Переменный ток. Его характеристики — Студопедия
Электрическим током называют направленное движение заряженных частиц. Количественными характеристиками тока являются его сила тока (отношение заряда переносимого через поперечное сечение проводника в единицу времени) и его плотность, определяемая соотношением. Единицей измерения силы тока является ампер (1А — характерное значение тока, потребляемого бытовыми электронагревательными приборами). Необходимыми условиями существования тока являются наличие свободных носителей зарядов, замкнутой цепи и источника ЭДС (батареи), поддерживающего направленное движение.
Электрический ток может существовать в различных средах: в металлах, вакууме, газах, в растворах и расплавах электролитов, в плазме, в полупроводниках, в тканях живых организмов. При протекании тока практически всегда происходит взаимодействие носителей зарядов с окружающей средой, сопровождающееся передачей энергии последней в виде тепла. Роль источника ЭДС как раз и состоит в компенсации тепловых потерь в цепях.
Опыт показывает, что сила электрического тока, протекающего по проводнику, пропорциональна приложенной к его концам разности потенциалов (закон Ома). Постоянный для выбранного проводника коэффициент пропорциональности между током и напряжением называют электрическим сопротивлением. Сопротивление измеряют в омах (сопротивление человеческого тела составляет около 1000 Ом). Величина электрического сопротивления проводников слабо возрастает при увеличении их температуры. Это связано с тем, что при нагревании узлы кристаллической решетки усиливают хаотические тепловые колебания, что препятствует направленному движению электронов.
Во многих задачах непосредственный учет колебаний решетки оказывается весьма трудоемким. Для упрощения взаимодействия электронов с колеблющимися узлами оказывается удобным заменить их столкновениями с частицами газа гипотетических частиц — фононов, свойства которых подбираются так, чтобы получить максимально приближенное к реальности описание и могут оказываться весьма экзотическими. Объекты такого типа весьма популярны в физике и называются квазичастицами. Помимо взаимодействий с колебаниями кристаллической решетки движению электронов в кристалле могут препятствовать дислокации — нарушения регулярности решетки. Взаимодействия с дислокациями играют определяющую роль при низких температурах, когда тепловые колебания практически отсутствуют.
Некоторые материалы при низких температурах полностью утрачивают электрическое сопротивление, переходя в сверх проводящее состояние. Ток в таких средах может существовать без каких-либо ЭДС, поскольку потери энергии при столкновениях электронов с фононами и дислокациями отсутствуют. Создание материалов, сохраняющих сверхповодящее состояние при относительно высоких (комнатных) температурах и небольших токах является весьма важной задачей, решение которой произвело бы настоящий переворот в современной энергетике, т.к. позволило бы передавать электроэнергию на большие расстояния без тепловых потерь.
В настоящее время электрический ток в металлах используется главным образом для превращения электрической энергии в тепловую (нагреватели, источники света) или в механическую (электродвигатели). В последнем случае электрический ток используется в качестве источника магнитных полей, взаимодействие с которыми других токов вызывает появление сил.
1. Переменный ток
Как известно, сила тока в любой момент времени пропорциональна ЭДС источника тока (закон Ома для полной цепи). Если ЭДС источника не изменяется со временем и остаются неизменными параметры цепи, то через некоторое время после замыкания цепи изменения силы тока прекращаются, в цепи течет постоянный ток.
Однако в современной технике широко применяются не только источники постоянного тока, но и различные генераторы электрического тока, в которых ЭДС периодически изменяется. При подключении в электрическую цепь генератора переменной ЭДС в цепи возникают вынужденные электромагнитные колебания или переменный ток.
Переменный ток – это периодические изменения силы тока и напряжения в электрической цепи, происходящие под действием переменной ЭДС от внешнего источника.
Переменный ток – это электрический ток, который изменяется с течением времени по гармоническому закону.
Мы в дальнейшем будем изучать вынужденные электрические колебания, происходящие в цепях под действием напряжения, гармонически меняющегося с частотой щ по синусоидальному или косинусоидальному закону:
где u – мгновенное значение напряжения, Um – амплитуда напряжения, щ – циклическая частота колебаний. Если напряжение меняется с частотой щ, то и сила тока в цепи будет меняться с той же частотой, но колебания силы тока не обязательно должны совпадать по фазе с колебаниями напряжения.
Поэтому в общем случае:
где – разность (сдвиг) фаз между колебаниями силы тока и напряжения.
Переменный ток обеспечивает работу электрических двигателей в станках на заводах и фабриках, приводит в действие осветительные приборы в наших квартирах и на улице, холодильники и пылесосы, отопительные приборы и т.п. Частота колебаний напряжения в сети равна 50 Гц. Такую же частоту колебаний имеет и сила переменного тока. Это означает, что на протяжении 1 с ток 50 раз поменяет свое направление.
Частота 50 Гц принята для промышленного тока во многих странах мира. В США частота промышленного тока 60 Гц.2. Резистор в цепи переменного тока
Пусть цепь состоит из проводников с малой индуктивностью и большим сопротивлением R (из резисторов). Например, такой цепью может быть нить накаливания электрической лампы и подводящие провода. Величину R, которую мы до сих пор называли электрическим сопротивлением или просто сопротивлением, теперь будем называть активным сопротивлением. В цепи переменного тока могут быть и другие сопротивления, зависящие от индуктивности цепи и ее емкости. Сопротивление R называется активным потому, что, только на нем выделяется энергия, т.е.
Сопротивление элемента электрической цепи (резистора), в котором происходит превращение электрической энергии во внутреннюю энергию, называют активным сопротивлением.
Итак, в цепи имеется резистор, активное сопротивление которого R, а катушка индуктивности и конденсатор отсутствуют (рис. 1).
Пусть напряжение на концах цепи меняется по гармоническому закону:
Как и в случае постоянного тока, мгновенное значение силы тока прямо пропорционально мгновенному значению напряжения. Поэтому можно считать, что мгновенное значение силы тока определяется законом Ома:
Следовательно, в проводнике с активным сопротивлением колебания силы тока по фазе совпадают с колебаниями напряжения (рис. 2), а амплитуда силы тока равна амплитуде напряжения, деленной на сопротивление:
При небольших значениях частоты переменного тока активное сопротивление проводника не зависит от частоты и практически совпадает с его электрическим сопротивлением в цепи постоянного тока.
1.1 Катушка в цепи переменного тока
Индуктивность влияет на силу переменного тока в цепи. Это можно обнаружить с помощью простого опыта. Составим цепь из катушки большой индуктивности и лампы накаливания (рис. 3). С помощью переключателя можно присоединять эту цепь либо к источнику постоянного напряжения, либо к источнику переменного напряжения. При этом постоянное напряжение и действующее значение переменного напряжения должны быть одинаковы. Опыт показывает, что лампа светится ярче при постоянном напряжении.
Следовательно, действующее значение силы тока в рассматриваемой цепи меньше силы постоянного тока.Объясняется это самоиндукцией. При подключении катушки к источнику постоянного напряжения сила тока в цепи нарастает постепенно. Возникающее при нарастании силы тока вихревое электрическое поле тормозит движение электронов. Лишь по прошествии некоторого времени сила тока достигает наибольшего (установившегося) значения, соответствующего данному постоянному напряжению. Если напряжение быстро меняется, то сила тока не будет успевать достигать тех установившихся значений, которые она приобрела бы с течением времени при постоянном напряжении, равном максимальному значению переменного напряжения. Следовательно, максимальное значение силы переменного тока (его амплитуда) ограничивается индуктивностью L цепи и будет тем меньше, чем больше индуктивность и чем больше частота приложенного напряжения.
