитывать, что на красный щуп подан от мультиметра положительный потенциал. Теперь достаточно его соединить с затвором, а чёрный со стоком или истоком, для того, чтобы транзистор стал пропускать ток.
Открытие канала
Теперь, если красный провод подключить к истоку, а чёрный — к стоку, то мультиметр покажет определённую величину падения напряжения, например, 60. Если подключить наоборот, то показатель будет примерно таким же.
Если на затвор подать отрицательный потенциал, то это закроет транзистор в обоих направлениях, однако будет работать встроенный диод. Если полевик закрыт не будет, то это указывает на его неисправность.
Проверка мофсета с p-каналом выполняется аналогичным образом. Отличие состоит в том, что при проверке там, где раньше использовался красный щуп, теперь используется чёрный и наоборот.
Работа полевого МДП транзистора
Проверка на плате
Чтобы проверить транзистор мультиметром не выпаивая или нужен мультиметр с функцией прозвонки диодов. Переключатель переводим в это положение, подключение щупов стандартное: чёрный в общее звено (COM или со значком земли), красный — в среднее (гнездо для измерения сопротивления, тока, напряжения).
Как проверить транзистор мультиметром не выпаивая
Чтобы понять принцип проверки, надо вспомнить структуру биполярных транзисторов. Как уже говорили, они бывают двух типов: PNP и NPN. То есть это три последовательные области с двумя переходами, объединёнными общей областью — базой.
Строение биполярного транзистора и как его можно представить, чтобы понять как его будем проверять
Условно, мы можем представить этот прибор как два диода. В случае с PNP типом они включены навстречу друг другу, у NPN — в зеркальном отражении. Это представление на картинке в правом столбике и ни в коем случае не отображает устройство этого полупроводникового прибора, но поясняет, что мы должны увидеть при прозвонке.
Проверка биполярного транзистора PNP типа
Итак, начнём с проверки биполярника PNP типа. Вот что у нас должно получиться:
- Если подать на базу плюс (красный щуп), на эмиттер или коллектор — минус (чёрный щуп), должно быть бесконечно большое сопротивление. В этом случае диоды закрыты (смотрим на эквивалентной схеме).
Если подаём на базу минус (чёрный щуп), а на эмиттер или коллектор плюс (красный щуп), видим ток от 600 до 800 мВ. В этом случае получается, что переход открыт.
- Если щупами касаемся эмиттера и коллектора, показаний никаких нет, в обеих вариантах переходы оказываются запертыми.
Итак, PNP транзистор будет открыт только тогда, когда плюс подаётся на эмиттер или коллектор. Если во время испытаний есть хоть какие-то отклонения, элемент неработоспособен.
Тестируем исправность NPN транзистор
Как видим, в NPN приборе ситуация будет другой. Практически она диаметрально противоположна:
- Если подать на базу плюс (красный щуп), а на эмиттер или коллектор минус, переход будет открыт, на экране высветятся показания — от 600 до 800 мВ.
- Если поменять местами щупы: плюс на коллектор или эмиттер, минус на базу — переходы заперты, тока нет.
- При прикосновении щупами к эмиттеру и коллектору тока по-прежнему быть не должно.
Проверка работоспособности биполярного NPN транзистора мультиметром
Как видим, этот прибор работает в противоположном направлении. Для того чтобы понять, рабочий транзистор или нет, необходимо знать его тип. Только так можем проверить транзистор мультиметром не выпаивая его с платы.
И ещё раз обращаем ваше внимание, картинки с диодами никак не отображают устройство этого полупроводникового прибора. Они нужны только для понимания того, что мы должны увидеть при проверке переходов
Так проще запомнить, и понимать показания на экране мультиметра.
Как определить базу, коллектор и эмиттер
Иногда бывают ситуации, когда нет под рукой справочника и возможности найти цоколёвку в интернете, а надпись на корпусе транзистора стала нечитаемой. Тогда, пользуясь схемами с диодами, можно опытным путём найти базу и определить тип прибора.
Строение биполярного транзистора и как его можно представить чтобы понять как его будем проверять
Путём перебора ищем положение щупов, при котором «звонятся» все три электрода. Тот вывод, относительно которого появляются показания на двух других и будет базой. Потому, плюс или минус подан на базу определяем тип, PNP или NPN. Если на базу подаём плюс — это NPN тип, если минус — это PNP.
Чтобы определить, где эмиттер,а где коллектор, надо сравнить показания мультиметра при измерении. На эмиттере ток всегда больше. Так и найдём опытным путём базу, эмиттер и коллектор.
Генератор образцовых частот
Использована широко распространенная схема генератора на цифровых элементах, которая при всей своей простоте обеспечивает набор необходимых рабочих частот с хорошей точностью и стабильностью, не требуя при этом никаких настроек.
Рисунок 1. | Генератор 1 МГц с делителями частоты. |
Генератор на микросхеме К561ЛА7 (или ЛЕ5) синхронизирован кварцевым резонатором в цепи обратной связи, определяющим частоту сигнала на его выходе (выводы 10, 11), равную в данном случае 1 МГц (Рисунок 1). Сигнал генератора последовательно проходит через несколько каскадов делителей частоты на 10, собранных на микросхемах К176ИЕ4, СD4026 или любых других. С выхода каждого каскада снимается сигнал с частотой в десять раз меньшей входной частоты. C помощью любого переключателя на шесть положений сигнал с генератора или с любого делителя можно вывести на выход. Правильно собранная из исправных деталей схема работает сразу и не нуждается в настройке.. Конденсатором С1 при желании можно в небольших пределах подстраивать частоту. Схема питается напряжением 9 В.
Оцените статью:Проверка MOSFET транзистора / Блог им. woodman / Radistor.ru
MOSFET транзисторы в последнее время все больше и больше набирают популярность. Они могут послужить хорошей заменой реле и биполярным транзисторам.Чтобы сэкономить деньги и не бегать лишний раз в магазин, MOSFET транзисторы можно выпаять из нерабочей материнской платы или какого-нибудь модуля управления.
Но как проверить работоспособность этих радиокомпонетов?
Для этого нам потребуется всего один прибор — тестер.
У каждого радиолюбителя (даже начинающего) он обязательно должен быть!
В подавляющем большинстве тестеров есть режим «прозвонки», совмещенный с проверкой падения напряжения диодов.
Вот в этот режим мы и переводим тестер.
Теперь посмотрим на схему N-канального MOSFET транзистора.
В цепи сток-исток имеется диод. Кстати его наличие обусловлено технологией производства.
0.5В — это падение напряжение на внутреннем диоде Шоттки. Если поменять щупы местами, то должен быть «обрыв».
А теперь можно проверить и затвор.
Тестер должен показывать «обрыв» при проверке затвор-исток и затвор-сток, причем полярность щупов не имеет значения.
Но вот что интересно, если черный щуп («-«) держать на истоке, а красным щупом («+») коснуться затвора, то транзистор откроется. В чем мы можем убедится, опять проверив сток-исток.
Тестер покажет почти нулевое сопротивление.
Теперь поместим щуп «+» на сток, а черный щуп на затвор и проверим сток-исток. Тестер опять будет показывать или падение напряжения на диоде или «обрыв», т.е транзистор закрылся!
Кстати есть еще одна тонкость — если мы откроем транзистор и измерим сопротивление сток-исток, но только не сразу, а через некоторое время, то тестер будет показывать сопротивление отличное от нуля. И чем больше пройдет времени, тем больше будет сопротивление.
Почему же так происходит? А все очень просто — емкость между затвором и стоком достаточно большая (обычно единицы нанофарад) и когда мы открываем MOSFET транзистор, эта емкость заряжается. А так как полевой транзистор управляется полем а не током, то пока не разрядится конденсатор, транзистор будет открыт.
P-канальный MOSFET транзистор можно проверить по такому же принципу, только полярность затвора другая.
Проверка мосфетов на материнской плате
В радиоэлектронике и электротехнике транзисторы относятся к одним из основных элементов, без которых не будет работать ни одна схема. Среди них, наиболее широкое распространение получили полевые транзисторы, управляемые электрическим полем. Само электрическое поле возникает под действием напряжения, следовательно, каждый полевой транзистор является полупроводниковым прибором, управляемым напряжением. Наиболее часто применяются элементы с изолированным затвором. В процессе эксплуатации радиоэлектронных устройств и оборудования довольно часто возникает необходимость проверить полевой транзистор мультиметром, не нарушая общей схемы и не выпаивая его. Кроме того, на результаты проверки оказывает влияние модификация этих устройств, которые технологически разделяются на п- или р-канальные.
