Резонанс напряжений и резонанс токов
В физике резонансом называется явление, при котором в колебательном контуре частота свободных колебаний совпадает с частотой вынужденных колебаний. В электричестве аналогом колебательного контура служит цепь, состоящая из сопротивления, ёмкости и индуктивности. В зависимости от того как они соединены различают резонанс напряжений и резонанс токов.
Резонанс напряжений
Резонанс напряжений возникает в последовательной RLC-цепи.
Условием возникновения резонанса является равенство частоты источника питания резонансной частоте w=wр, а следовательно и индуктивного и емкостного сопротивлений xL=xC. Так как они противоположны по знаку, то в результате реактивное сопротивление будет равно нулю. Напряжения на катушке UL и на конденсаторе UC будет противоположны по фазе и компенсировать друг друга. Полное сопротивление цепи при этом будет равно активному сопротивлению R, что в свою очередь вызывает увеличение тока в цепи, а следовательно и напряжение на элементах.
При резонансе напряжения UC и UL могут быть намного больше, чем напряжение источника, что опасно для цепи.
С увеличением частоты сопротивление катушки увеличивается, а конденсатора уменьшается. В момент времени, когда частота источника будет равна резонансной, они будут равны, а полное сопротивление цепи Z будет наименьшим. Следовательно, ток в цепи будет максимальным.
Из условия равенства индуктивного и емкостного сопротивлений найдем резонансную частоту
Исходя из записанного уравнения, можно сделать вывод, что резонанса в колебательном контуре можно добиться изменением частоты тока источника (частота вынужденных колебаний) или изменением параметров катушки L и конденсатора C.
Следует знать, что в последовательной RLC-цепи, обмен энергией между катушкой и конденсатором осуществляется через источник питания.
Резонанс токов
Резонанс токов возникает в цепи с параллельно соединёнными катушкой резистором и конденсатором.
Условием возникновения резонанса токов является равенство частоты источника резонансной частоте w=wр, следовательно проводимости BL=BC. То есть при резонансе токов, ёмкостная и индуктивная проводимости равны.
Для наглядности графика, на время отвлечёмся от проводимости и перейдём к сопротивлению. При увеличении частоты полное сопротивление цепи растёт, а ток уменьшается. В момент, когда частота равна резонансной, сопротивление Z максимально, следовательно, ток в цепи принимает наименьшее значение и равен активной составляющей.
Выразим резонансную частоту
Как видно из выражения, резонансная частота определяется, как и в случае с резонансом напряжений.
Явление резонанса может носить как положительный, так и отрицательный характер. Например, любой радиоприемник имеет в своей основе колебательный контур, который с помощью изменения индуктивности или емкости настраивают на нужную радиоволну. С другой стороны, явление резонанса может привести к скачкам напряжения или тока в цепи, что в свою очередь приводит к аварии.
electroandi.ru
Резонанс токов и напряжений: условия возникновения и применение
Явление резонанса токов и напряжений наблюдается в цепях индуктивно-емкостного характера. Это явление нашло применение в радиоэлектронике, став основным способов настройки приемника на определенную волну. К сожалению, резонанс может нанести вред электрооборудованию и кабельным линиям. В физике резонансом является совпадение частот нескольких систем. Давайте рассмотрим, что такое резонанс напряжений и токов, какое значение он имеет и где используется в электротехнике.
Реактивные сопротивления индуктивности и емкости
Индуктивностью называется способность тела накапливать энергию в магнитном поле. Для нее характерно отставание тока от напряжения по фазе. Характерные индуктивные элементы — дросселя, катушки, трансформаторы, электродвигатели.
Емкостью называются элементы, которые накапливают энергию с помощью электрического поля. Для емкостных элементов характерно отставание по фазе напряжения от тока. Емкостные элементы: конденсаторы, варикапы.
Приведены их основные свойства, нюансы в пределах этой статьи во внимание не берутся.
Кроме перечисленных элементов другие также имеют определенную индуктивность и емкость, например в электрических кабелях распределенные по его длине.
Емкость и индуктивность в цепи переменного тока
Если в цепях постоянного тока емкость в общем смысле представляет собой разорванный участок цепи, а индуктивность — проводник, то в переменном конденсаторы и катушки представляют собой реактивный аналог резистора.
