Онлайн-калькулятор расчета ростверка свайного фундамента, расчет бетона, арматуры, опалубки
Любое строение должно опираться на прочное, надежное и долговечное основание. Свайно-ростверковый фундамент широко применяется при возведении частных домов. Что он из себя представляет?
Это конструкция, состоящая из двух основных составляющих:
- вертикальных свай, погруженных в грунт на необходимую глубину;
- пояса обвязки, опирающегося на сваи. Собственно, это и есть ростверк. Выглядит, как традиционная железобетонная лента.
Важное условие — выполнение единого арматурного каркаса со свайным полем.
Воспользовавшись нашим онлайн-калькулятором расчета ростверка, Вы сможете определить его параметры, а также необходимый расход:
- арматуры для монтажа укрепляющего каркаса;
- бетона для заливки;
- древесины для строительства опалубки.
Вычисления не занимают много времени, достаточно ввести необходимые данные.
Параметры
Для расчета ростверка необходимо знать его геометрические характеристики. Это:
- Длина и ширина. Показатели зависят от габаритов будущего здания.
- Толщина. Необходимо учитывать, что фундамент должен быть шире возводимых стен.
- Высота. Расчет производится для высокого (приподнятого над поверхностью земли) ростверка, поэтому в учет не идет высота его заглубления.
- Общая длина внутренних перемычек. Параметр учитывается при строительстве здания с внутренними помещениями (комнатами).
После введения метрических данных в калькулятор расчета ростверка программа определит следующие показатели.
- Внешний периметр — границы, повторяющие контур строения.
- Общую длину — периметр с общей длиной внутренних перемычек.
- Площадь подошвы — квадратура контакта фундамента с грунтом. Полученные значения помогут для определения площади гидроизоляции.
- Площадь боковой поверхности — поможет в дальнейшем для определения необходимого количества утеплителя для наружной стороны бетонного основания.
Фото из открытых источников
Арматура
Расчет армирования ростверка – не менее важный этап строительства. Стальной каркас помогает фундаменту справиться с нагрузками, повышает его упругость, увеличивает период «жизни» основания здания.
Расчет необходимого количества арматуры для ростверка с нашим онлайн-калькулятором очень прост.
Перед этим нужно определить схему каркаса. И после этого занести показатели в соответствующие поля для дальнейшего расчета. Это:
- Количество поясов. Как правило, планируется два продольных: верхний и нижний.
- Количество рядов в каждом поясе. Это количество продольных стержней в конструкции каждого пояса. Учитываются и дополнительные (промежуточные) пояса, если таковые предусмотрены схемой армирования.
- Шаг поперечных и вертикальных стержней. Для создания прочного каркаса применяются вертикальные и поперечные перемычки (стержни). Они усиливают жесткость конструкции и формируют прямоугольное сечение ленты.
После внесения всех данных Вы получите исчисления, в которых будут указаны длины необходимой арматуры: продольной, поперечной, вертикальной и общей.
Монтаж армопояса для ростверкаФото из открытых источников
Объем бетона
Определение количества кубометров раствора для заливки фундамента — важная составляющая технологического процесса строительства. Расчет ростверка фундамента дома «на глазок» приведет к нежелательным результатам и дальнейшим негативным последствиям.
Если бетона будет недостаточно, залитый в несколько приемов фундамент потеряет однородность. Физические и химические свойства различных замесов отличаются. Неизрасходованные излишки смеси также нежелательны, так как весь объем оплачен.
Расчет бетона для ростверка с помощью нашего калькулятора прост и удобен, программа выдаст готовый необходимый объем бетона.
Опалубка
Наш калькулятор расчета свайного ростверка поможет определить необходимое количество пиломатериала для сооружения опалубки. Конструкция придаст фундаменту форму и удержит раствор до нужной степени затвердевания.
Для расчета опалубки помимо параметров самой конструкции вносятся геометрические показатели доски: ширина, длина и толщина. По окончанию вычислений сформируются результаты.