Докажем это математически. Пусть в цепь переменного тока включена идеальная катушка с электрическим сопротивлением провода, равным нулю (рис. 4).
При изменениях силы тока по гармоническому закону:
в катушке возникает ЭДС самоиндукции:
где L – индуктивность катушки, щ – циклическая частота переменного тока.
Так как электрическое сопротивление катушки равно нулю, то ЭДС самоиндукции в ней в любой момент времени равна по модулю и противоположна по знаку напряжению на концах катушки, созданному внешним генератором:
Следовательно, колебания напряжения на катушке индуктивности опережают колебания силы тока на р/2, или, что то же самое, колебания силы тока отстают по фазе от колебаний напряжения на р/2.
В момент, когда напряжение на катушке достигает максимума, сила тока равна нулю (рис. 5). В момент, когда напряжение становится равным нулю, сила тока максимальна по модулю.
Произведение Im ⋅ L ⋅ щ является амплитудой колебаний напряжения на катушке:
Отношение амплитуды колебаний напряжения на катушке к амплитуде колебаний силы тока в ней называется индуктивным сопротивлением (обозначается XL):
Связь амплитуды колебаний напряжения на концах катушки с амплитудой колебаний силы тока в ней совпадает по форме с выражением закона Ома для участка цепи постоянного тока:
В отличие от электрического сопротивления проводника в цепи постоянного тока, индуктивное сопротивление не является постоянной величиной, характеризующей данную катушку.
Зависимость амплитуды колебаний силы тока в катушке от частоты приложенного напряжения можно наблюдать в опыте с генератором переменного напряжения, частоту которого можно изменять. Опыт показывает, что увеличение в два раза частоты переменного напряжения приводит к уменьшению в два раза амплитуды колебаний силы тока через катушку.
1.2 Конденсатор в цепи переменного тока
Рассмотрим процессы, протекающие в электрической цепи переменного тока с конденсатором. Если подключить конденсатор к источнику постоянного тока, то в цепи возникнет кратковременный импульс тока, который зарядит конденсатор до напряжения источника, а затем ток прекратится. Если заряженный конденсатор отключить от источника постоянного тока и соединить его обкладки с выводами лампы накаливания, то конденсатор будет разряжаться, при этом наблюдается кратковременная вспышка лампы.
При включении конденсатора в цепь переменного тока процесс его зарядки длится четверть периода. После достижения амплитудного значения напряжение между обкладками конденсатора уменьшается и конденсатор в течение четверти периода разряжается. В следующую четверть периода конденсатор вновь заряжается, но полярность напряжения на его обкладках изменяется на противоположную и т.д. Процессы зарядки и разрядки конденсатора чередуются с периодом, равным периоду колебаний приложенного переменного напряжения.
Как и в цепи постоянного тока, через диэлектрик, разделяющий обкладки конденсатора, электрические заряды не проходят. Но в результате периодически повторяющихся процессов зарядки и разрядки конденсатора по проводам, соединенным с его выводами, течет переменный ток. Лампа накаливания, включенная последовательно с конденсатором в цепь переменного тока (рис. 6), кажется горящей непрерывно, так как человеческий глаз при высокой частоте колебаний силы тока не замечает периодического ослабления свечения нити лампы.
Установим связь между амплитудой колебаний напряжения на обкладках конденсатора и амплитудой колебаний силы тока.
При изменениях напряжения на обкладках конденсатора по гармоническому закону:
заряд на его обкладках изменяется по закону:
Электрический ток в цепи возникает в результате изменения заряда конденсатора: i = q’. Поэтому колебания силы тока в цепи происходят по закону:
Следовательно, колебания напряжения на обкладках конденсатора в цепи переменного тока отстают по фазе от колебаний силы тока на р/2 или колебания силы тока опережают по фазе колебания напряжения на р/2 (рис. 7). Это означает, что в момент, когда конденсатор начинает заряжаться, сила тока максимальна, а напряжение равно нулю. После того как напряжение достигает максимума, сила тока становится равной нулю и т.д.
Произведение Um ⋅ щ ⋅ C является амплитудой колебаний силы тока:
Отношение амплитуды колебаний напряжения на конденсаторе к амплитуде колебаний силы тока называют емкостным сопротивлением конденсатора (обозначается ХC):
Связь между амплитудным значением силы тока и амплитудным значением напряжения по форме совпадает с выражением закона Ома для участка цепи постоянного тока, в котором вместо электрического сопротивления фигурирует емкостное сопротивление конденсатора:
Емкостное сопротивление конденсатора, как и индуктивное сопротивление катушки, не является постоянной величиной. Оно обратно пропорционально частоте переменного тока. Поэтому амплитуда колебаний силы тока в цепи конденсатора при постоянной амплитуде колебаний напряжения на конденсаторе возрастает прямо пропорционально частоте.
1.3 Закон Ома для электрической цепи переменного тока
Рассмотрим электрическую цепь, состоящую из последовательно соединенных резистора, конденсатора и катушки (рис. 8). Если к выводам этой электрической цепи приложить электрическое напряжение, изменяющееся по гармоническому закону с частотой щ и амплитудой Um, то в цепи возникнут вынужденные колебания силы тока с той же частотой и некоторой амплитудой Im. Установим связь между амплитудами колебаний силы тока и напряжения
В любой момент времени сумма мгновенных значений напряжений на последовательно включенных элементах цепи равна мгновенному значению приложенного напряжения:
Во всех последовательно включенных элементах цепи изменения силы тока происходят практически одновременно, так как электромагнитные взаимодействия распространяются со скоростью света. Поэтому можно считать, что колебания силы тока во всех элементах последовательной цепи происходят по закону:
Колебания напряжения на резисторе совпадают по фазе с колебаниями силы тока, колебания напряжения на конденсаторе отстают по фазе на р/2 от колебаний силы тока, а колебания напряжения на катушке опережают по фазе колебания силы тока на р/2.
Поэтому уравнение (1) можно записать так:
где URm, UCm и ULm – амплитуды колебаний напряжения на резисторе, конденсаторе и катушке.
Амплитуду колебаний напряжения в цепи переменного тока можно выразить через амплитудные значения напряжения на отдельных ее элементах, воспользовавшись методом векторных диаграмм.
При построении векторной диаграммы необходимо учитывать, что колебания напряжения на резисторе совпадают по фазе с колебаниями силы тока, поэтому вектор, изображающий амплитуду напряжения URm, совпадает по направлению с вектором, изображающим амплитуду силы тока Im Колебания напряжения на конденсаторе отстают по фазе на р/2 от колебаний силы тока, поэтому вектор
UCm отстает от вектора Im на угол 90°. Колебания напряжения на катушке опережают колебания силы тока по фазе на р/2, поэтому вектор ULm опережает вектор Im на угол 90° (рис. 9).