Устройство и принцип действия полевых транзисторов
Полевые транзисторы относятся к категории полупроводниковых приборов. Их усиливающие свойства создаются потоком основных носителей, который протекает через проводящий канал и управляется электрическим полем. Полевые транзисторы, в отличие от биполярных, для своей работы используют основные носители заряда, расположенные в полупроводнике. По своим конструктивным особенностям и технологии производства полевые транзисторы разделяются на две группы: элементы с управляющим р-п-переходом и устройства с изолированным затвором.
К первому варианту относятся элементы, затвор которых отделяется от канала р-п-переходом, смещенным в обратном направлении. Носители заряда входят в канал через электрод, называемый истоком. Выходной электрод, через который носители заряда уходят, называется стоком. Третий электрод – затвор выполняет функцию регулировки поперечного сечения канала.
Когда к истоку подключается отрицательное, а к стоку положительное напряжение, в самом канале появляется электрический ток. Он создается за счет движения от истока к стоку основных носителей заряда, то есть электронов. Еще одной характерной особенностью полевых транзисторов является движение электронов вдоль всего электронно-дырочного перехода.
Между затвором и каналом создается электрическое поле, способствующее изменению плотности носителей заряда в канале. То есть, изменяется величина протекающего тока. Поскольку управление происходит с помощью обратно смещенного р-п-перехода, сопротивление между каналом и управляющим электродом будет велико, а мощность, потребляемая от источника сигнала в цепи затвора, очень мала. За счет этого обеспечивается усиление электромагнитных колебаний не только по току и напряжению, но и по мощности.
Существуют полевые транзисторы, у которых затвор отделяется от канала слоем диэлектрика. В состав элемента с изолированным затвором входит подложка – полупроводниковая пластина, имеющая относительно высокое удельное сопротивление. В свою очередь, она состоит из двух областей с противоположными типами электропроводности. На каждую из них нанесен металлический электрод – исток и сток. Поверхность между ними покрывает тонкий слой диэлектрика. Таким образом, в полученную структуру входят металл, диэлектрик и полупроводник. Данное свойство позволяет проверить полевой транзистор мультиметром не выпаивая. Поэтому данный вид транзисторов сокращенно называют МДП. Они различаются наличием индуцированных или встроенных каналов.
Проверка мультиметром
Перед началом проверки на исправность полевого транзистора мультиметром, рекомендуется принять определенные меры безопасности, с целью предотвращения выхода транзистора из строя. Полевые транзисторы обладают высокой чувствительностью к статическому электричеству, поэтому перед их проверкой необходимо организовать заземление. Для снятия с себя накопленных статических зарядов, следует воспользоваться антистатическим заземляющим браслетом, надеваемым на руку. В случае отсутствия такого браслета можно просто коснуться рукой батареи отопления или других заземленных предметов.
Хранение полевых транзисторов, особенно с малой мощностью, должно осуществляться с соблюдением определенных правил. Одно из них заключается в том, что выводы транзисторов в этот период, находятся в замкнутом состоянии между собой. Конфигурация цоколей, то есть расположение выводов в различных моделях транзисторов может отличаться. Однако их маркировка остается неизменной, в соответствии с общепринятыми стандартами. Затвор по-английски означает Gate, сток – Drain, исток – Source, а для маркировки используются соответствующие буквы G, D и S. Если маркировка отсутствует необходимо воспользоваться специальным справочником или официальным документом от производителя электронных компонентов.
Проверку можно выполнить с помощью стрелочного омметра, но более удобной и эффективной будет прозвонка цифровым мультиметром, настроенным на тестирование p-n-переходов. Полученное значение сопротивления, отображаемое на дисплее, на пределе х100 численно будет соответствовать напряжению на р-п-переходе в милливольтах. После подготовки можно переходить к непосредственной проверке. Прежде всего нужно знать, что исправный транзистор обладает бесконечным сопротивлением между всеми его выводами. Прибор должен показывать такое сопротивление независимо от полярности щупов, то есть прикладываемого напряжения.
Современные мощные полевые транзисторы имеют встроенный диод, расположенный между стоком и истоком. В результате, при решении задачи, как прозвонить полевой транзистор мультиметром, канал сток-исток, ведет себя аналогично обычному диоду. Отрицательным щупом черного цвета необходимо коснуться подложки – стоку D, а положительным красным щупом – вывода истока S. Мультиметр покажет наличие прямого падения напряжения на внутреннем диоде до 500-800 милливольт. В обратном смещении, когда транзистор закрыт, прибор будет показывать бесконечно высокое сопротивление.
Далее, черный щуп остается на месте, а красный щуп касается вывода затвора G и вновь возвращается к выводу истока S. В этом случае мультиметр покажет значение, близкое к нулю, независимо от полярности приложенного напряжения. Транзистор откроется в результате прикосновения. Некоторые цифровые устройства могут показывать не нулевое значение, а 150-170 милливольт.
Если после этого, не отпуская красного щупа, коснуться черным щупом вывода затвора G, а затем возвратить его к выводу подложки стока D, то в этом случае произойдет закрытие транзистора, и мультиметр вновь отобразит падение напряжения на диоде. Такие показания характерны для большинства п-канальных устройств, используемых в видеокартах и материнских платах. Проверка р-канальных транзисторов осуществляется таким же образом, только со сменой полярности щупов мультиметра.
MOSFET транзисторы в последнее время все больше и больше набирают популярность. Они могут послужить хорошей заменой реле и биполярным транзисторам.
Чтобы сэкономить деньги и не бегать лишний раз в магазин, MOSFET транзисторы можно выпаять из нерабочей материнской платы или какого-нибудь модуля управления.
Но как проверить работоспособность этих радиокомпонетов?
Для этого нам потребуется всего один прибор — тестер.
У каждого радиолюбителя (даже начинающего) он обязательно должен быть!
В подавляющем большинстве тестеров есть режим «прозвонки», совмещенный с проверкой падения напряжения диодов.
Вот в этот режим мы и переводим тестер.
Теперь посмотрим на схему N-канального MOSFET транзистора.
В цепи сток-исток имеется диод. Кстати его наличие обусловлено технологией производства.
Тестером можно подтвердить наличие этого диода.
0.5В — это падение напряжение на внутреннем диоде Шоттки. Если поменять щупы местами, то должен быть «обрыв».
А теперь можно проверить и затвор.
Тестер должен показывать «обрыв» при проверке затвор-исток и затвор-сток, причем полярность щупов не имеет значения.
Но вот что интересно, если черный щуп («-«) держать на истоке, а красным щупом («+») коснуться затвора, то транзистор откроется. В чем мы можем убедится, опять проверив сток-исток.
Тестер покажет почти нулевое сопротивление.
Теперь поместим щуп «+» на сток, а черный щуп на затвор и проверим сток-исток. Тестер опять будет показывать или падение напряжения на диоде или «обрыв», т.е транзистор закрылся!
Кстати есть еще одна тонкость — если мы откроем транзистор и измерим сопротивление сток-исток, но только не сразу, а через некоторое время, то тестер будет показывать сопротивление отличное от нуля. И чем больше пройдет времени, тем больше будет сопротивление.
Почему же так происходит? А все очень просто — емкость между затвором и стоком достаточно большая (обычно единицы нанофарад) и когда мы открываем MOSFET транзистор, эта емкость заряжается. А так как полевой транзистор управляется полем а не током, то пока не разрядится конденсатор, транзистор будет открыт.
P-канальный MOSFET транзистор можно проверить по такому же принципу, только полярность затвора другая.
В дополнение к статье [url=]wiki.rom.by/index.php/%D0%9A%D0%B0%D0%BA_%D0%BF%D1%80%D0%BE%D0%B2%D0%B5%D1. [/url]
Хочу поделиться методом, позволяющим оценить работоспособность мосфета прямо на плате, ничего не отпаивая. Скажу сразу – возможно работает не всегда, но на материнках он мне часто помогал. Также хочу отметить, что для осуществления этого метода нужен мультиметр с колодкой для измерения hfe биполярных транзисторов и без доработки мультиметра, к сожалению, можно проверять только N-канальные транзисторы.
Не могу утверждать его 100% точность, но, по крайней мере он позволяет отсеять живые транзисторы в большинстве случаев.
Итак, на примере IRLML2402, N-канальный мосфет в корпусе SOT-23, маркировка A5Z3S.