Опалубка для высокого ростверкаФото из открытых источников
Строительство свайно-ростверковых фундаментов возможно на торфяниках и наклонном рельефе. Широко применяется на сыпучих грунтах и в сейсмоопасных районах.
Быстро и доступно определить необходимое количество материалов можно, воспользовавшись нашим онлайн-калькулятором расчета ростверка.
Онлайн-калькулятор расчета размеров, арматуры и количества бетона монолитного ленточного фундамента
Онлайн калькулятор расчета:
• размеров
• арматуры
• бетона
СВАЙНО-РОСТВЕРКОВЫЙ ФУНДАМЕНТ
СТРОИТЕЛЬСТВО ПРАВИЛЬНЫХ ФУНДАМЕНТОВ
в Киеве и Киевской области
ИНФОРМАЦИЯ ПО НАЗНАЧЕНИЮ КАЛЬКУЛЯТОРА
Онлайн калькулятор монолитного буронабивного свайного и столбчатого ростверкого фундамента предназначен для расчетов размеров, опалубки, количества и диаметра арматуры и объема бетона, необходимого для обустройства данного типа фундамента. Для определения подходящего типа, обязательно обратитесь к специалистам.
Свайный либо столбчатый фундамент – тип фундамента, в котором сваи либо столбы находятся непосредственно в самом грунте, на необходимой глубине, а их вершины связаны между собой монолитной железобетонной лентой (ростверком), находящейся на определенном расстоянии от земли. Главным отличием между столбчатым и свайным фундаментом является разная глубина установки опор. Дешевле ленточного фундамента.
Основными условиями для выбора такого фундамента является наличие слабых, растительных и пучинистых грунтов, а так же большая глубина промерзания. В последнем случаем и при возможности забивания свай при любых погодных условиях, такой вид очень актуален в районах с суровым климатом. Так же к основным преимуществам можно отнести высокую скорость постройки и минимальное количество земляных работ, так как достаточно пробурить необходимое количество отверстий, либо вбить уже готовые сваи с использованием специальной техники.
Существует различное множество вариаций данного типа фундамента, таких как геометрическая форма свай, материалы для их изготовления, механизм действия на грунт, методы установки и виды ростверка. В каждом индивидуальном случае необходимо выбирать свой вариант с учетом характеристик грунта, расчетных нагрузок, климатических и других условий. Для этого необходимо обращаться к специалистам, которые смогут произвести все необходимые замеры и расчеты. Попытки экономии и самостроя могут привести к разрушению постройки.
Далее представлен полный список выполняемых расчетов с кратким описанием каждого пункта. Вы так же можете задать свой вопрос, воспользовавшись формой в правом блоке.
ОБЩИЕ СВЕДЕНИЯ ПО РЕЗУЛЬТАТАМ РАСЧЕТОВ
Общая длина ростверка
• Периметр фундамента, с учетом длины внутренних перегородок.
Площадь подошвы ростверка
• Соответствует размерам необходимой гидроизоляции.
Площадь внешней боковой поверхности ростверка
• Соответствует площади необходимого утеплителя для внешней стороны фундамента.
Общий Объем бетона для ростверка и столбов
• Объем бетона, необходимого для заливки всего фундамента с заданными параметрами. Так как объем заказанного бетона может незначительно отличаться от фактического, а так же вследствие уплотнения при заливке, заказывать необходимо с 10% запасом.
Вес бетона
• Указан примерный вес бетона по средней плотности.
Нагрузка на почву от фундамента в местах основания столбов
• Нагрузка на почву от веса фундамента в местах основания столбов/свай.
Минимальный диаметр продольных стержней арматуры
• Минимальный диаметр по СНиП, с учетом относительного содержания арматуры от площади сечения ленты.
Минимальное кол-во рядов арматуры ростверка в верхнем и нижнем поясах
• Минимальное количество рядов продольных стержней в каждом поясе, для предотвращения деформации ленты под действием сил сжатия и растяжения.