Реактивное сопротивление катушки индуктивности определяется по формуле:
Векторная диаграмма:
Реактивное сопротивление конденсатора:
Здесь w — угловая частота, f — частота в цепи синусоидального тока, L — индуктивность, C — емкость.
Векторная диаграмма:
Стоит отметить, что при расчете соединенных последовательно реактивных элементов используют формулу:
Обратите внимание, что емкостная составляющая принимается со знаком минус. Если в цепи присутствует еще и активная составляющая (резистор), то складывают по формуле теоремы Пифагора (исходя из векторной диаграммы):
От чего зависит реактивное сопротивление? Реактивные характеристики зависят от величины емкости или индуктивности, а также от частоты переменного тока.
Если посмотреть на формулу реактивной составляющей, то можно заметить, что при определенных значениях емкостной или индуктивной составляющей их разность будет равна нулю, тогда в цепи останется только активное сопротивление. Но это не все особенности такой ситуации.
Резонанс напряжений
Если последовательно с генератором соединить конденсатор и катушку индуктивности, то, при условии равенства их реактивных сопротивлений, возникнет резонанс напряжений. При этом активная часть Z должно быть как можно меньшей.
Стоит отметить, что индуктивность и емкость обладает только реактивными качествами лишь в идеализированных примерах. В реальных же цепях и элементах всегда присутствует активное сопротивление проводников, хоть оно и крайне мало.
При резонансе происходит обмен энергией между дросселем и конденсатором. В идеальных примерах при первоначальном подключении источника энергии (генератора) энергия накапливается в конденсаторе (или дросселе) и после его отключения происходят незатухающие колебания за счет этого обмена.
Напряжения на индуктивности и емкости примерно одинаковы, согласно закону Ома:
U=I/X
Где X — это Xc емкостное или XL индуктивное сопротивление соответственно.
Цепь, состоящую из индуктивности и емкости, называют колебательным контуром. Его частота вычисляется по формуле:
Период колебаний определяется по формуле Томпсона:
Так как реактивное сопротивление зависит от частоты, то сопротивление индуктивности с ростом частоты увеличивается, а у ёмкости падает. Когда сопротивления равны, то общее сопротивление сильно снижается, что отражено на графике:
Основными характеристиками контура являются добротность (Q) и частота. Если рассмотреть контур в качестве четырехполюсника, то его коэффициент передачи после несложных вычислений сводится к добротности:
K=Q
А напряжение на выводах цепи увеличивается пропорционально коэффициенту передачи (добротности) контура.
Uк=Uвх*Q
При резонансе напряжений, чем выше добротность, тем больше напряжение на элементах контура будет превышать напряжение подключенного генератора. Напряжение может повышаться в десятки и сотни раз. Это отображено на графике:
Потери мощности в контуре обусловлены только наличием активного сопротивления. Энергия из источника питания берется только для поддержания колебаний.
Коэффициент мощности будет равен:
cosФ=1
Эта формула показывает, что потери происходят за счет активной мощности:
S=P/Cosф
Резонанс токов
Резонанс токов наблюдается в цепях, где индуктивность и емкость соединены параллельно.
Явление заключается в протекании токов большой величины между конденсатором и катушкой, при нулевом токе в неразветвленной части цепи. Это объясняется тем, что при достижении резонансной частоты общее сопротивление Z возрастает. Или простым языком звучит так – в точке резонанса достигается максимальное общее значение сопротивления Z, после чего одно из сопротивлений увеличивается, а другое снижается в зависимости от того растет или снижается частота. Это наглядно отображено на графике:
В общем, всё аналогично предыдущему явлению, условия возникновения резонанса токов следующие:
- Частота питания аналогична резонансной у контура.
- Проводимости у индуктивности и ёмкости по переменному току равны BL=Bc, B=1/X.
Применение на практике
Рассмотрим, какая польза и вред резонанса токов и напряжений. Наибольшую пользу явления резонанса принесли в радиопередающей аппаратуре. Простыми словами, а схеме приемника установлены катушка и конденсатор, подключенные к антенне. С помощью изменения индуктивности (например, перемещая сердечник) или величины емкости (например, воздушным переменным конденсатором) вы настраиваете резонансную частоту. В результате чего напряжение на катушке повышается и приемник ловит определенную радиоволну.