Берем дополнительный проводок, втыкаем его в гнездо E (PNP) колодки для измерения hfe, не секрет, что там присутствует постоянное напряжение около +3 В относительно черного провода мультиметра.
Сверившись с даташитом, подключаем мультиметр: красный щуп на исток, а черный щуп на сток, транзистор закрыт, мультиметр показывает падение напряжения на встроенном диоде.
А теперь подаем дополнительным проводом +3В на затвор, транзистор открыт.
Если транзистор веде себя не так – отпаиваем его и проверяем дополнительно.
Таким же способом, в принципе, можно оценивать состояние P-канальных транзисторов, но задача усложняется отсутствием возможности получить напряжение -3В относительно черного провода непосредственно из мультиметра. Приходится цеплять дополнительно батарейку типа CR2032, плюс к черному проводу, минус – на затвор мосфета.
Вложение | Размер |
---|---|
Рис. 1 | 71.74 КБ |
Рис. 2 | 66.64 КБ |
Рис. 3 | 78.53 КБ |
Рис. 4 | 70.71 КБ |
Интересный способ, причём логичный. Только вот незадача, а что если управляющая «зверушка» или сам транзистор не выдержит такого издевательства – пихать ей в ногу +3V насильно?
Идея не несет ответственности за тех, кто в неё верит
Только вот незадача, а что если управляющая «зверушка» или сам транзистор не выдержит такого издевательства – пихать ей в ногу +3V насильно?
В общем-то зачёт, чтоб не городить какую-то сумасшедшую схему из батареи и кучи проводов.. (подручными средствами как говорится. )
Идея не несет ответственности за тех, кто в неё верит
AVR-STM-C++: Как мультиметром проверить MOSFET
Как проверить полевой транзистор мультиметром?Исходя из особенностей конструкции полевых транзисторов способ проверки отличается от способа проверки биполярных транзисторов.
Транзистор должен быть выпаян, на распаяном транзисторе в большинстве случаев этот способ не сработает за счет обвязки (окружающих деталей). Мультиметр ставим на режим прозвонки диодов.
Сам полевой транзистор может содержать в себе встроенный диод, он будет между Drain и Source. Поэтому для начала ищем даташит на наш полевик — чтобы точно знать с чем имеем дело.
Для примера возьмем MOSFET IRLZ44N. Из даташита на него мы узнаем где у него какие ноги. IRLZ44N цоколевка
Из этого же даташита мы видим, что есть диод, а это значит, что между Drain и Source мы увидим вместо бесконечного сопротивления — некое падение напряжения.
Итак, ставим черный щуп на Drain, красный на Gate. Прибор должен показать бесконечное сопротивление, тоесть показатели просто не поменяются. Меняем щупы местами — картина та же. Переставляем красный с Drain на Source, потом меняем местами (Красный на Gate, черный на Source) — показания меняться не должны.
Gate, он же затвор, отделен от Drain и Source, если звониться в какую-либо сторону — затвор пробит, мосфет неисправен.Теперь нам надо прозвонить Drain и Source, но для начала коротим все ноги щупом — дабы те напряжения, которые мы ему передали при прозвонке, уравнять. Ставим черный щуп на Drain, красный — на Source. Тут мы должны увидеть тот самый диод — тоесть падение напряжения. Меняем щупы местами — бесконечное сопротивление, как и в случае с Gate. Если видим что-то иное — коротим ноги щупом и повторяем замер. Если результат не бесконечное сопротивление — наш полевой транзистор вышел из строя.
Дальше ставим черный щуп на Source, красным касаемся Gate и ставим после этого на Drain. MOSFET должен открыться, тоесть показать низкое сопротивление. Так как напряжение, которым мы открыли полевой транзистор — низкое, то и сопротивление транзистора будет велико.
Если ваш мосфет ведет себя не так — скорей всего он вышел из строя.
Такой способ проверки полевых транзисторов поможет проверить фактически все широко распространенные MOSFET-транзисторы.
Проверка годности мощных полевых транзисторов серий MOSFET (МОП), Краснодар, Белецкий А. И.
Работоспособность любых MOSFET или МОП транзисторов можно проверить за 10 секунд лабораторным блоком питания.
Например, вот таким.
Лабораторный блок питания.
Хорошим лабораторным блоком питания можно в реальном времени, совершенно не напрягаясь, проводить любой сложности эксперименты, не говоря об такой мелочи, как проверка полевых транзисторов.
Для этого выставляем напряжение на щупах 8-10 Вольт.
Закорачиваем щупы и выставляем ток короткого замыкания 10-50 миллиампер.
Подключаем плюсовой щуп к стоку (средний вывод полевого транзистора).
Подключаем минусовой вывод в истоку (один из крайних выводов полевого транзистора).
Ограничение тока быть не должно. Канал сток — исток транзистора закрыт.
Отрываем плюсовой выод от стока и кратковременно прикасаемся им и к затвору.
Теперь, при касании обратно к стоку, должно произойти ограничение тока — транзистор открылся и будет оставаться открытым еще длительное время после отсоединения его от щупов блока питания. Это следствие больших паразитных емкостей, в том числе и динамической емкости Миллера.
Если интересно, читайте статью по этой ссылке
Емкость Миллера в MOSFET МОП транзисторах.
Теперь, чтобы закрыть транзистор необходимо оторвать щуп от истока и кратковременно прикоснуться к затвору. Подключив щуп назад к истоку, убеждаемся, что ограничения тока нет — транзистор закрылся.
Это методика проверки MOSFET транзисторов с N каналом.
Если проверяется MOSFET транзистор с Р каналом, нужно щупы блока питания поменять местами.
Подключаем минусовой щуп к стоку (средний вывод полевого транзистора).
Подключаем плюсовой вывод к истоку (один из крайних выводов полевого транзистора).
Чтобы не путаться при проверке полевых МОП транзисторов нужно знать, что.
Полевой MOSFET транзистор всегда Открывается относительно Стока (среднего вывода).
Полевой MOSFET транзистор всегда Закрывается относительно Истока (крайнего вывода).
Это значит.
Чтобы закрыть канал транзистора, необходимо быстро коротнуть два крайние выводы.
Но, поскольку в полевых транзисторах имеется большая паразитная емкость, то для открывания — закрывания канала можно спокойно отрывать щупы от ножек, даже на длительное время.
Если нет такого лабораторного блока питания, то для проведения измерения можно собрать несложную схему.
Взаимопонимание mosfet on-state сопротивление утечки в исходное состояние
Понимание MOSFET On-State Drain-to-Source Resistance
Этот технический краткий обзор содержит некоторые полезные сведения об общем параметре MOSFET, называемом сопротивлением состояния.
Вспомогательная информация
- Изолированные транзисторы с полевым эффектом (MOSFET)
Одним из наиболее важных спецификаций на спецификациях для дискретных полевых МОП-транзисторов является сопротивление на выходе из источника в исток, сокращенно обозначаемое как R
Во-первых, у полевого транзистора действительно нет «состояния». Когда не в отсечке (мы игнорируем подпороговую проводимость здесь), полевой транзистор может находиться в области триодов или области насыщения. Каждая из этих областей имеет свое собственное соотношение между током и напряжением. Тем не менее, мы можем с уверенностью предположить, что «on state» соответствует триодной области, поскольку R DS (on) имеет значение в контексте коммутационных схем, а не усилителей малого сигнала и схем переключения, например, для управления двигателем или управления реле — использовать отсечки и зоны триода.
Но тем не менее, область триода определяется не простым сопротивлением, а довольно сложным уравнением:
$$ I_D = \ mu_nC_ {вола} \ гидроразрыва {W} {L} \ влево (\ влево (V_ {} Г.С. -V_ {TH} \ справа) V_ {DS} — \ гидроразрыва {1} {2} V_ { DS} ^ 2 \ справа) $$
(Это для устройства NMOS, устройство PMOS будет иметь μ p вместо μ n . ) Однако, если мы проигнорируем член V DS2, уравнение можно упростить следующим образом:
$$ I_D = \ mu_nC_ {вола} \ гидроразрыва {W} {L} \ влево (V_ {} Г.С. -V_ {TH} \ справа) V_ {DS} $$
Теперь у нас действительно есть линейная (т. Е. Резистивная) зависимость между током стока между источниками тока (I D ) и напряжением стока от источника (V DS ). Однако «сопротивление» не является постоянным, как в случае простого резистора; скорее, сопротивление соответствует
$$ \ гидроразрыва {1} {\ mu_nC_ {вола} \ гидроразрыва {W} {L} \ влево (V_ {} Г.С. -V_ {TH} \ справа)} $$
Это приводит нас к важному вопросу о R DS(on) : на это влияет напряжение затвор-источник. Вот пример, взятый из таблицы данных для полевого МОП-транзистора Fairchild NDS351AN:
Типичное пороговое напряжение для этой части задается как 2.1 V. Если вы быстро посмотрите на спецификацию V TH и очень быстро в спецификации R DS (on), вы можете подумать, что вы можете управлять этим полевым транзистором с помощью логического сигнала 3, 3 В и достичь рекламируемой производительности на уровне состояния. Это было бы немного неосторожно, учитывая, что в таблице данных четко указано напряжение затвора от источника, соответствующее спецификации R DS (on) ; однако одна или две точки данных R DS (on) / V GS не передают экстремальное увеличение сопротивления на входе, которое применяется к напряжениям затвора к источнику, которые на самом деле значительно выше типичного V TH . Таким образом, морали истории: 1) помните, что сопротивление в состоянии (т. Е. Триод-область) зависит от V GS и 2) для получения подробной информации см. График R DS (on) против V GS .