Минимальный диаметр поперечных стержней арматуры (хомутов)
• Минимальный диаметр поперечных и вертикальных стержней арматуры (хомутов) по СНиП.
Минимальное кол-во вертикальных стержней арматуры для столбов
• Количество вертикальных стержней арматуры на каждый столб/сваю.
Минимальный диаметр арматуры столбов
• Минимальный диаметр вертикальных стержней для столбов/свай.
Шаг поперечных стержней арматуры (хомутов) для ростверка
• Шаг хомутов, необходимых для предотвращения сдвигов арматурного каркаса при заливке бетона.
Величина нахлеста арматуры
• При креплении отрезков стержней внахлест.
Общая длина арматуры
• Длина всей арматуры для вязки каркаса с учетом нахлеста.
Общий вес арматуры
• Вес арматурного каркаса.
Толщина доски опалубки
• Расчетная толщина досок опалубки в соответствии с ГОСТ для заданных параметров фундамента и при заданном шаге опор.
Кол-во досок для опалубки
• Количество материала для опалубки заданного размера.
• ГЕОЛОГИЮ УЧАСТКА под
фундамент успели сделать?
Что это?
1.
МОНОЛИТНАЯ ПЛИТАПЕСЧАНО-ЩЕБЕНОЧНАЯ ПОДУШКА
2. МОНОЛИТНАЯ ПЛИТА
С НИЖНИМ РОСТВЕРКОМ
3. МОНОЛИТНАЯ ПЛИТА
С ВЕРХНИМ РОСТВЕРКОМ
* Стоимость указана ориентировочная «ПОД КЛЮЧ» с учетом стоимости всех работ, материалов, необходимой техники
1. ЛЕНТОЧНЫЙ МОНОЛИТНЫЙ
ФУНДАМЕНТ С ОСНОВАНИЕМ
2. ЛЕНТОЧНЫЙ ФУНДАМЕНТ
С ЧЕРНОВЫМ ПОЛОМ 100 мм
3. ЛЕНТОЧНЫЙ МОНОЛИТНЫЙ
ФУНДАМЕНТ
* Стоимость указана ориентировочная «ПОД КЛЮЧ» с учетом стоимости всех работ, материалов, необходимой техники
1. СВАЙНО-РОСТВЕРКОВЫЙ НА
БУРОИНЪЕКЦИОННЫХ СВАЯХ
2. СВАЙНО-РОСТВЕРКОВЫЙ
С ЧЕРНОВЫМ ПОЛОМ
3. СВАЙНО-РОСТВЕРКОВЫЙ
НА ЗАБИВНЫХ Ж/Б СВАЯХ
* Стоимость указана ориентировочная «ПОД КЛЮЧ» с учетом стоимости всех работ, материалов, необходимой техники
1. ЦОКОЛЬНЫЙ ЭТАЖ
ФУНДАМЕНТ С ПОДВАЛОМ
2.
ЦОКОЛЬНЫЙ ЭТАЖС МОНОЛИТНОЙ С ПЛИТОЙ
3. ЦОКОЛЬНЫЙ ЭТАЖ
ИЗ БЛОКОВ ФБС И Ж/Б ПЛИТ
* Стоимость указана ориентировочная «ПОД КЛЮЧ» с учетом стоимости всех работ, материалов, необходимой техники
Калькулятор свай (трубчатый анкер и фундамент)
Рис. 1. Сопротивление при установке сваи
Сваи б/у; в качестве анкеров, чтобы поднять конструкции над землей или предотвратить движение (оседание) фундаментов конструкций. Они могут быть из твердого бетона или трубчатой стали в зависимости от применения.
Бетонные сваи обычно выдерживают очень большие вертикальные сжимающие нагрузки и устанавливаются/изготавливаются путем рытья ямы в земле, в которую опускают предварительно изготовленную сваю и затем закапывают или в которую заливается незатвердевший бетон. Эти сваи не учитываются калькулятором свай CalQlata.