На векторной диаграмме мгновенные значения напряжения на резисторе, конденсаторе и катушке определяются проекциями на горизонтальную ось векторов Rm, Cm, Lm вращающихся с одинаковой угловой скоростью щ против часовой стрелки. Мгновенное значение напряжения во всей цепи равно сумме мгновенных напряжений uR, uC, и uL на отдельных элементах цепи, т.е. сумме проекций векторов URm, UCm и ULm на горизонтальную ось. Так как сумма проекций векторов на произвольную ось равна проекции суммы этих векторов на ту же ось, то амплитуду полного напряжения можно найти как модуль суммы векторов:
Из рисунка 9 видно, что амплитуда напряжений на всей цепи равна:
Или
Отсюда
Введя обозначение для полного сопротивления цепи переменного тока:
выразим связь между амплитудными значениями силы тока и напряжения в цепи переменного тока следующим образом:
Это выражение называют законом Ома для цепи переменного тока.
Из векторной диаграммы, приведенной на рисунке 9, видно, что фаза колебаний полного напряжения равна щt + ц. Поэтому мгновенное значение полного напряжения определяется формулой:
Начальную фазу ц можно найти из векторной диаграммы:
Величина cos ц играет важную роль при вычислении мощности в электрической цепи переменного тока.
1.4 Мощность в цепи переменного тока
Мощность в цепи постоянного тока определяется произведением напряжения на силу тока:
Физический смысл этой формулы прост: так как напряжение U численно равно работе электрического поля по перемещению единичного заряда, то произведение U?I характеризует работу по перемещению заряда за единицу времени, протекающего через поперечное сечение проводника, т.е. является мощностью. Мощность электрического тока на данном участке цепи положительна, если энергия поступает к этому участку из остальной сети, и отрицательна, если энергия с этого участка возвращается в сеть. На протяжении очень малого интервала времени переменный ток можно считать неизменным.
Поэтому мгновенная мощность в цепи переменного тока определяется такой же формулой:
Пусть напряжение на концах цепи меняется по гармоническому закону:
При этом мощность меняется со временем как по модулю, так и по знаку. В течение одной части периода энергия поступает к данному участку цепи (р > 0), но в течение другой части периода некоторая доля энергии вновь возвращается в сеть (р < 0). Как правило, во всех случаях нам надо знать среднюю мощность на участке цепи за достаточно большой промежуток времени, включающий много периодов. Для этого достаточно определить среднюю мощность за один период.
Чтобы найти среднюю мощность за период, преобразуем полученную формулу таким образом, чтобы выделить в ней член, не зависящий от времени. С этой целью воспользуемся известной формулой для произведения двух косинусов:
Выражение для мгновенное мощности состоит из двух слагаемых. Первое не зависит от времени, а второе дважды за каждый период изменения напряжения изменяет знак: в течение какой-то части периода энергия поступает в цепь от источника переменного напряжения, а в течении другой части возвращается обратно. Поэтому среднее значение второго слагаемого за период равно нулю.
Следовательно, средняя мощность Р за период равна первому члену, не зависящему от времени:
При совпадении фазы колебаний силы тока и напряжения (для активного сопротивления R) среднее значение мощности равно:
Для того чтобы формула для расчета мощности переменного тока совпадала по форме с аналогичной формулой для постоянного тока (Р = IU = I2R), вводятся понятия действующих значений силы тока и напряжения. Из равенства мощностей получим:
Действующим значением силы тока называют величину, в √2 раз меньшую ее амплитудного значения:
Действующее значение силы тока равно силе такого постоянного тока, при котором средняя мощность, выделяющаяся в проводнике в цепи переменного тока, равна мощности, выделяющейся в том же проводнике в цепи постоянного тока.
Аналогично можно доказать, что действующее значение переменного напряжения в √2 раз меньше его амплитудного значения:
Заметим, что обычно электрическая аппаратура в цепях переменного тока показывает действующие значения измеряемых величин. Переходя к действующим значениям силы тока и напряжения, уравнение (10) можно переписать:
Таким образом, мощность переменного тока на участке цепи определяется именно действующими значениями силы тока и напряжения. Она зависит также от сдвига фаз цc между напряжением и током. Множитель cos цc в формуле называется коэффициентом мощности.
В случае, когда цc = ± р/2, энергия, поступающая к участку цепи за период, равна нулю, хотя в цепи и существует ток. Так будет, в частности, если цепь содержит только катушку индуктивности или только конденсатор. Как же средняя мощность может оказаться равной нулю при наличии тока в цепи? Это поясняют приведенные на рисунке 10 графики изменения со временем мгновенных значений напряжения, силы тока и мощности при цc = – р/2 (чисто индуктивное сопротивление участка цепи).
График зависимости мгновенной мощности от времени можно получить, перемножая значения силы тока и напряжения в каждый момент времени. Из этого графика видно, что в течение одной четверти периода мощность положительна и энергия поступает к данному участку цепи; но в течение следующей четверти периода мощность отрицательна, и данный участок отдает без потерь обратно в сеть полученную ранее энергию. Поступающая в течение четверти периода энергия запасается в магнитном поле тока, а затем без потерь возвращается в сеть.
Лишь при наличии проводника с активным сопротивлением в цепи, не содержащей движущихся проводников, электромагнитная энергия превращается во внутреннюю энергию проводника, который нагревается. Обратного превращения внутренней энергии в электромагнитную на участке с активным сопротивлением уже не происходит.
При проектировании цепей переменного тока нужно добиваться, чтобы cos цc не был мал. Иначе значительная часть энергии будет циркулировать по проводам от генератора к потребителям и обратно. Так как провода обладают активным сопротивлением, то при этом энергия расходуется на нагревание проводов.
Неблагоприятные условия для потребления энергии возникают при включении в сеть электродвигателей, так как их обмотка имеет малое активное сопротивление и большую индуктивность. Для увеличения cos цc в сетях питания предприятий с большим числом электродвигателей включают специальные компенсирующие конденсаторы. Нужно также следить, чтобы электродвигатели не работали вхолостую или с недогрузкой.
Это уменьшает коэффициент мощности всей цепи. Повышение cos цc является важной народнохозяйственной задачей, так как позволяет с максимальной отдачей использовать генераторы электростанций и снизить потери энергии. Это достигается правильным проектированием электрических цепей. Запрещается использовать устройства с cos цc < 0,85.
Переменный ток: основные понятия
Господа, мы обсудили основные моменты, касающиеся постоянного тока. Теперь пришло время поговорить про переменный ток. Эта тема немного сложнее постоянного тока и одновременно с этим гораздо интереснее. Сегодня мы коротенечко рассмотрим вопросы, касающиеся переменного тока: что он из себя представляет, как выглядит, чем характеризуется и все в таком духе.
Для начала, призвав на помощь нами всеми любимого капитана Очевидность, введем определение. Как он подсказывает нам, переменный ток – это такой ток, который изменяется во времени. Изменяться он может по величине, направлению или по тому и другому вместе. Когда мы рассматривали постоянный ток, мы полагали, что в течении всего времени его величина постоянна: если сейчас течет 10 Ампер, то и полчаса назад текло 10 Ампер и через час будет течь 10 Ампер. Если же величина тока меняется (сейчас 10 Ампер в одну сторону, а через некоторое время 5 Ампер в другую сторону), то мы уже имеем дело с током переменным. То есть переменный ток можно рассматривать как некоторую зависимость (функцию) тока от времени: I(t). В каждые моменты времени tмгн имеет место быть конкретное значение Iмгн=I(tмгн).