Кроме того, сопротивление состояния в состоянии не равно сопротивлению, выражаемому уравнением триодной области, приведенным выше. Последнее относится к сопротивлению канала МОП-транзистора, тогда как сопротивление на выходе включает в себя другие источники проводов резистивной связи, эпитаксиальный слой и т. Д. На характеристики сопротивления влияют технология изготовления и соответствующие вклады различных компонентов R DS ( on) изменяются в зависимости от диапазона напряжения, для которого предназначено конкретное устройство.
Двумя дополнительными факторами, влияющими на сопротивление состояния, являются температура перехода и ток стока, как показано на этих двух графиках из таблицы данных NDS351AN:
Таким образом, вам может потребоваться совершить покупку и провести некоторое время с несколькими таблицами данных, прежде чем найти подходящий MOSFET для конкретного приложения коммутатора.
Как узнать, неисправен ли MOSFET
Ниже приведены инструкции о том, как узнать, неисправен ли MOSFET. Это наиболее распространенные методы, которые можно использовать для проверки неисправности полевого МОП-транзистора.
Шаг № 1 о том, как узнать, неисправен ли MOSFET : Проверка диодов
Первое, что мы попробуем узнать, неисправен ли MOSFET, — это проверить падение диода. Возьмите цифровой мультиметр и установите его в диодный режим. Для NMOS выполните настройку ниже.
Для PMOS выполните настройку, указанную ниже.
Хороший полевой МОП-транзистор должен иметь показания от 0,4 В до 0,9 В (в зависимости от типа полевого МОП-транзистора). Если показание равно нулю, МОП-транзистор неисправен, а когда показание «открыто» или нет, МОП-транзистор также неисправен.
Когда вы меняете местами подключения датчиков цифрового мультиметра, показания должны быть «открытыми» или отсутствовать для исправного полевого МОП-транзистора. Если показание равно нулю, МОП-транзистор неисправен.
Шаг 2, как узнать, неисправен ли полевой МОП-транзистор : Проверка сопротивления
Следующий метод определения неисправности полевого МОП-транзистора — проверка сопротивления.Хороший полевой МОП-транзистор должен иметь высокое сопротивление между стоком и истоком независимо от полярности датчика цифрового мультиметра.
Затвор исток также имеет высокое сопротивление в любом случае для хорошего полевого МОП-транзистора. Однако вы должны принять во внимание, что когда вы помещаете положительный вывод цифрового мультиметра на затвор, а отрицательный — на источник NMOS, полевой МОП-транзистор включается. Вы можете ошибочно решить, что МОП-транзистор неисправен, когда измеряете сопротивление сток-исток, поскольку цифровой мультиметр покажет 0 Ом. Итак, чтобы избежать этого сценария, убедитесь, что на затворе разрядился заряд.
То же самое с PMOS, когда вы подключаете положительную клемму к источнику, а отрицательную клемму цифрового мультиметра к затвору, MOSFET включается.
Если вы измеряете сопротивление вывода MOSFET на вывод, вы должны учитывать соответствующие резисторы, поскольку они влияют на показания. Например, в приведенной выше схеме, когда вы измеряете сопротивление между затвором и источником, вы читаете не высокое сопротивление, а значение R1, равное 10 кОм. Удаление резистора 10 кОм повысит показание.
Шаг № 3 о том, как узнать, неисправен ли MOSFET : Проверка целостности
Третий метод определения неисправности полевого МОП-транзистора — это проверка целостности цепи. Установите цифровой мультиметр в режим проверки целостности цепи. В современных цифровых мультиметрах режим непрерывности обычно имеет слышимый звук при подключении измеренных точек. Подключите плюсовой провод к стоку, а отрицательный от цифрового мультиметра к источнику или наоборот, когда показание равно нулю или звук цифрового мультиметра не исчезает, устройство повреждено; закороченный сток-исток.
Используйте тот же подход к другим выводам полевого МОП-транзистора и сделайте то же самое. Однако, когда вы подключаете положительный полюс цифрового мультиметра к затвору, а отрицательный — к источнику для NMOS или наоборот для PMOS; прибор включится и при измерении непрерывности между стоком и истоком; чтение равно нулю. Вы можете ошибиться в том, что MOSFET неисправен. Итак, убедитесь, что вентиль всегда разряжается до источника.
Для проверки выключите прибор и снова измерьте целостность.Чтобы выключить NMOS, подключите положительную клемму цифрового мультиметра к источнику, а отрицательную клемму — к затвору. Сделайте иначе, чтобы выключить PMOS. Хороший полевой МОП-транзистор не должен иметь непрерывности между клеммами. Если да, то действительно неисправен.
Краткое изложение того, как узнать, неисправен ли MOSFET Вышеуказанные методы являются общими для того, чтобы узнать, неисправен ли MOSFET. Я знаю, что есть несколько других техник. Поэтому я предлагаю объединить вышеперечисленные методы с другими методами, которые вы изучили, чтобы вы могли выполнять точный поиск и устранение неисправностей.
Если вам интересно узнать, как искать и устранять неисправности диодов, прочтите «Как узнать неисправный диод». С другой стороны, если вам интересно узнать, как устранить неполадки BJT, прочтите «Как узнать, неисправен ли транзистор». Если вы хотите узнать больше о полевых МОП-транзисторах, прочтите «Расчетные уравнения силовых полевых МОП-транзисторов».
Следите за electronicsbeliever.com:
https://www.facebook.com/electronicsbeliever
СвязанныеMOSFET тестирование
Содержание страницы
Простой тест
Для правильного тестирования полевого МОП-транзистора требуется много дорогостоящего оборудования для тестирования, но если у вас есть подходящий цифровой мультиметр, вы можете провести довольно точный тест «годен / не годен», который не даст результатов практически для всех неисправных МОП-транзисторов.
В настоящее время большинство мультиметров имеют диапазон проверки диодов. На большинстве мультиметров (но далеко не на всех!) Это дает около 3-4 В на тестируемом устройстве. Этого достаточно, чтобы включить большинство полевых МОП-транзисторов — хотя бы частично, и достаточно для тестирования. Счетчики, которые используют более низкое испытательное напряжение холостого хода (иногда 1,5 В), не будут выполнять этот тест!
Итак: подключите минус измерителя к источнику полевого МОП-транзистора. Это указано стрелкой на рисунке выше, на котором показаны самые популярные полевые МОП-транзисторы TO220.
Держите полевой МОП-транзистор за корпус или язычок, если хотите, не имеет значения, касаетесь ли вы металлического корпуса, но будьте осторожны, не касайтесь выводов, пока вам это не понадобится.
Сначала прикоснитесь плюсом счетчика к воротам.
Теперь переместите положительный датчик измерителя в сток. У вас должно быть низкое чтение. Емкость затвора полевого МОП-транзистора была заряжена измерителем, и устройство было включено.
Когда положительный полюс измерителя все еще подключен к сливу, коснитесь пальцем между истоком и затвором (и стоком, если хотите, это не имеет значения). Затвор будет выпущен через ваш палец, и показания счетчика должны стать высокими, указывая на непроводящее устройство.
Такой простой тест не может быть на 100%, но он полезен и обычно бывает адекватным.
Тест лучше
То, что на самом деле измеряет приведенный выше тест, — это напряжение отсечки: самое высокое напряжение, которое может быть приложено к затвору полевого МОП-транзистора без того, чтобы он начал проводить. Схема ниже показывает лучший способ.