Полые трубчатые стальные сваи, которые являются предметом калькулятора свай CalQlata, обычно используются в качестве анкеров или для предотвращения смещения в фундаментах небольших и средних конструкций в подозрительных грунтовых условиях на суше или на морском дне.
Почва
До 450 миллионов лет назад поверхность земли была каменистой; земли нигде не было. С тех пор почва накопилась на большей части ее поверхности из разложившихся растительных и животных остатков и эродированных пород. Почвы сильно различаются по составу и характеру в зависимости от множества переменных, таких как; состава, температуры и содержания воды.
Источники свойств почвы сильно различаются не потому, что они неверны, а просто потому, что все они разные. Поэтому всегда полезно проверить почву в месте закладки с помощью штифта небольшого диаметра, проникающего на глубину, подходящую для желаемого уровня достоверности. Это относительно недорогой и надежный метод подготовки сваи к размеру перед установкой. К штифту можно применить те же методы расчета, что и к свае.
Указанная несущая способность грунта действительна только при определенных условиях; глубина, пустоты, вовлеченная вода, частицы породы (камни), состав, температура и т. д. — все это способствует изменению прочности в очень малых объемах. Более того, несущая способность обычно зависит от величины и направления нагрузки, т. е. она значительно снижается при растяжении или сжатии вблизи поверхности.
Поскольку прочность грунта увеличивается с глубиной, CalQlata консервативно предполагает, что боковое давление грунта на стенку сваи равно давлению на глубине, умноженному на коэффициент Пуассона грунта (в отличие от его угла сдвига, который также может различаются по глубине).
Сопротивление сжимающей силе в основании или на конце сваи (рис. 1), которая создает дополнительное проникновение (δd), обычно должно быть равно комбинированному напряжению в грунте на глубине. Однако, поскольку условия на острие сваи изменчивы и в значительной степени неизвестны⁽¹⁾ во время установки, калькулятор свай консервативно использует только несущую способность при расчете ударопрочности оголовка сваи.
Установка свай
Рис. 2. Момент смещения сваи
На рис. 1 показаны силы сопротивления стандартной стальной трубчатой сваи во время установки.
Сваи обычно забивают в землю, опуская на них тяжелый груз с определенной высоты. Сила удара создается за счет потенциальной энергии массы. Если молот падает в плотную среду, такую как вода, его эффективная масса (mₑ) должна использоваться при расчете энергии удара (см. 9).0029 Входные данные ниже).
Сопротивление трению⁽²⁾ между грунтом и внутренней и внешней вертикальными поверхностями сваи увеличивается с глубиной. Пошаговое заглубление достигается за счет преодоления несущего напряжения в грунте по площади поверхности вершины стенки сваи. Сила, генерируемая энергией удара, которая изменяется при каждом постепенном изменении проникновения в грунт, должна быть достаточной для преодоления обеих этих нагрузок.
По мере увеличения глубины сваи большая часть силы удара теряется при преодолении повышенного сопротивления трения, уменьшая силу, доступную для проникновения. Таким образом, дополнительное проникновение уменьшается с глубиной установки, что увеличивает усилие на сваю при каждом ударе.
Маловероятно, что грунт будет иметь одинаковую несущую способность, сопротивление сдвигу, коэффициент трения и коэффициент Пуассона вплоть до установленной глубины, поэтому маловероятно, что каждое воздействие вызовет ожидаемое проникновение на соответствующей глубине.
Хотя разумно продолжать укладку до тех пор, пока сила удара (F) не станет достаточной для ваших нужд (Ŵ < F < W̌), было бы целесообразно обеспечить, чтобы конечное значение (F) превышало (Ŵ+W̌)/ 2
Сила (F) для каждого удара указана в калькуляторе свай.
Прочность сваи
Стенка сваи должна быть способна выдерживать монтажные и эксплуатационные нагрузки, а для определения целостности сваи в зависимости от конкретных условий проектирования требуются отдельные расчеты. Однако наиболее вероятной причиной разрушения сваи является разрушение стены во время установки.