Переменный ток неразрывно связан с переменным напряжением. И если при постоянном токе они были просто связаны между собой через закон Ома, то здесь в общем случае все чуточку сложнее. Как именно сложнее – будем выяснять по ходу новых статей. Нет-нет, не переживайте, если дело касается обычных резисторов, закон Ома все так же продолжает выполняться . Для определенности мы будем в данной статье использовать термин «переменный ток», но все, что здесь сказано, применимо так же и для переменного напряжения: просто меняем I(t) на U(t) и все останется верным.
Переменный ток может быть периодическим и непериодическим. Периодический – это такой, который через некоторое время, называемое периодом, полностью повторяет свою форму. Ниже на картинках это будет наглядно видно. Непериодический соответственно колбасится как ему вздумается и мы не можем в нем выделить какой бы то ни было период по крайней мере на протяжении времени наблюдения.
На рисунка 1-4 приведены различные виды переменных сигналов. С некоторыми из них позднее мы подробно познакомимся.
Рисунок 1 – Синусоидальный ток
Рисунок 2 – Прямоугольный ток
Рисунок 3 – Треугольный ток
Рисунок 4 – Шум
На всех этих картинках по оси Х у нас время, а по оси Y – величина тока в Амперах.
На рисунке 2 изображен ток, форма которого называется синусом. Такая форма тока является одной из самых важных и мы будем его подробно рассматривать в дальнейшем. А начнем его изучать прямо в этой статье.
На рисунке 3 изображен прямоугольный ток. Он тоже весьма важен и его тоже мы будем потом подробно рассматривать.
На рисунке 4 изображен треугольный ток. И такая форма тока встречается не редко.
На рисунке 5 я изобразил ток хаотичной формы (шумовой). С ним постоянно приходится иметь дело в радиотехнике. В ближайшее время его касаться не планирую, но со временем – вполне возможно.
Это лишь часть возможных форм токов, каждый из которых можно считать переменным. Безусловно, существуют и другие формы, главное, чтобы этот ток менялся во времени.
Знакомство с переменным током мы начнем с синусоидального тока. В общем виде закон изменения этого тока можно описать вот таким вот хитрым выражением
Давайте разберемся что здесь есть что. Для этого взглянем на рисунок 5. Там наглядно все прорисовано.
Рисунок 5 – Синусоидальный ток
Аm называется амплитудой тока. Она показывает, какую максимальную величину имеет синусоидальный ток, а именно величину того «пика», которого достигает синус. Это становится возможным благодаря тому, что чистый «математический» синус без какого бы то ни было множителя Аm достигает в пике единички. Ясно, что если мы на единичку умножим наше число Аm то получим в пике как раз это самое число Аm. Очевидно, что чем больше Аm, тем большего значения достигает ток.
Величины ω на рисунке 5 нет. Зато на рисунке 5 есть величина f и T. Что же это такое?
Т – это период тока. Это время в секундах, за которое сигнал совершает полный цикл своих изменений. Взглянете на рисунок 5. В точке А ток пересекает ось времени, начинает расти, идет вверх до точки B, где прекращает расти и начинает убывать, снова пересекает ось времени в точке С, идет в отрицательную полуплоскость до точки D, там перестает расти и начинает убывать и становится равным нулю в точке E. Видно, что начиная с точки Е характер изменения тока будет точно таким же, как если бы он начинался с точки А. Посему время, за которое ток изменяется от точки А до точки Е и есть период Т.
Частота f – величина, обратная периоду:
Она показывает сколько периодов (по рисунку 5 – изменений от точки А до точки Е) умещается в одной секунде времени. Соответсвенно чем больше частота, тем меньше пириод и наоборот.
Изменяется частота в герцах. Если частота 1 Гц – это значит, что время изменения тока от точки А до точки Е равно 1 секунда. Если частота, например, 50 Гц (как в наших с вами розетках), это значит, что за 1 секунду успевает произойти 50 полных циклов изменения тока от точки А до точки Е. Если частота 2,4 ГГц (как в некоторых процессорах, и, кроме того, на такой частоте работает всеми нами любимый Wi-Fi), это значит, что за 1 секунду сигнал претерпевает аж 2,4 миллиарда итераций от точки А до точки Е!
С периодом Т (и, соответственно, с частотой f) плотно связана другая величина – как раз та самая ω, которая стоит в нашей формуле под синусом. Называется она круговая частота и связана она следующим образом
Ох ты ж блин. Чем дальше – тем хуже. Какие-то π откуда-то повылазили. Откуда они тут вообще и что забыли?! Давайте разберемся.
Господа, надеюсь, вы помните из курса математики, что синус – сама по себе функция периодическая и период синуса как раз равен 2·π радиан. Ну или 360°, что тоже самое, однако я предпочитаю обычно вести расчет в радианах. То есть для простого классического математического синуса расстояние от точки А до точки Е равно 2·π=6,28 радиан. Как же теперь увязать эти радианы со временем и с нашим периодом? Ведь в нашем графике тока у нас по оси Х именно время, а не радианы. Очень просто. Полагаем, что 2·π радианам соответствует наш период Т. Для того же, чтобы посчитать скольки радианам соответствует произвольное время t1 надо выполнить следующее преобразование: . Знаю, звучит запутанно, поэтому давайте разберем на примере. Давайте запишем зависимость тока от времени для периода Т=4 секунды. Как будет выглядеть преобразованная формула синуса для этого случая? Как-то так
Изображаем это на рисунке 6.
Рисунок 6 – Синусоидальный ток с периодом 4 секунды
Видите, все честно, на графике наглядно видно, что период синуса равен, как мы и хотели, четырем секундам.
Итак, с амплитудой разобрались, с круговой частотой вроде тоже. Осталось последнее – φ0 – начальная фаза. Что же это такое? Все просто, господа. Фаза здесь – это просто сдвиг графика тока по временной оси. То есть график тока будет стартовать не с нуля, а с какого-то другого значения. Действительно, если мы в нашу формулу для зависимости тока от времени подставим время, равное нулю, то получим
Из этого выражения очевидно еще и то, что фаза измеряется в градусах или радианах: только градусы или радианы имеют право стоять под синусом.
Давайте возьмем наш график тока с периодом Т=4 секунды и положим, что начальная фаза равна 30° или, что тоже самое, 0,52 радина. Имеем
Построим график для данного случая на рисунке 7.
Рисунок 7 – Синусоидальный ток с периодом 4 секунды и начальной фазой 30°
Внимательный читатель, посмотрев попристальнее на график, изображенный на рисунке 7, скажет: так фаза вообще какая-то скользкая штука. Она ж зависит от того, где мы поставим нолик, то есть когда начнем наблюдать сигнал. И вообще может быть чуть ли не любой. Господа, замечание абсолютно верно! Сама по себе как таковая фаза достаточно редко когда интересна. Гораздо интереснее разность фаз между несколькими сигналами. Взгляните на рисунок 9. На нем изображены два графика: один зеленый имеет начальную фазу в φ0_зелен=90°, а второй синий – φ0_син=90°. Разность фаз между ними
Рисунок 8 – Два сигнала, сдвинутые по фазе
И заметьте, господа, эта разность фаз одна и таже всегда для любой точки этих графиков. Без привязки к нулю и к началу. Вот это уже гораздо интереснее и может много где пригодиться.
Вообще фаза такая штука, что как-то традиционно на нее обращается не очень много внимания, между тем, как на самом деле это очень важная величина. Фазовая модуляция, трехфазные цепи, фазированные антенные решетки, фазовые системы автоподстройки частоты, когерентная обработка сигналов – вот лишь малая область систем, где фаза сигнала является одним из главнейших факторов. Поэтому, господа, постарайтесь с ней подружиться .