Есть два нажимных переключателя, один — переключающий, второй — нажимной (нормально разомкнутый). Пользуюсь парочкой микровыключателей. Он использует диодный тест мультиметра, или вы можете использовать любой источник питания или батарею на 9 В с резистором, включенным последовательно с MOSFET, для ограничения тока.
Когда оба переключателя находятся в нормальном положении, конденсатор C1 заряжается до напряжения холостого хода диодного тестера. Емкость конденсатора не критична, 10н-100н в порядке. При нажатии Sw1 заряженный конденсатор отключается от выводов счетчика и снова подключается к затвору полевого МОП-транзистора. МОП-транзистор должен полностью включиться, поэтому тестер диодов укажет на короткое замыкание.
Выпуск Sw1. Затвор полевого МОП-транзистора все еще заряжен. Только утечка может разрядить его, поэтому полевой МОП-транзистор должен еще некоторое время оставаться проводящим.
Нажмите SW2, чтобы замкнуть затвор полевого МОП-транзистора на источник, чтобы разрядить его. Измеритель должен показать обрыв цепи.
В качестве альтернативы подключите конденсатор к измерителю + ve через диод, чтобы позволить конденсатору заряжаться. Теперь, когда конденсатор подключен к затвору, полевой МОП-транзистор будет проводить, но диод не позволит проводящему МОП-транзистору разрядить конденсатор.
Мертвые полевые МОП-транзисторы
Умирающие полевые МОП-транзисторы часто выделяют пламя, особенно в бытовой электронике.Один участник группы пользователей сказал, что полевой транзистор в MOSFET расшифровывается как Fire Emitting Transistor. В коммерческом оборудовании, где полевые МОП-транзисторы защищены от грубых злоупотреблений, может произойти «мягкий» отказ, и МОП-транзисторы могут выглядеть нормально, но быть бесполезными: однако, обычно, если они выглядят нормально, так и есть!
Когда полевые МОП-транзисторы выходят из строя, они часто коротко замыкают сток на затвор. Это может вернуть напряжение стока на затвор, где, конечно, если оно подается (через резисторы затвора) в схему управления, может быть, взорвав его. Он также попадет в любые другие параллельные ворота MOSFET, взорвав их.Итак — если полевые МОП-транзисторы умерли, проверьте также и драйверы! Это, вероятно, лучшая причина для добавления стабилитрона затвор-исток: стабилитрон выходит из строя при коротком замыкании, а правильно подключенный стабилитрон может ограничить повреждение в случае отказа! 4QD также использует субминиатюрные резисторы затвора, которые имеют тенденцию выходить из строя при этой перегрузке, отключая затвор неисправного МОП-транзистора.
Если вы хотите узнать больше о полевых МОП-транзисторах в управлении двигателем, посетите наш раздел схем.
Подходящие счетчики
Подходят далеко не все марки / модели счетчиков, поэтому я перечислю здесь известные мне.Если вы можете добавить в этот список, свяжитесь со мной.Марка | Модель | Test V | Комментарии |
---|---|---|---|
Avo — Megger | M5091 | 4.0 v | Диапазон звукового сигнала. |
Fluke | 77iii | ||
LEM — Heme | LH 630 | 3.0 v | Измеритель тока на эффекте Холла |
Страница информации
© 1998-2012 4QD
Автор Пейджа: Ричард Торренс
URI документа:
Последнее изменение:
Проверка транзисторов с помощью вольтметра
Неисправный транзистор иногда можно определить по частично сгоревшему или искаженному внешнему виду, но чаще всего нет видимой индикации.Один из подходов к устранению неполадок — замена заведомо исправного компонента, но это дорогостоящий способ. Кроме того, это ненадежно, потому что внешний дефектный компонент может мгновенно уничтожить замену без видимых доказательств. Разумная альтернатива — проверить транзистор. Обычный мультиметр может быстро выполнять внутрисхемные тесты, которые не являются полностью окончательными, но обычно предоставляют приемлемую информацию о состоянии «годен / не годен», используя либо режим проверки диодов, либо режим измерения сопротивления.
Обычная процедура тестирования предназначена для использования с цифровым мультиметром в диапазоне проверки диодов минимум 3.3 В над д.у.т. (проверяемый диод). Сначала рассмотрим процедуру тестирования полевого МОП-транзистора в расширенном режиме (т.е. когда устройство не является проводящим при 0 В, приложенном к затвору, работающему как переключатель). Подключите источник полевого МОП-транзистора к отрицательному выводу измерителя. (Удерживайте полевой МОП-транзистор за корпус или за язычок, но не касайтесь металлических частей испытательных зондов другими выводами полевого МОП-транзистора до тех пор, пока это не понадобится.) Коснитесь положительным выводом измерителя на затворе полевого МОП-транзистора. Теперь переместите положительный зонд в «Слив».У вас должно быть низкое чтение. Внутренняя емкость полевого МОП-транзистора на затворе теперь заряжена измерителем, и устройство «включено».
При подключении плюсового провода измерителя к стоку закоротите исток и затвор. Затвор разрядится, и показания счетчика должны стать высокими, указывая на непроводящее устройство.
Полевые МОП-транзисторы, которые выходят из строя, часто имеют короткое замыкание сток-затвор. Это может вернуть напряжение стока на затвор, где оно подается (через резисторы затвора) в схему управления, что может привести к тому, что уровни напряжения и тока превысят пределы компонентов в этой секции.Перегрузка также повлияет на любые другие параллельно включенные вентили MOSFET. Таким образом, лучше всего проверить схемы управления неработающими полевыми МОП-транзисторами. Чтобы избежать перегрузок, некоторые разработчики добавляют стабилитрон между истоком и затвором — стабилитроны замыкаются при коротком замыкании, чтобы ограничить повреждение в случае отказа полевого МОП-транзистора. Другая тактика — добавить сверхминиатюрные резисторы затвора. Они имеют тенденцию открываться (как предохранитель) при перегрузке, отключая затвор MOSFET.
Другой частый режим отказа полевого транзистора — это короткое замыкание сток-исток.Проверить проблему можно с помощью омметра. Подключите затвор устройства к клемме источника. Если путь сток-исток исправен, при установке щупов омметра в одном направлении должно быть обнаружено короткое замыкание. Другое направление должно измерять бесконечное сопротивление — или, по крайней мере, несколько мегаом. Измеряемый диодный переход — это корпусный диод полевого транзистора. Основной диод покажет катод на стоке для N-канального устройства и на истоке для P-канального устройства.
К сожалению, современные мультиметры используют низкое возбуждение для измерения сопротивления (1-2 В), чтобы простое активное зондирование элементов схемы не повредило их.Проблема в том, что тестирование полевого транзистора одним только современным мультиметром становится проблематичным. Причина в том, что для включения большинству мощных полевых транзисторов требуется напряжение смещения затвор-исток не менее 4-5 В. Полевые транзисторы логического уровня можно включать при напряжении от 0,3 до 1,5 В.
Показанная здесь простая схема N-канального полевого транзистора помогает определить, правильно ли устройство работает в качестве переключателя. Мультиметр должен показывать довольно низкое напряжение между точками 2 и 4. Измерение R dsON устройства начинается с удаления связи между точками 1 и 2, затем измерения между точками 2 и 4 для получения приблизительного значения сопротивления на мультиметре.
Закорочив точки 1 и 2 вместе, измерьте напряжение между точкой 2 и точкой 4, затем замкните точку 3 и точку 4. Вы должны увидеть, что напряжение изменяется от низкого в первом тесте до фактического приложенного напряжения батареи (обычно 9 В).
Вы можете определить, есть ли остаточная утечка между стоком и источником, закоротив точку 3 и точку 4, а затем измерив напряжение на точке 1 питания через сопротивление 100 кОм от батареи. Тогда ток утечки в миллиамперах приблизительно равен = (показание мультиметра в милливольтах) / (10 4 ).Чтобы измерить номинальное пороговое значение V gs (напряжение от начала до включения) полевого транзистора, замкните точку 2 и точку 3, а затем измерьте напряжение между точкой 2 и точкой 4, как и раньше.
При исследовании полевых МОП-транзисторов с p-каналом, просто поменяйте полярность батареи и используйте ту же схему. Полярность всех щупов мультиметра будет изменена на обратную, но процедура останется прежней.
Теперь рассмотрим JFET. Проверка полевого транзистора как диода (переход затвор-канал) с помощью омметра должна указывать на низкое сопротивление между затвором и истоком при одной полярности и высокое сопротивление между затвором и истоком при обратной полярности измерителя.Если измеритель показывает высокое сопротивление при обеих полярностях, соединение затвора разомкнуто. С другой стороны, если омметр показывает низкое сопротивление при обеих полярностях, затворный переход закорочен.