Разрушение или обрушение стенки сваи происходит из-за чрезмерного мембранного напряжения из-за несоосности молота и сваи (рис. 2), достаточно консервативную оценку которой можно получить, используя следующую формулу плоской пластины: σỵ = 6,M/t
Существует множество формул для определения прочности сваи при сжатии, некоторые из них включают классические или сложные формулы, все из которых можно надежно предсказать с помощью расчета потери устойчивости столбца Эйлера-Ренкина, в котором вы добавляете модуль Юнга материала сваи к модулю упругости сваи. грунт (Eᵖ+Eˢ) при создании составной жесткости (EI) для колонны.
Расчетная мощность сваи
Рис. 3. Боковая емкость
Сопротивление весу достигается за счет комбинации сопротивления трению и несущей способности почвы. Горизонтальным нагрузкам должно противодействовать боковое сжатие грунта, которое зависит от глубины, состава и плотности. Растягивающим нагрузкам от анкеров противостоит масса сваи плюс грунтовая пробка, если она остается внутри, и любое остаточное трение между грунтом и стенкой сваи.
Как и во всех теоретических интерпретациях практических задач, в конечном результате присутствует определенная степень оценки.
Например:
Горизонтальная сила : Сопротивление горизонтальным нагрузкам создает пару моментов (M) на высоте «hᴹ» (рис. 3), величина которой обусловлена комбинацией несущей способности грунта и давления на глубине. . Несущая способность при горизонтальной нагрузке не такая, как при сжатии из-за подъема к поверхности, более того, давление создает большее сопротивление горизонтальным силам, чем несущая способность на значительных глубинах (т. е. когда плотность x глубина >
несущей способности). Поэтому CalQlata проигнорировала влияние несущей способности для горизонтальных нагрузок в калькуляторе свай и приняла боковое сопротивление, основанное на давлении x глубина⁽⁴⁾. Вам нужно будет убедиться, что ваша свая не сплющивается чуть ниже поверхности почвы в результате горизонтальной силы.Усилие сжатия : Если свая не забита в подстилающую породу, ее несущая способность (рис. 4; W) будет зависеть от сопротивления трения и несущей способности грунта, которые могут соответствовать или не соответствовать поверхностным условиям. В этом случае вы можете определить несущую способность установленной сваи на основе конечной силы удара. Однако было бы разумно применить соответствующий запас прочности для учета потенциальной ползучести. Эмпирическое правило CalQlata состоит в том, чтобы принять полную несущую способность и ⅔ сопротивления трения (R̂ᵛ). Калькулятор свай предоставляет как теоретические (W̌), так и эмпирические значения (Ŵ) в своих выходных данных.
Суммарная сила : Когда на сваи действуют комбинированные вертикальные и горизонтальные нагрузки (рис. 5; W), сопротивление трения от вертикальной составляющей уменьшается, если горизонтальной составляющей достаточно для преодоления напряжения в грунте. Если грунт и свая теряют контакт более чем на 50 % площади внешней поверхности, сопротивлением трения следует пренебречь. Сопротивление вертикальному восхождению будет зависеть только от веса (сваи и грунтовой пробки, если они сохранены), а сопротивление сжатию будет связано только с напряжением смятия (σ) на кончике сваи.
Предостережение
Хотя сопротивление трению в свае может быть включено в несущую способность сваи, следует позаботиться о том, чтобы в течение ее расчетного срока службы учитывалось следующее:
1) Определенная ползучесть может возникать с течением времени из-за неоднородностей грунта из-за изменения слоев и вибрационных нагрузок
2) Осадка может привести к заползанию сваи в малопрочный слой
3) Подземные воды снижают сопротивление трению и прочность на смятие
4) Скала, частично поддерживающая сваю, может со временем вызвать наклон
5) Деформация стенки сваи при установке может привести к обрушению в процессе эксплуатации
Все вышеперечисленное может быть выполнено с помощью соответствующих испытаний грунта на глубину, превышающую предполагаемую глубину сваи.