На сегоня заканчиваем, господа. Сегодня была вводная статья в мир переменного тока. Дальше будем разбираться в нем более подробно. Всем вам большой удачи, и пока!
Вступайте в нашу группу Вконтакте
Вопросы и предложения админу: This email address is being protected from spambots. You need JavaScript enabled to view it.
Какой ток в розетке — переменный или постоянный, и зачем это нужно знать: сколько ампер, какая его частота и как узнать самостоятельно
Человек, хоть частично знакомый с электричеством, знает какой ток протекает в розетке – переменный или постоянный. Но большинство граждан, которые пользуются благами электричества ежедневно, не задумываются об этом, и зря. Ответ на вопрос прост, ведь практически вся производимая электроэнергия относится к переменному току.
Какой ток в розетках постоянный или переменный?
98% вырабатываемой энергии – это переменный ток, и домашняя проводка не исключение. Переменный ток – это тот, который периодически изменяет величину и направление. Частота измеряется в Герцах (период изменения в секунду). Переменный ток производить намного легче чем постоянный, также не вызывает сложностей передача на большие расстояния. При передачи электроэнергии величина напряжения может как увеличиваться, так и уменьшаться неоднократно, поэтому розетки делаются для переменного значения. Но также существуют электронные приборы, которые питаются постоянным током, и их нужно приводить к одному типу.
Преимущества:
- легко передавать на большие расстояния;
- простое генераторное оборудование, упрощение устройства электродвигателей;
- отсутствие полярности.
Недостатки:
- расчеты проводятся на максимальное значение, по факту используется не более 70%;
- электромагнитная индукция, приводящая к неравномерному распределению электричества по сечению проводника;
- сложность проверки и измерения параметров;
- увеличивается сопротивление, так как используется не весь кабель.
Для чего нужно знать сколько ампер в розетках в квартире
Сила тока измеряется в Амперах (А). Знать этот показатель необходимо, так как розетки различаются по нему.
Стандартные современные розетки рассчитаны на 6, 10 и 16 А. У советских приборов максимальный номинал равен 6,3 А. Для потребителей с повышенной мощностью выбирают соответствующие розетки, у которых повышенная стойкость к большим значениям.
Знание основ электротехники пригодится при поездке в другую страну. У государств могут различаться стандарты частоты и напряжений, и невозможно будет подключить привезенные с собой приборы к местной сети. Каждая розетка имеет маркировку, на которой указана максимальная сила тока.
Если у прибора указана только мощность в паспорте, вычислить ток можно по простой формуле I=P/U, где U –напряжение сети в Вольтах (220 В для домашних розеток), P – мощность прибора, измеряемая в Ваттах и I – сила тока в Амперах.
Сила тока в розетке
Стандартами частоты в России и европейских странах является 50 Гц, в Америке – 60 Гц. Сила тока в квартирах ограничивается 16 Амперами, в частных загородных домах это значение может достигать 25 А.
Токовые измерения проводят различными способами. Можно опытным путем – подключить прибор в розетку, и если он функционирует – электроэнергия есть. Существуют мультиметры, которые замеряют значения, контрольные лампы, тестеры и индикаторы напряжения.
220 В
Номинальным напряжением в домашней сети является 220В, но на практике это значение может варьироваться. Отклонения до 20-25 Вольт.
На этот показатель влияют:
- техническое состояние,
- нагрузки сети,
- загруженность электростанций.
Скачки напряжения выводят приборы из строя, поэтому подключение к сети лучше производить через специальные стабилизаторы.
Более 220 В
Для силовой электрической техники используются трехфазные сети, которые питаются напряжением 380 Вольт и выше. Чаще всего их можно встретить в электротранспорте – трамваях, троллейбусах, электричках. Для такого напряжения токовая нагрузка составляет до 32 А.
Сколько ампер в розетке 220В
Домашние розетки делаются на разную силу тока, которую она способна пропустить. Наибольшее значение – 16 А для напряжения в 220 Вольт. Каждая электророзетка промаркирована – если отмечено значение 6 А, то суммарная подключаемая нагрузка не более этого числа.
Нагрузка которую может выдержать соединение определяется по сумме подключенных электроприборов. Например микроволновая печь, стиральная машина подключаются через отдельные розетки не менее чем на 16 А, а для осветительных приборов, телефонов требуются устройства с меньшим номиналом.
Электроплита подключается через отдельное УЗО, так как для нее требуется 25 А и более.
Живя в ХХІ веке, используя блага научных открытий, человеку обязательно знать тип и величину тока, протекающего в домашней сети. Без этой информации невозможно купить электророзетку, правильно рассчитать нагрузку для электроприборов. Стандарты различаются для разных стран, и это стоит учитывать при поездке в другое государство.
Полезное видео
Постоянный и переменный токи
Мы завершаем изучение темы «Постоянный электрический ток». Тем не менее, в этом параграфе мы рассмотрим и переменный ток. С чем это связано? Причина в самих терминах «постоянный ток» и «переменный ток», названия которых не вполне удачны, поскольку могут трактоваться по-разному в физике и электротехнике: так сложилось исторически. Обратимся к определениям.
В физике постоянным током называют электрический ток, не изменяющийся по силе и направлению с течением времени. Графиком такого «истинно постоянного» тока должна быть прямая, параллельная оси времени (см. рис. «а»). Тем не менее, в электротехнике постоянным током считают ток, который постоянен только по направлению, но может меняться по силе. Такой ток можно получить «выпрямлением» синусоидального переменного тока, например, того, который существует в домашней осветительной сети (см. рис. «б»). В результате получается пульсирующий однонаправленный ток (см. рис. «в»).
В физике переменным током называют электрический ток, изменяющийся с течением времени: по силе и/или направлению. С точки зрения физики, «пульсирующий» ток на рисунке «в» является переменным, поскольку меняется по силе (оставаясь постоянным по направлению). Такой однонаправленный ток в электротехнике считают «постоянным», так как по своим действиям он похож на настоящий постоянный ток. Например, он будет пригоден для зарядки аккумуляторов, работы электродвигателей, проведения электролиза. Переменный по направлению ток для этих целей непригоден.
Примечание. Почему ток в электрических сетях является именно синусоидальным и меняет своё направление 100 раз в секунду, мы расскажем позднее (см. § 10-ж). А пока рассмотрим, как из него можно получить однонаправленный пульсирующий ток – «постоянный» с точки зрения электротехники. Другими словами, как «перебросить» нижние части синусоиды вверх, то есть преобразовать форму тока без потери мощности этого тока? Для этого служат различные приборы, один из которых – полупроводниковый диод, пропускающий через себя ток лишь в одном направлении (см. § 09-и).
Ниже на левой схеме показано включение двух диодов в цепь переменного тока. При этом верхние части синусоиды проходят через верхний диод (по направлению его «стрелочки»), а нижние части синусоиды не проходят через нижний диод (против его «стрелочки»). Таким образом получается пульсирующий однонаправленный ток, и ровно половина исходной мощности не попадает к потребителю, так как образуются «равнины» с нулевым значением силы тока. Для особо интересующихся физикой заметим, что точно такой же результат будет, если оставить только один диод, причём, любой.