Теперь рассмотрим проверку непрерывности через канал сток-исток. Если вы знаете, какие клеммы на устройстве являются затвором, истоком и стоком, лучше всего подключить перемычку между затвором и истоком, чтобы устранить любой накопленный заряд на емкости PN перехода затворного канала, который может удерживать полевой транзистор в цепи. отключенное состояние без подачи какого-либо внешнего напряжения.Без этого шага любое показание измерителя непрерывности через канал будет непредсказуемым, потому что заряд может или не может накапливаться в соединении затвор-канал.
Хорошая стратегия — вставить штыри JFET в антистатическую пену перед испытанием. Проводимость пены создает резистивное соединение между всеми выводами JFET. Это соединение гарантирует, что весь остаточный заряд, накопленный на PN-переходе затворного канала, рассеивается, тем самым открывая канал для точной проверки целостности цепи исток-сток.
Поскольку канал JFET представляет собой единый непрерывный кусок полупроводникового материала, обычно нет разницы между выводами истока и стока. Проверка сопротивления от истока к стоку должна дать то же значение, что и проверка от стока к истоку. Это сопротивление должно быть относительно низким (ниже нескольких сотен Ом), когда напряжение PN перехода затвор-исток равно нулю. Приложение напряжения обратного смещения между затвором и истоком должно перерезать канал и привести к более высокому показанию сопротивления на измерителе.
Это подводит нас к биполярным транзисторам. Полезно помнить, что биполярный транзистор можно смоделировать как два последовательно соединенных диода. Плавающие выводы обеспечивают две контрольные точки, а подключенные выводы являются третьей контрольной точкой с центральным отводом. Эти два диода не будут работать как настоящий транзистор, потому что соединение с центральным отводом не является полупроводниковым переходом, а модель с двумя диодами не имеет трех отдельных кремниевых слоев, как в транзисторе. Тем не менее, подключение демонстрирует базовую концепцию тестирования транзисторов и идентификации клемм.
Чтобы проверить транзистор с помощью мультиметра в режиме проверки диодов, вставьте черный щуп в общий, а красный щуп в Diode Test или Ohms. Большинство производителей подключают красный к положительной клемме внутренней батареи, но это может варьироваться, поэтому лучше всего проверить полярность с помощью второго мультиметра в режиме постоянного напряжения. Обычное испытательное напряжение 3 В.
Естественно предположить, что центральный вывод на корпусе транзистора подключается к базе, но это соглашение не является универсальным.Подключите черный зонд к базе. Кратковременно поднесите красный щуп к эмиттеру и отметьте напряжение. Затем переключите красный зонд на эмиттер. Если показания совпадают, пока все хорошо. Удалив черный щуп из базы и заменив его красным щупом, коротко прикоснитесь черным щупом к эмиттеру и коллектору.
Если предыдущие показания были высокими, а эти — низкими, транзистор проходит статический тест. Если предыдущие показания были низкими, а эти высокие, транзистор также проходит статический тест.Если показания двух красных щупов не совпадают или показания двух черных щупов не совпадают при реверсировании щупов, транзистор неисправен.
Если идентификационные данные базы, эмиттера и коллектора неизвестны, подключите черный щуп к одному из выводов транзистора. По очереди коротко прикоснитесь красным щупом к каждому из оставшихся отведений. Если оба вывода показывают высокий уровень, черный зонд подключен к базе, транзистор NPN и в порядке. Если на двух других отведениях есть разные показания, переместите черный щуп к другому отведению и прикоснитесь красным щупом к оставшимся отведениям.При повторении теста с черным щупом, касающимся по очереди каждого из трех выводов, вы должны иметь высокое сопротивление, а транзистор либо неисправен, либо PNP.
Снимите черную пластину и подсоедините красный щуп к одному из проводов. Затем прикоснитесь черным щупом по очереди к каждому из оставшихся проводов. Когда касаются каждого из выводов и сопротивление становится высоким, красный вывод подключается к базе, и транзистор является хорошим устройством PNP.
Если вы получаете два разных показания для двух отведений, переместите красный зонд к другому отведению и повторите тест.Подключите красный зонд по очереди к каждому из трех выводов. Если два других вывода не дают таких же показаний при прикосновении к черному щупу, это значит, что транзистор является PNP и неисправен.
Тесты мультиметраопределяют, перегорел ли транзистор (разомкнут или закорочен), и дают приблизительную оценку способности транзистора к усилению. Но они не сообщают о фактических рабочих параметрах. Чтобы получить больше информации, следующим шагом будет тестер транзисторов сервисного типа. Этот прибор выполняет три измерения для биполярных транзисторов: прямой ток (бета), ток утечки база-коллектор с открытым эмиттером и короткое замыкание от коллектора к эмиттеру и базе.Измеряется H fe , и транзистор считается исправным, если этот показатель превышает определенный уровень. Однако тест отклонит некоторые функциональные, но низкоуровневые транзисторы H fe .
Некоторые тестеры транзисторов служебного типа могут проверять компоненты как в цепи, так и вне ее, и они способны идентифицировать неизвестные клеммы транзисторов. Поскольку H fe различается в зависимости от устройства, тестеры транзисторов служебного типа могут давать ошибочные показания и не являются безошибочными.
В высоконадежном, интуитивно понятном и удобном тесте компонентов можно использовать осциллограф в сочетании со встроенным генератором сигналов осциллографа или с внешним автономным AFG.Конденсаторы, катушки индуктивности, биполярные транзисторы и кабели можно легко проверить и определить их значения. Сигнал от AFG подается на исследуемый компонент, и отклик отображается на осциллографе. Обычно выходной импеданс 50 Ом от AFG подается через тройник на тестируемое устройство и на аналоговый вход осциллографа. Кроме того, выход AFG OUT подключен к Trigger IN осциллографа.
Лучшие тестеры транзисторов — это приборы лабораторного уровня.Сопутствующим инструментом является индикатор кривой полупроводника. Он содержит упрощенный осциллограф в дополнение к источникам напряжения и тока, которые пользователь применяет к ИУ. На вход тестируемого транзистора подается напряжение развертки, и его выходной ток измеряется и отображается в виде графика на экране прибора. Пользователь может регулировать подаваемое напряжение, его полярность и последовательный импеданс. Когда диод подвергается изменяющемуся напряжению, отображаются различные параметры, такие как прямое напряжение, обратный ток утечки и обратное напряжение пробоя.
Ступенчатое напряжение может подаваться на входную цепь полевого транзистора или ступенчатый ток может подаваться на биполярный транзистор. Результат позволяет определить коэффициент усиления транзистора или напряжение срабатывания тиристора. Чтобы оценить характеристики транзистора, представленное ему полное сопротивление («тяговое усилие») можно систематически изменять. Усилие нагрузки применимо, когда изменение импеданса нагрузки вызывает смещение центральной частоты от ее номинального значения.
Testing MOSFET — (Часть 16/17)
MOSFET — это более часто используемые транзисторы.Они известны своей высокой скоростью переключения и высоким входным сопротивлением. Вот почему их предпочитают использовать при изготовлении интегральных схем и микросхем высокочастотных приложений. Индивидуальные полевые МОП-транзисторы также широко используются во многих приложениях. Перед использованием полевого МОП-транзистора в схеме важно проверить, не неисправен ли он. В неисправном МОП-транзисторе сток может закоротиться на затвор. Это может вызвать обратную связь по напряжению стока на выводе затвора, и это напряжение затем будет поступать в схему драйвера через резистор затвора, который может еще больше взорвать схему драйвера.Поэтому лучше протестировать полевой МОП-транзистор, прежде чем использовать его в схеме. Поскольку N-канальные MOSFET более распространены, тестирование N-канальных MOSFET обсуждается только в этом руководстве.
Необходимые компоненты —
Рис.1: Список компонентов, необходимых для тестера MOSFET
Методы испытаний полевого МОП-транзистора
Существует два распространенных метода тестирования полевого МОП-транзистора —
.1) С помощью измерительного прибора — в этом методе полевой МОП-транзистор проверяется с помощью мультиметра или омметра.В этом методе снова есть три способа проверить неисправный полевой МОП-транзистор —
.I) Тест диода — требуется мультиметр с режимом диода
II) Тест сопротивления — требуется омметр
III) С помощью омметра и мультиметра в диодном режиме
2) Используя основные электронные компоненты — В этом методе тестовая схема предназначена для проверки рабочего состояния полевого МОП-транзистора.