Рис. 4. Осевая нагрузка
Калькулятор свай — Техническая помощь
Единицы
Вы можете использовать любые единицы измерения, но вы должны быть последовательны.
Входное значение ускорения свободного падения (g) используется только для преобразования энергии удара в массовую силу.
Установка
Калькулятор свай прикладывает горизонтальное давление (которое линейно зависит от глубины) к внутренней и внешней стенке сваи из-за коэффициента Пуассона грунта. Сопротивление постепенному проникновению рассчитывается с использованием только напряжения смятия (σ) грунта, напряжение сдвига (τ) используется для расчета угла сдвига для горизонтальной силы (F̌ʰ).
Расчетная грузоподъемность
Калькулятор свай предоставляет множество расчетных нагрузок, только минимальные значения которых (R̂ᵛ, F̂ᵛ, Ŵ) можно использовать с высокой степенью достоверности и без проверочных испытаний. Если вы хотите полагаться на более высокие расчетные мощности, чем указанные, рекомендуется провести подходящие тесты на нагрузку, зависящие от времени.
Переменные слои
Если вы не хотите выполнять подробные расчеты для каждого переменного слоя (рис. 6), вы можете консервативно предположить, что ваша свая имеет такую же глубину, как сумма толщин высокопрочных слоев, игнорируя влияние малопрочные слои вообще. Это также более точный подход, чем предположение о средних свойствах почвы на фактической глубине.
Ввод данных
Рис. 5. Объединенные силы
D = максимальная требуемая глубина сваи
Øᵢ = внутренний диаметр сваи
Øₒ = внешний диаметр сваи
ρᵐ = средней плотности⁽³⁾
ρʰ = плотность молотка⁽³⁾
ρᵖ = плотность ворса
ρˢ = плотность грунта
m = масса молота⁽³⁾
hᵈ = высота падения
σ = напряжение несущей способности грунта
τ = напряжение сдвига грунта
μᵢ = коэффициент трения при установке⁽²⁾
μₒ = коэффициент трения при работе⁽²⁾
ν = коэффициент Пуассона (почва)
Выходные данные
мₑ = эффективная масса молота⁽³⁾
E = энергия удара
A = площадь поперечного сечения стенки сваи (вершина)
Ď = общая максимальная глубина (d + δd после последнего попадания)
n = количество попаданий (для достижения Ď)
R̂ᵛ = минимальное вертикальное сопротивление трения при установке⁽⁵⁾ (из-за μᵢ)
Řᵛ = максимальное вертикальное сопротивление трению после осадки⁽⁵⁾ (из-за μₒ)
F̌ʰ = максимальная горизонтальная сила (на поверхности почвы)
F̂ᵛ = минимальная сила подъема сваи (только масса сваи)
F̌ᵛ = максимальная подъемная сила сваи (включая массу пробки и Øᵛ)
Ŵ = минимальная грузоподъемность (от; ⅔μₒ + σ)
W̌ = максимальная грузоподъемность (от; μₒ + σ)
hᴹ = высота от кончика сваи до точки опоры
r₁ = плечо момента над точкой опоры (только для информации)
r₂ = плечо момента ниже точки опоры (только для информации)
M₁ = момент над точкой опоры⁽⁶⁾ (только для информации)
M₂ = момент ниже точки опоры⁽⁶⁾ (только для информации)
Рис. 6. Переменные слои почвы
Результаты последовательности попаданий:
№ = ударный номер
δd = глубина удара
d = общая глубина после удара
F = сила удара
См. Свойства материала ниже для некоторых репрезентативных свойств материалов.
Свойства материала
Среда установки: Если ваша свая устанавливается с помощью молота, опускаемого под воду, вы должны ввести среднюю плотность (ρᵐ) для воды, в противном случае вы должны ввести значение для воздуха или установить это значение равным нулю.
Материал молотка: Плотность материала молотка (ρʰ) уменьшается на плотность среды при расчете (ρᵐ) для расчета энергии удара (E). Поэтому важно, чтобы обе плотности были репрезентативными.