На правой схеме показано включение четырёх диодов по так называемой мостовой схеме. Она более выигрышна по сравнению с предыдущей: диоды попарно пропускают как верхние, так и нижние части синусоиды соответственно к клеммам «+» и «–». В результате из исходного переменного тока, на графике кторого можно условно выделить «холмы и овраги», на графике получающегося однонаправленного тока образуются «не холмы и равнины», а «удвоенные холмы». Это означает, что теперь к потребителю попадает вся мощность исходного тока.
И в заключение рассмотрим, как к непостоянному току можно применить закон Джоуля-Ленца Q=I²Rt, описывающий тепловое действие тока. Как быть, если сила тока постоянно меняется? Нужно её заменить на условно-постоянную силу тока, которая производит такое же тепловое действие. Такое условно-постоянное значение силы тока в физике называют эквивалентным (эффективным, действующим) значением силы непостоянного тока.
Определение: эквивалентное значение непостоянного тока равно значению такого постоянного тока, который, проходя через то же сопротивление, выделяет в нём то же количество теплоты за то же время. Именно эквивалентное значение тока показывают нам все амперметры. Аналогично и по отношению к напряжению и вольтметрам. Итак, определить эквивалентные значения непостоянных токов позволяют калориметрические измерения (см. § 06-в).
§47. Основные параметры переменного тока
При подключении к источнику переменного тока с синусоидально изменяющейся э. д. с. электрических цепей с линейными сопротивлениями в них будут действовать синусоидально изменяющиеся напряжения и проходить синусоидально изменяющиеся токи. Переменные токи, э. д. с. и напряжения характеризуются четырьмя основными параметрами: периодом, частотой, амплитудой и действующим значением.
Период.
Промежуток времени Т, в течение которого э. д. с, напряжение и или ток i (рис. 169, а) совершают полный цикл изменений, называется периодом. Чем быстрее вращается виток или ротор генератора переменного тока, тем меньше период изменения э. д. с. или тока.
Частота.
Число полных периодов изменения э. д. с, напряжения или тока в 1 с называется частотой,
f = 1 / T
Она измеряется в герцах (Гц), т. е. числом периодов в секунду. Чем больше частота, тем меньше период изменения тока, напряжения или э. д. с. (рис. 169,б). В Советском Союзе все электрические станции переменного тока вырабатывают ток, изменяющийся с частотой 50 Гц, т. е. 50 периодов в секунду. В автоматике и радиотехнике применяют электрические токи и более высоких частот. Такие частоты измеряются в килогерцах (1 кГц=103 Гц) и мегагерцах (1 МГц=106 Гц).
Рис. 169. Кривые изменения синусоидального переменного тока при различной частоте
Из рис. 169,а следует, что в течение времени одного периода Т фаза ωt тока (э. д. с. или напряжения) изменяется на угол 360°, или 2π радиан. Поэтому
ω = 2π/T = 2πf
Эту величину называют угловой частотой переменного тока, она имеет размерность рад/с.
Амплитуда.
Наибольшее значение переменного тока (переменных э. д. с. и напряжения) называют амплитудным значением, или амплитудой. В рассмотренном нами простейшем генераторе переменного тока (см. рис. 168, а) э. д. с. е дважды достигает амплитудного значения: во время первого полуоборота +Ет (направлена от начала витка к его концу), а во время второго полуоборота — Ет (направлена от конца витка к его началу).
Точно так же за один период ток i 2 раза достигает амплитудного значения: Iт и — Iт. Амплитудное значение тока, напряжения и э. д. с. в формулах обозначают соответствующими буквами с индексами «т», т. е. Iт Uт, Ет и др.
Действующее значение.
Ток, напряжение и э. д. с, действующие в электрической цепи в каждый отдельный момент времени, определяются так называемыми мгновенными значениями. Эти значения принято обозначать строчными буквами i, и, е. Однако судить о переменных э. д. с, токе или напряжении по их мгновенным значениям неудобно, так как эти значения непрерывно меняются.
Поэтому оценивать способность переменного тока совершать механическую работу или создавать тепло принято по действующему его значению. Под действующим значением переменного тока понимают силу такого постоянного тока (прямая 2 на рис. 169,а), который, проходя по проводнику в течение некоторого времени (например, в течение одного периода или 1 с), выделит в нем такое же количество тепла (произведет такую же механическую работу), как и данный переменный ток (кривая 1).
Действующие значения тока, напряжения и э. д. с. обозначают соответственно I, U, Е.
При синусоидальном переменном токе:
I = Iт / √2 = 0,707 Iт
Если известно действующее значение тока I, то его амплитудное значение:
Iт = √2 I = 1,41 I
Аналогично для синусоидальных напряжений и э. д. с.:
U / Uт = Е1 / Ет = 1 / √2 = 0,707
На практике для характеристики параметров переменного тока используют, главным образом, действующие значения тока, напряжения и э. д. с. Например, когда говорят, что напряжение в осветительной сети переменного тока составляет 220 В или что по цепи проходит ток 100 А, то это значит, что в данной сети действующее значение напряжения равно 220 В или что действующее значение тока, проходящего по данной цепи, равно 100 А.
Электрическая энергия и механическая работа, создаваемые переменным током в различных электрических устройствах, пропорциональны действующим значениям тока и напряжения. Большая часть существующих приборов для измерения переменного тока измеряет действующие значения тока, напряжения и э. д. с.
Однофазный переменный ток и его параметры — Студопедия. Нет
Переменный ток долгое время не находил практического применения. Это было связано с тем, что первые генераторы электрической энергии вырабатывали постоянный ток, который вполне удовлетворял технологическим процессам электрохимии, а двигатели постоянного тока обладают хорошими регулировочными характеристиками. Однако по мере развития производства постоянный ток все менее стал удовлетворять возрастающим требованиям экономичного электроснабжения. Переменный ток дал возможность эффективного дробления электрической энергии и изменения величины напряжения с помощью трансформаторов. Появилась возможность производства электроэнергии на крупных электростанциях с последующим экономичным ее распределением потребителям, увеличился радиус электроснабжения.
В настоящее время центральное производство и распределение электрической энергии осуществляется в основном на переменном токе. Цепи с изменяющимися – переменными – токами по сравнению с цепями постоянного тока имеют ряд особенностей. Переменные токи и напряжения вызывают переменные электрические и магнитные поля. В результате изменения этих полей в цепях возникают явления самоиндукции и взаимной индукции, которые оказывают самое существенное влияние на процессы, протекающие в цепях, усложняя их анализ.
Переменным током (напряжением, ЭДС и т.д.)называется ток (напряжение, ЭДС и т.д.), изменяющийся во времени. Токи, значения которых повторяются через равные промежутки времени в одной и той же последовательности, называются периодическими,а наименьший промежуток времени, через который эти повторения наблюдаются, — периодом Т.
Основные параметры цепей однофазного переменного тока.
Однофазный переменный ток промышленной частоты имеет 50 периодов колебаний в секунду, или 50 Гц. Его применяют для питания небольших вентиляторов, электробытовых приборов, электроинструмента, при электросварке и для питания большинства осветительных приборов. Частота переменного тока, Гц:
f= 1/T = np/60,
где п — частота вращения генератора, минˉ1; р — число пар полюсов генератора.
Мощность однофазного переменного тока:
активная, Вт, Ра = IUcosφ;
реактивная, вар, Q = IUsinφ;
кажущаяся, В А, S = IU =
Если в цепь переменного однофазного тока включено только активное сопротивление (например, нагревательные элементы или электрические лампы), то значение силы тока и мощности в каждый момент времени определяют по закону Ома:
I=U/R; Рa = IU = I²R=U²/R.