Тест диодов
В этом методе для проверки полевого МОП-транзистора требуется мультиметр с диодным режимом.Поскольку полевой МОП-транзистор имеет внутренний основной диод, в N-канальном МОП-транзисторе этот основной диод проходит от истока к стоку с анодом на истоке и катодом на стоке диода. При прямом смещении падение на диоде очень мало в зависимости от типа диода. В большинстве полевых МОП-транзисторов прямое падение на диоде составляет от 0,4 В до 0,9 В. При обратном смещении этот диод действует как разомкнутая цепь или цепь с высоким сопротивлением. Итак, полевой МОП-транзистор можно проверить, исследуя проводимость через этот корпусный диод исток-сток. Выполните следующие шаги, чтобы провести тест диода —
1.Для этого теста установите мультиметр в диодный режим.
2. Для N-канального MOSFET подключите красный зонд (положительный) к истоку, а черный — к стоку (общий). Таким образом, основной диод находится в состоянии прямого смещения. Теперь на мультиметре должно быть получено показание от 0,4 В до 0,9 В (как показано на рисунке ниже). Если показание равно нулю или нет показаний, то МОП-транзистор неисправен.
Рис. 2: Принципиальная схема, показывающая падение напряжения на полевом МОП-транзисторе при прямом смещении
3.Перевернув щупы измерителя, должно произойти состояние обрыва цепи, и на мультиметре не должно появиться никаких показаний из-за обратного смещения диода (см. Рисунок ниже). Если показание не равно нулю, МОП-транзистор неисправен.
Рис. 3: Принципиальная схема, показывающая падение нулевого напряжения на полевом МОП-транзисторе при обратном смещении
Испытание на сопротивление
В этом методе требуется омметр. Сопротивление сток-исток (Rds) полевого МОП-транзистора очень велико (в мегаомах), когда на его вывод затвора не подается пусковой импульс.Таким образом, эту функцию MOSFET можно использовать для тестирования неисправного MOSFET. Выполните следующие шаги, чтобы провести тест сопротивления —
1. Хороший полевой МОП-транзистор должен иметь высокое сопротивление (Rds) от стока до истока независимо от полярности измерительных щупов.
2. Установите измеритель в режим измерения сопротивления или с помощью омметра проверьте сопротивление стока к истоку. Показания должны иметь сопротивление в мегаомах (как показано на рисунке ниже). Сверьтесь с таблицей данных MOSFET, чтобы проверить сопротивление между стоком и истоком (Rds) в выключенном состоянии, и сравните его с наблюдаемым значением Rds (выкл.).
Рис. 4: Принципиальная схема, показывающая высокое сопротивление сток-исток на полевом МОП-транзисторе
3. Если значение сопротивления стока до истока (Rds (off)) оказывается равным нулю или меньше, чем указано в его техническом описании, MOSFET неисправен.
Проверка MOSFET омметром и мультиметром в диодном режиме
В этом методе полевой МОП-транзистор проверяется срабатыванием его клеммы Gate.Когда срабатывает затвор полевого МОП-транзистора, сопротивление стока к истоку (Rds) полевого МОП-транзистора становится очень низким (от мегаом до ома) в зависимости от типа полевого МОП-транзистора. МОП-транзистор может быть активирован мультиметром, так как в нем есть батарея. Таким образом, он действует как источник питания, когда он установлен в диодном режиме. Но перед запуском MOSFET убедитесь, что пороговое напряжение (Vth или Vgs) MOSFET не слишком велико, что мультиметр не может обеспечить. Выполните следующие шаги, чтобы провести этот тест —
1.Проверьте сопротивление между стоком и истоком с помощью теста сопротивления, упомянутого выше. Обратите внимание на сопротивление стока к истоку, Rds (выкл.) Для справки.
2. Включите полевой МОП-транзистор, установив мультиметр в режим диода, затем прикрепите черный (отрицательный) щуп измерителя к стоку и на мгновение прикоснитесь к красному щупу к затвору. Это должно вызвать срабатывание ворот (как показано на рисунке ниже). При этом MOSFET должен включиться.
Рис. 5: Принципиальная схема, показывающая срабатывание затвора полевого МОП-транзистора
3.Возьмите омметр и проверьте сопротивление стока до истока, Rds (вкл.). На этот раз показание должно быть очень низким (ноль или приблизительно ноль), чем предыдущее показание Rds (выкл.) (Как показано на рисунке ниже). Это подтвердит, что полевой МОП-транзистор находится в хорошем состоянии. Обратитесь к таблице данных полевого МОП-транзистора, чтобы проверить значение сопротивления между стоком и истоком в состоянии Rds (вкл.) И сравнить его с наблюдаемым значением. Если наблюдаемое значение сильно отличается от указанного в таблице данных, MOSFET неисправен.
Рис. 6: Принципиальная схема, показывающая низкое сопротивление сток-исток (Rds) полевого МОП-транзистора во включенном состоянии
4. Если показание такое же, как Rds (выкл.), То также неисправен полевой МОП-транзистор.
5. Если значение сопротивления между стоком и истоком в состоянии, Rds (on) соответствует значению, указанному в таблице данных, то для дальнейшего тестирования разрядите полевой МОП-транзистор, закоротив затвор и сток пальцем или используя любой перемычка.
6. Еще раз проверьте сопротивление стока к истоку (Rds) методом сопротивления. Показание должно быть равно предыдущему показанию сопротивления стока к истоку в выключенном состоянии, Rds (off). Если показание меньше предыдущего значения Rds (выкл.), То также неисправен полевой МОП-транзистор.
Тестирование полевого МОП-транзистора с использованием основных электронных компонентов
Этот метод тестирования — один из лучших и точных способов проверки полевого МОП-транзистора.Для проведения этого теста, прежде всего, соберите схему, как показано ниже —
Рис.7: Принципиальная схема для тестирования полевого МОП-транзистора
Для проведения этого теста выполните следующие шаги —
1. Подайте импульс запуска строба через сопротивление R1 с помощью кнопки.
2. К нагрузке подключен светодиод (обозначенный сопротивлением R3) для визуальной индикации включения и выключения полевого МОП-транзистора.
3. В схеме сопротивление затвор-исток полевого МОП-транзистора (Rgs) действует как понижающее сопротивление, а также разряжает паразитную емкость полевого МОП-транзистора, которая защищает полевой МОП-транзистор от любых повреждений.
4. Изначально кнопка находится в нормальном состоянии, следовательно, ворота не подключены к источнику питания. В этом состоянии сопротивление стока к истоку очень велико, что подтверждается испытанием сопротивления. Таким образом, светодиод при нагрузке не должен включаться (как показано на рисунке ниже).Это указывает на то, что полевой МОП-транзистор находится в выключенном состоянии. Если светодиод горит, МОП-транзистор неисправен.
Рис. 8: Принципиальная схема, показывающая, что светодиод выключен перед срабатыванием ворот
5. Когда кнопка нажата, срабатывает затвор, и это делает сопротивление стока к истоку очень низким, приближаясь к нулю Ом. Таким образом, нагрузка должна получить все падение напряжения на ней, и это должен включить светодиод. Это будет означать, что полевой МОП-транзистор находится во включенном состоянии и работает правильно (как показано на рисунке ниже).Если светодиод остается в выключенном состоянии, это означает, что полевой МОП-транзистор неисправен.
Рис. 9: Принципиальная схема, показывающая, что светодиод включен после срабатывания шлюза
6. Когда кнопка отпускается, затвор разряжается через затвор до сопротивления источника (Rgs), и светодиод снова должен погаснуть. Если он не выключается, значит, MOSFET неисправен.
7. В этой тестовой схеме светодиод потребляет ток около 20 мА, которого достаточно для приличной яркости светодиода.Для ограничения тока к нему должно быть последовательно подключено сопротивление ограничителя тока. Сопротивление нагрузки работает как сопротивление ограничителя тока в цепи.
Значение этого сопротивления можно рассчитать следующим образом —
.(входное напряжение светодиода), Vin = 5V
По закону Ома Vin = IL * RL
желаемый ток для светодиода, IL = 20 мА
Положив все значения,
5 = 0,02 * RL
RL = 250E
В зависимости от наличия, для токоограничивающего резистора принято сопротивление 220E.Итак,
RL = 220E
При тестировании полевого МОП-транзистора с использованием тестовой схемы необходимо соблюдать следующие меры предосторожности —
1. Входное питание затвора должно быть больше или равно пороговому напряжению (Vgs (the)) полевого МОП-транзистора, в противном случае он не включит полевой МОП-транзистор. Для этого обратитесь к таблице данных MOSFET в случае.