Материал сваи: Плотность материала сваи используется только в расчетах силы, необходимой для выдергивания сваи из земли (Fᵛ)
Материал почвы: Свойства почвы должны основываться на результатах испытаний на месте, если это вообще возможно. Это можно установить, вставив штифт в землю на месте сваи, а затем задним числом установив свойства грунта с помощью калькулятора свай и изменив свойства грунта (σ, μᵢ и μₒ), убедившись, что:
а) ретроспективные расчеты отражают фактические условия во время установки;
b) Нагрузки по добыче измеряются по крайней мере через 30 дней после оседания. В качестве альтернативы для целей оценки могут использоваться следующие данные:
Плотность | Вещество | кг/м³ | фунтов/дюйм³ |
---|---|---|---|
номер | воздух | 1,256 | 4.54Е-5 |
вода | 1000 | 0,0361 | |
морская вода | 1023 | 0,037 | |
№ | сталь | 7850 | 0,2836 |
бетон | 2400 | 0,0867 | |
гранитный камень | 2750 | 0,09935 | |
№ | сталь | 7850 | 0,2836 |
алюминий | 2685 | 0,097 | |
титан (HT) | 4456 | 0,161 | |
нержавеющая сталь 316 | 7941 | 0,2869 | |
глина сухая | 1590 | 0,0574 | |
глина-средняя | 1625 | 0,0587 | |
мокрая глина | 1750 | 0,0632 | |
суглинок | 1275 | 0,0461 | |
илово-сухой | 1920 | 120 | |
илово-влажный | 2163 | 135 | |
песок сухой | 1600 | 0,0578 | |
песочно-мокрый | 1900 | 0,0686 |
Стресс | Вещество | кг/м² | фунтов/кв. дюйм | ν |
---|---|---|---|---|
σˢ | глинистая плотная | от 35 до 55 | от 0,05 до 0,08 | 0,45 |
глина-средняя | от 20 до 35 | от 0,03 до 0,05 | 0,35 | |
глина рыхлая | от 10 до 20 | от 0,014 до 0,03 | 0,3 | |
суглинок | от 7,5 до 15 | от 0,01 до 0,02 | 0,3 | |
пылеватый | от 4,5 до 7,5 | от 0,0064 до 0,01 | 0,35 | |
ил рыхлый | от 1 до 4,5 | от 0,001 до 0,0064 | 0,3 | |
песок сухой | от 10 до 30 | от 0,014 до 0,04 | 0,4 | |
песочно-мокрый | от 5 до 10 | от 0,007 до 0,014 | 0,3 | |
τˢ | глинистая плотная | от 29,4 до 46,2 | от 0,0418 до 0,0656 | |
глина-средняя | от 11,5 до 20,2 | от 0,0164 до 0,0287 | ||
глина рыхлая | от 3,6 до 7,3 | от 0,0052 до 0,0104 | ||
суглинок | от 4,3 до 8,7 | от 0,0062 до 0,0123 | ||
пылеватый | от 0,8 до 1,3 | от 0,0011 до 0,0019 | ||
ил рыхлый | от 0,1 до 0,4 | от 0,0001 до 0,0006 | ||
песок сухой | от 8,4 до 25,2 | от 0,0119 до 0,0358 | ||
песочно-мокрый | от 2,9 до 5,8 | от 0,0041 до 0,0082 |
Вещество | мкᵢ | мкₒ |
---|---|---|
глинистая плотная | 0,225 | 0,45 |
глина-средняя | 0,2 | 0,4 |
глина рыхлая | 0,15 | 0,3 |
суглинок | 0,175 | 0,35 |
пылеватый | 0,15 | 0,3 |
ил рыхлый | 0,125 | 0,25 |
песок сухой | 0,1 | 0,2 |
песочно-мокрый | 0,175 | 0,35 |
Применимость
Калькулятор свай применим только к трубчатым сваям, заглубленным в грунт
Точность
Точность расчетов в калькуляторе свай зависит от введенной информации. Выходные данные в значительной степени основаны на линейном изменении давления с глубиной и постоянной плотности грунта на этой глубине. В этом случае ожидается, что результаты будут в пределах ±10% от фактических значений.