Коэффициент мощности в цепи с индуктивной нагрузкой
Cosφ= Рa/IU= Рa/S.
28. Основные понятия и величины, характеризующие электрические цепи
а) Понятия:
Электрической цепьюназывается совокупность устройств, предназначаемых для прохождения электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятий напряжения и тока. В общем случае электрическая цепь состоит из источников и приемников электрической энергии и промежуточных звеньев (проводов, аппаратов), связывающих источники с приемниками.
Источниками электрической энергииявляются устройства (гальванические элементы, аккумуляторы, термоэлементы, генераторы), в которых происходит процесс преобразования химической, молекулярно-кинетической, тепловой, механической или другого вида энергии в электрическую.
Приемниками электрической энергии (нагрузкой),служат устройства (электрические лампы, электронагревательные приборы, электрические двигатели, резисторы, конденсаторы, индуктивные катушки), в которых электрическая энергия превращается в световую, тепловую, механическую и др.
б) Величины:
Электрический ток и напряжение являются основными величинами, характеризующими состояние электрических цепей.
Электрический токв проводниках представляет явление упорядоченного движения электрических зарядов. Под термином «ток» понимают также интенсивность или силу тока, измеряемую количеством электрического зарядаq, прошедшего через, поперечное сечение проводника в единицу времени:
Следовательно, ток представляет собой скорость изменения заряда во времени.В СИ заряд выражается в кулонах (Кл), время—в секундах (с), ток — в амперах (А).
Ток как отношение двух скалярных величин является скалярной алгебраической величиной, знак которой зависит от направления движения зарядов одного знака, а именно условно принятого положительного заряда. Для однозначного определения знака тока за положительное направление достаточно произвольно выбрать одно из двух возможных направлений, которое отмечают стрелкой.
Если движение положительного заряда происходит в направлении стрелки, а движение отрицательного заряда—навстречу ей, то ток положителен. При изменении направления движения зарядов на противоположный ток будет отрицательным.
Задать однозначно ток в виде некоторой функции времени можно только после указания выбранного положительного направления тока. Поэтому перед началом анализа на всех участках цепи необходимо отметить положительные направления токов, выбор которых может быть произвольным.
Прохождение электрического тока или перенос зарядов в цепи связаны с преобразованием или потреблением энергии. Для определения энергии, затрачиваемой на перемещение заряда между двумя рассматриваемыми точками проводника, вводят новую величину—напряжение.
Напряжением называют количество энергии, затрачиваемой на перемещение единицы заряда из одной точки в другую: , гдеw—энергия.
При измерении энергии в джоулях (Дж) и заряда в кулонах (Кл) напряжение выражают в вольтах (В).
Напряжение как отношение двух скалярных величин также является скалярной алгебраической величиной. Для однозначного определения знака напряжения между двумя выводами рассматриваемого участка цепи одному из выводов условно приписывают положительную полярность, которую отмечают либо стрелкой, направленной от вывода, либо знаками « + »,«—
Н апряжение положительно, если его полярность совпадает с выбранной; это означает, что потенциал вывода со знаком « + », из которого выходит стрелка, выше потенциала второго вывода.
Перед началом анализа должны быть указаны выбранные положительные полярности напряжений — только при этом условии возможно однозначное определение напряжений.
Хотя условно положительную полярность напряжения можно выбирать произвольно, обычно удобно выбирать ее согласованной с выбранным положительным направлением тока, когда стрелки для тока и напряжения совпадают или знак « + » полярности напряжения находится в хвосте стрелки, обозначающей положительное направление тока. При согласованном выборе полярности, очевидно, достаточно ограничиться указанием только одной стрелки положительного направления тока.
Если возникает необходимость выбора положительной полярности напряжения, не согласованной с положительным направлением тока, то приходится указывать две встречно направленные стрелки: для тока и для напряжения. Это не очень удобно. Поэтому для обозначения условно положительной полярности будем применять знаки «+.», « —» у выводов участка цепи.
Мощностьв электрической цепи, равная произведению напряжения на ток, также является алгебраической величиной. Знак ее определяется знаками напряжения и тока: при совпадении этих знаков мощность положительна, что соответствует потреблению энергии в рассматриваемом участке цепи; при несовпадении знаков напряжения и тока мощность отрицательна, что означает отдачу ее из участка цепи (такой участок является источником энергии).
29. Классификация электрических цепей и их элементов. Виды схем, используемых в электротехнике
Переменный ток — Energy Education
Переменный ток (AC) — это тип электрического тока, вырабатываемого подавляющим большинством электростанций и используемого в большинстве систем распределения электроэнергии. Переменный ток дешевле генерировать и имеет меньше потерь энергии, чем постоянный ток при передаче электроэнергии на большие расстояния. [1] Хотя для очень больших расстояний (более 1000 км) постоянный ток часто может быть лучше. В отличие от постоянного тока направление и сила переменного тока меняются много раз в секунду.
Недвижимость
Рис. 1. Анимация из симуляции PhET [2] переменного тока, которая значительно замедлилась. См. Для сравнения постоянный ток.Переменный ток изменяет направление потока заряда (60 раз в секунду в Северной Америке (60 Гц) и 50 раз в секунду в Европе (50 Гц)). Обычно это вызвано синусоидально изменяющимися током и напряжением, которые меняют направление, создавая периодическое движение назад и вперед для тока (см. Рисунок 1).Несмотря на то, что этот ток течет вперед и назад много раз в секунду, энергия по-прежнему непрерывно течет от электростанции к электронным устройствам.
Основным преимуществом переменного тока является то, что его напряжение можно относительно легко изменить с помощью трансформатора, который позволяет передавать мощность при очень высоких напряжениях, прежде чем понижать их до более безопасных напряжений для коммерческого и жилого использования. [3] Это минимизирует потери энергии, как показано ниже [4] (более подробную информацию см. {2} R [/ math]
Мощность, передаваемая по линии, однако, имеет другое выражение:
- [математика] P_ {передано} = IV [/ математика]
Как видно из первого уравнения, потери мощности при передаче пропорциональны квадрату тока через провод.Следовательно, предпочтительно минимизировать ток через провод, чтобы уменьшить потери энергии. Конечно, минимизация сопротивления также снизит потери энергии, но ток оказывает гораздо большее влияние на количество потерянной энергии из-за того, что его значение возводится в квадрат. Второе уравнение показывает, что если напряжение увеличивается, ток уменьшается эквивалентно для передачи той же мощности. Следовательно, напряжение в линиях передачи очень высокое, что снижает ток, что, в свою очередь, сводит к минимуму потери энергии при передаче.Вот почему переменный ток предпочтительнее постоянного тока для передачи электричества, так как намного дешевле изменить напряжение переменного тока. Однако существует предел, при котором более нецелесообразно использовать переменный ток по сравнению с постоянным током (см. Передача HVDC).