2. Не превышайте входное напряжение (напряжение стока и напряжение затвора) полевого МОП-транзистора, превышающее его напряжение пробоя, так как это может повредить полевой МОП-транзистор.
3. Обычно потребляемый ток светодиода составляет 20 мА (прибл.). Итак, выберите соответствующий резистор ограничителя тока (RL), чтобы он мог обеспечивать достаточный ток для включения светодиода.
4. Всегда используйте сопротивление затвора к истоку, чтобы избежать любого внешнего шума на затворе и разрядить паразитную емкость полевого МОП-транзистора. В противном случае полевой МОП-транзистор может быть поврежден, поскольку этот паразитный конденсатор будет продолжать заряжаться и превысит предел напряжения пробоя затвор-исток.
5. Всегда используйте низкое сопротивление резистора (от 10E до 500E) на затворе полевого МОП-транзистора. Это решит проблему звона (паразитных колебаний) и скачков напряжения в полевом МОП-транзисторе.
6. При тестировании полевого МОП-транзистора методом тестовой схемы используйте схему переключения низкого уровня (как на схеме выше). Не используйте схему переключения на стороне высокого напряжения для MOSFET, поскольку она никогда не включит MOSFET, и тогда можно будет проверить неисправный MOSFET.
Фиг.10. Прототип испытательной схемы полевого МОП-транзистора
В следующем руководстве будет обсуждаться схема начальной загрузки для управления полевым МОП-транзистором верхнего плеча.
Видео проекта
Подано в: Electronic Projects
Тестирование N-канального MOSFET с помощью аналогового мультиметра
Правильный способ тестирования N-канального MOSFET-транзистора: использовать аналоговый мультиметр.Во-первых, найдите Врата, Водосток и Источник из книгу по замене полупроводников или выполните поиск в таблице данных в поисковой системе.
Если у вас есть перекрестная ссылка или диаграмма для каждого контакта полевого МОП-транзистора и аналогового мультиметра следуйте приведенным ниже инструкциям: —
- Для проверки установите диапазон 10 кОм.
- Положи черный Зонд к сливному штифту.
- Коснитесь штифта ворот красным зондом, чтобы разрядить внутреннюю емкость полевого МОП-транзистора.
- Теперь переместите красный зонд к выводу источника, в то время как черный Зонд все еще касается сливного штифта.
- Коснитесь пальцем штифта затвора и слива. все вместе. Вы заметите, что указатель аналогового мультиметра переместится вперед шкала счетчика.
Как перепроверить?
Поднимите красный зонд с штифта источника и вставьте его снова к выводу Source, и указатель все еще останется в середине шкала счетчика. Чтобы разрядить его, вам нужно поднять красный зонд и прикоснуться к нему. всего один раз на булавке Врат.Это в конечном итоге разрядит внутренний снова емкость.
В это время используйте красный зонд, чтобы коснуться вывода источника. опять же, указатель вообще не пинает, потому что вы его уже разрядили прикоснувшись к штифту ворот.
Это хорошая характеристика MOSFET.
Если вы заметили, что весь результат, который вы измерили, ударил к нулю и не разряжается, тогда полевой транзистор считается закороченным и нужна замена. Тестирование полевого МОП-транзистора с каналом P происходит так же, как и при Вы проверяете N-канальный MOSFET.Что вы делаете, так это переключите полярность зонда, когда проверка канала P. Некоторые аналоговые мультиметры имеют диапазон 100 кОм, этот тип измерителя не может действительно тестировать полевой транзистор из-за отсутствия 9-вольтовой батареи внутри мультиметра. У этого типа измерителя не хватит мощности для срабатывания МОП-транзистор. Убедитесь, что вы используете измеритель с диапазоном измерения 10 кОм. селектор.
% PDF-1.3 % 91 0 объект > эндобдж xref 91 80 0000000016 00000 н. 0000001948 00000 н. 0000002403 00000 н. 0000002880 00000 н. 0000002910 00000 н. 0000003352 00000 п. 0000003382 00000 н. 0000003530 00000 н. 0000003922 00000 н. 0000004074 00000 н. 0000004096 00000 н. 0000004489 00000 н. 0000004645 00000 н. 0000004676 00000 н. 0000005576 00000 н. 0000005598 00000 н. 0000006119 00000 п. 0000006150 00000 н. 0000006181 00000 п. 0000006340 00000 н. 0000006966 00000 н. 0000007120 00000 н. 0000007786 00000 н. 0000007808 00000 н. 0000008520 00000 н. 0000008542 00000 н. 0000009263 00000 п. 0000009285 00000 п. 0000009988 00000 н. 0000010010 00000 п. 0000010702 00000 п. 0000010724 00000 п. 0000011378 00000 п. 0000011400 00000 п. 0000011421 00000 п. 0000011561 00000 п. 0000011897 00000 п. 0000011976 00000 п. 0000011998 00000 н. 0000012077 00000 п. 0000035363 00000 п. 0000035726 00000 п. 0000035892 00000 п. 0000036122 00000 п. 0000036143 00000 п. 0000052561 00000 п. 0000052585 00000 п. 0000052811 00000 п. 0000052890 00000 п. 0000052912 00000 п. 0000052936 00000 п. 0000053076 00000 п. 0000053100 00000 п. 0000053179 00000 п. 0000053680 00000 п. 0000053702 00000 п. 0000084363 00000 п. 0000084911 00000 п. 0000084933 00000 п. 0000085163 00000 п. 0000085390 00000 п. 0000085412 00000 п. 0000085617 00000 п. 0000085641 00000 п. 0000085973 00000 п. 0000085994 00000 п. 0000110563 00000 н. 0000110795 00000 н. 0000110817 00000 н. 0000111050 00000 н. 0000111072 00000 н. 0000134027 00000 н. 0000134106 00000 п. 0000134130 00000 н. 0000134676 00000 н. 0000134700 00000 н. 0000147622 00000 н. 0000147703 00000 н. 0000002063 00000 н. 0000002381 00000 п. трейлер ] >> startxref 0 %% EOF 92 0 объект > >> эндобдж 169 0 объект > поток Hb«`a`g`g`seb @
Слишком глубоко: Советы по тестированию полевых МОП-транзисторов
Представьте себе направление потока Источник к сливу |
Вот как я тестирую полевые транзисторы
Я постараюсь дать небольшое представление о том, как тестировать полевые МОП-транзисторы в Схема самый простой способ, который я могу придумать.По сути, полевой транзистор действует как переключатель, а GATE либо открывает, либо закрывает переключатель. Когда питание подается на контакт 4 (обычно GATE), он либо открывается, либо закрывается в зависимости от типа полевого МОП-транзистора. Стрелки показывают направление для справки при использовании измерителя для проверки.
Установка счетчика в режим DIODE.
На N-канальном полевом транзисторе поместите отрицательный вывод на вывод 6/7, а вывод POS на вывод 2/3. Вы должны получить некоторое значение от ~ 100 до 500 или выше.
Представьте направление потока Отвод к источнику |
На полевом транзисторе P-канала поместите вывод POS на вывод 6/7, а вывод NEG на вывод 2/3. Опять же, вы должны получить какое-то значение от ~ 100 до 500 или выше.
Причина, по которой я говорю о выводах 2/3 и 6/7, заключается в том, что они являются обычными, и это меньше риска короткого замыкания, чем указание на вывод 3, который может соскользнуть и дать вам неправильные показания при прикосновении к контакту 4 или взорвать его, на него подается питание (от аккумулятора или зарядного устройства).
Большинство компаний позволяют легко отличить P-канал от частей N-канала по номеру детали. Обычно это происходит с компаниями США. National Semiconductor, Fairchild и другие. Но это не жесткое правило для некоторых китайских производителей, и, возможно, потребуется проверить техническое описание, прежде чем предполагать, что они будут такими же.
МОП-транзисторы с нечетным числом считаются P-каналом.
МОП-транзисторы с четными номерами обычно являются N-канальными.
Пример: FDS6679 будет P-каналом, а FDS6690 будет N-канальным полевым МОП-транзистором
FDS означает часть Fairchild
SI означает часть Siliconix / Vishay
AO означает Alpha Часть Omega Semiconductors
IOR означает International Rectifier part (их система нумерации может не соответствовать указанной выше системе нумерации)
.