Если почва изменчива по глубине сваи, следует использовать средние значения свойств почвы, и в этом случае; ожидается, что результаты будут в пределах ±20% от фактических значений.
Крайне маловероятно, что какой-либо расчет сваи даст значительно большую точность, чем ожидалось выше.
Примечания
- Ударная вибрация, смещение грунта и переменные условия с глубиной — все это изменяет торцевую нагрузку сваи во время установки неконтролируемым образом
- Сопротивление трению при монтаже меньше, чем при эксплуатации из-за осадки (через ≈30 дней). CalQlata рекомендует, чтобы, если не известны точные значения, коэффициент трения для связных грунтов во время установки был вдвое меньше, чем при эксплуатации, который обычно составляет ≈0,35. Для несвязных грунтов оба значения следует принимать одинаковыми при ≈0,15
- Энергия удара использует эффективную массу молотка mₑ = m.(ρʰ-ρᵐ)/ρʰ
- Боковая нагрузка на стенки сваи рассчитывается по формуле ν.d.ρˢ
- Включая внутренние и внешние вертикальные стенки сваи
- Эта информация предоставляется для проверки: M₁ должно быть идентично M₂, если расчет правильный
Дополнительная литература
Дополнительную литературу по этому вопросу можно найти в справочных публикациях (8, 9, 51 и 52)
Калькулятор свай и свай в App Store
Описание
Калькулятор свай содержит 22 калькулятора для расчета и преобразования различных параметров свайного фундамента и строительных конструкций.
Доступно в метрических (SI) и имперских (USCS) единицах измерения.
Доступно на английском, французском, испанском, итальянском, немецком, португальском и нидерландском языках.
Калькулятор свай содержит следующие 22 калькулятора:
• Допустимая нагрузка (сваи, забиваемые ударным молотом)
• Допустимая нагрузка (сваи, забиваемые паровым молотом)
• Модуль упругости грунта
• Длина сваи
• Предельная нагрузка на острие
• Напряжение сопротивления носка
• Напряжение сопротивления носка (сваи в песке)
• Верхний предел групповой нагрузки сопротивления
• Допустимая расчетная нагрузка на скальное гнездо
• Чистая несущая способность (ленточные фундаменты)
• Чистая несущая способность (круглые фундаменты)
• Чистая несущая способность (квадратные фундаменты)
• Чистая несущая способность (недренируемая нагрузка связных грунтов — ленточные фундаменты)
• Чистая несущая способность (недренируемая нагрузка связных грунтов — круглые и квадратные фундаменты)
• Максимальное несущее давление грунта (обычный случай)
• Минимальное несущее давление грунта (обычный случай)
• Несущая способность грунта (другие случаи)
• Грунт Несущая нагрузка (фундаменты, подвергающиеся опрокидыванию)
• Несущая способность сваи
• Допустимая осевая нагрузка одиночной сваи
• Прочность вала
• Прочность вала (стандартные испытания на проникновение)
000Z» aria-label=»August 1, 2019″> 1 августа 2019 г.
Версия 2.0
Готово для вашего iPhone X Max
Совершенно новый пользовательский интерфейс для iPad
Рейтинги и обзоры
2 оценки
Разработчик, V PUGAZHENTHI, не предоставил Apple подробностей о своей политике конфиденциальности и обработке данных. Для получения дополнительной информации см. политику конфиденциальности разработчика.
Сведения не предоставлены
Разработчик должен будет предоставить сведения о конфиденциальности при отправке следующего обновления приложения.
Информация
- Продавец
- В ПУГАЖЕНТИ
- Размер
- 20 МБ
- Категория
- Утилиты
- Возрастной рейтинг
- 4+
- Авторское право
- © Все права защищены.