Использование и преимущества
Большинство устройств (например, большие заводские динамо-машины), которые напрямую подключены к электросети, работают на переменном токе, а электрические розетки в домах и коммерческих помещениях также подают переменный ток.Устройства, которым требуется постоянный ток, например ноутбуки, обычно имеют адаптер переменного тока, который преобразует переменный ток в постоянный. [5]
Переменный ток является предпочтительным во всем мире, поскольку он имеет много явных преимуществ по сравнению с постоянным током. Для полной разбивки различий между ними см. AC vs DC. Некоторые преимущества включают: [6]
- Дешевое и эффективное повышение напряжения с помощью трансформаторов. Как объяснялось выше, это позволяет осуществлять энергоэффективную передачу электроэнергии по линиям электропередач.Эта эффективная передача энергии экономит энергетическим компаниям и потребителям много денег и помогает уменьшить загрязнение, поскольку электростанциям не нужно компенсировать потерю электроэнергии за счет использования большего количества топлива.
- Низкие затраты на обслуживание высокоскоростных двигателей переменного тока.
- Легко прервать ток (например, с помощью автоматического выключателя), поскольку ток естественным образом стремится к нулю каждые 1/2 цикла. Например, автоматический выключатель может прерывать примерно 1/20 постоянного тока, а не переменного тока.
Phet Simulation
Университет Колорадо любезно разрешил нам использовать следующую симуляцию Фета, которая исследует, как работает переменный ток.
Для дальнейшего чтения
Для получения дополнительной информации см. Соответствующие страницы ниже:
Список литературы
вопросов с несколькими вариантами ответов о переменном токе и постоянном токе
0 из 20 завершенных вопросов
Вопросы:
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
Информация
Переменный ток и постоянный ток MCQ
Вы уже прошли тест раньше.Следовательно, вы не можете запустить его снова.
Вы должны войти в систему или зарегистрироваться, чтобы начать викторину.
Вы должны пройти следующую викторину, чтобы начать эту викторину:
0 из 20 вопросов ответил правильно
Ваше время:
Истекло время
Вы набрали 0 из 0 баллов, (0)
Средний балл | |
Ваша оценка |
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
Переменный ток для детей
Огни города просматриваются в размытой экспозиции движения.При мигании переменного тока линии становятся точечными, а не непрерывными.Переменный ток ( AC ) — это электрический ток, величина и направление которого меняются, в отличие от постоянного тока, направление которого остается постоянным. Это означает, что направление тока, протекающего в цепи, постоянно меняется взад и вперед. Это делается с любым источником переменного напряжения.
Обычная форма сигнала в силовой цепи переменного тока представляет собой синусоидальную волну, поскольку это приводит к наиболее эффективной передаче энергии.Однако в некоторых приложениях используются разные формы сигналов, например треугольные или прямоугольные. Недорогие силовые инверторы выдают прямоугольную волну с паузой между сменой направления.
Когда говорят об переменном токе, в основном подразумевают форму, в которой электричество доставляется на предприятия и жилые дома. AC приходит от электростанции. Направление электричества меняется 60 раз в секунду (или 50 раз в некоторых частях мира). Это происходит так быстро, что лампочка не перестает светиться.
Но аудио и радиосигналы, передаваемые по электрическому проводу, также являются примерами переменного тока. В этих приложениях важной целью часто является восстановление информации, закодированной (или модулированной) в сигнале переменного тока.
История
Никола Тесла экспериментировал с электрическим резонансом и изучал различные системы освещения. Он изобрел асинхронный двигатель, новые типы генераторов и трансформаторов, а также систему передачи энергии переменного тока.
Уильям Стэнли мл.разработал одно из первых практических устройств для эффективной передачи мощности переменного тока между изолированными цепями. Используя пары катушек, намотанных на общий железный сердечник, его конструкция, названная индукционной катушкой, была ранним предшественником современного трансформатора. Система, используемая сегодня, была разработана в конце девятнадцатого века, в основном Николя Тесла. Взносы также сделали Джордж Вестингауз, Люсьен Голар, Джон Диксон Гиббс, Вильгельм Сименс и Оливер Шалленджер. Системы переменного тока преодолели ограничения системы постоянного тока, которую использовал Томас Эдисон для эффективного распределения электроэнергии на большие расстояния.
Гидроэлектростанция Милл-Крик была построена недалеко от Редлендса, Калифорния, в 1893 году. Спроектированная Алмирианом Декером, она использовала трехфазную электроэнергию напряжением 10 000 вольт, которая в конечном итоге стала стандартным методом для электростанций во всем мире.
Как это работает
Электропитаниепеременного тока дешевле и проще в изготовлении электронных устройств. Выключатели питания переменного тока также дешевле в производстве. Это дешевле, чем постоянный ток, потому что вы можете очень легко увеличивать и уменьшать ток.Переменный ток может использовать высокое напряжение с меньшим током, чтобы уменьшить потери при подаче энергии. AC снижает нагрев проводов. Электроэнергия постоянного тока может быть отправлена, но при этом будет потеряно много энергии, и вам придется приложить больше усилий, чтобы отправить ее на большие расстояния. Поэтому трансформаторные подстанции у нас не везде. Переменный ток работает, постоянно переключая ток вперед и назад, пока он возвращается к источнику, из которого он пришел.
- Уильям А. Мейерс, История и размышления о том, как все было: Электростанция Милл-Крик — Создание истории с AC , IEEE Power Engineering Review, февраль 1997 г., стр. 22–24
Связанные страницы
- « AC / DC: в чем разница? «.Чудо света Эдисона, американский опыт. (PBS)
- « AC / DC: внутри генератора переменного тока «. Чудо света Эдисона, американский опыт. (PBS)
- Купхальдт, Тони Р., « уроков по электрическим цепям: Том II — AC «. 8 марта 2003 г. (Лицензия на научный дизайн)
- Нейв, К. Р., « Концепции цепей переменного тока «. Гиперфизика.
- « Переменный ток (AC) «. Магнитопорошковый контроль, Энциклопедия неразрушающего контроля.
- « Переменный ток «. Аналоговые службы управления процессами.
- Хиоб, Эрик, « Применение тригонометрии и векторов к переменному току ». Технологический институт Британской Колумбии, 2004 г.
- « Введение в переменный ток и трансформаторы ». Комплексное издательское дело.
- « Справочное руководство по энергии ветра, часть 4: Электричество «. Датская ассоциация ветроэнергетики, 2003 г.
- Chan. Килин, « Инструменты переменного тока «.JC Physics, 2002. .
- « Измерение -> ac «. Аналоговые службы управления процессами.
- Уильямс, Trip «Kingpin», « Общие сведения о переменном токе, еще несколько концепций мощности «.
- « Таблица напряжений, частот, системы телевещания, радиовещания по странам «.
- Блэлок, Томас Дж., « Эра частотных преобразователей: соединяющие системы переменных циклов «. История различных частот и схем взаимного преобразования в США в начале 20 века
Картинки для детей
Схематическое изображение передачи электроэнергии на большие расстояния.Слева направо: G = генератор, U = повышающий трансформатор, V = напряжение в начале линии передачи, Pt = мощность, поступающая в линию передачи, I = ток в проводах, R = общее сопротивление в проводах, Pw = мощность, потерянная в линии передачи, Pe = мощность, достигающая конца линии передачи, D = понижающий трансформатор, C = потребители.
Трехфазные линии передачи высокого напряжения используют переменные токи для распределения энергии на большие расстояния между электростанциями и потребителями.Линии на картинке расположены в восточной части штата Юта.
Венгерская команда «ZBD» (Кароли Зиперновски, Отто Блати, Микса Дери), изобретатели первого высокоэффективного шунтирующего трансформатора с замкнутым сердечником