Вред эти явления могут на нести в электротехнике, например, на кабельных линиях. Кабель представляет собой распределенную по длине индуктивность и емкость, если на длинную линию подать напряжение в режиме холостого хода (когда на противоположном от источника питания конце кабеля нагрузка не подключена). Поэтому есть опасность того, что произойдет пробой изоляции, во избежание этого подключается нагрузочный балласт. Также аналогичная ситуация может привести к выходу из строя электронных компонентов, измерительных приборов и другого электрооборудования – это опасные последствия возникновения этого явления.
Заключение
Резонанс напряжений и токов — интересное явление, о котором нужно знать. Он наблюдается только в индуктивно-емкостных цепях. В цепях с большим активным сопротивлениям он не может возникнуть. Подведем итоги, кратко ответив на основные вопросы по этой теме:
- Где и в каких цепях наблюдается явление резонанса?
В индуктивно-емкостных цепях.
- Какие условия возникновения резонанса токов и напряжений?
Возникает при условии равенства реактивных сопротивлений. В цепи должно быть минимальное активное сопротивление, а частота источника питания совпадать с резонансной частотой контура.
- Как найти резонансную частоту?
В обоих случаях по формуле: w=(1/LC)^(1/2)
- Как устранить явление?
Увеличив активное сопротивление в цепи или изменив частоту.
Теперь вы знаете, что такое резонанс токов и напряжений, каковы условия его возникновения и варианты применения на практике. Для закрепления материала рекомендуем просмотреть полезное видео по теме:
Материалы по теме:
samelectrik.ru
Резонанс напряжений, условие возникновения — Ремонт220
Автор Фома Бахтин На чтение 3 мин. Просмотров 2.7k. Опубликовано
Явление резонанса электрических напряжений наблюдается в цепи последовательного колебательного контура, состоящего из емкости (конденсатора), индуктивности и резистора (сопротивления). Для обеспечения энергетической подпитки колебательного контура в последовательную цепь включается также источник электродвижущей силы Е. Источник вырабатывает переменное напряжение с частотой W. При резонансе ток, циркулирующий в последовательной цепи, должен совпадать по фазе с э.д.с. Е. Это обеспечивается, если общее сопротивление схемы Z = R+J(WL – 1/WС) будет лишь активным, т.е. Z=R. Равенство:
(L – 1/WС) = 0 (1),
является математическим условием резонанса в колебательном контуре. При этом величина тока в цепи составит I = E/R. Если преобразовать равенство (1), то получим:
WL = 1/WС.
В этом выражении W – является резонансной частотой контура.
Важно то, что в процессе резонанса напряжение на индуктивности равно напряжению на конденсаторе и составляет:
UL = U = WL * I = WLE/R
Общая сумма энергий в индуктивности и емкости (магнитного и электрического полей) постоянна. Это объясняется тем, что между этими полями происходит колебательный обмен энергиями. Суммарное ее количество в любой момент неизменно. При этом обмена энергией между ее источником Е и цепью не происходит. Вместо этого имеет место непрерывное преобразование одного вида энергии в другой.
Для колебательных контуров применятся термин добротность, которая показывает, как соотносятся напряжение на реактивном элемента (емкость или индуктивность) и входное напряжение контура. Добротность вычисляется по формуле:
Q = WL/R
Для идеальной последовательной цепи с нулевым активным сопротивлением возникновение резонанса сопровождается незатухающими колебаниями. На практике затухание колебаний компенсируется подпиткой контура от генератора колебаний с частотой резонанса.
Применение резонанса напряжений
Явление колебательного резонанса широко используется в радиоэлектронике. В частности, входная цепь любого радиоприемника представляет собой регулируемый колебательный контур. Его резонансная частота, изменяемая с помощью регулировки емкости конденсатора, совпадает с частотой сигнала радиостанции, которую необходимо принять.
В электроэнергетике возникновение резонанса напряжений вследствие сопутствующих ему перенапряжений чревато нежелательными последствиями. Например, в случае подключения к генератору или промежуточному трансформатору длинной кабельной линии (являющейся колебательным контуром с распределенной емкостью и индуктивностью), не соединенной на приемном конце с нагрузкой (это называется режимом холостого хода), весь контур может оказаться в резонансом состоянии. В такой ситуации напряжения, возникающие на некоторых участках цепи, могут оказаться выше расчетных. Это может грозить пробоем изоляции кабеля и выходом его из строя. Такая ситуация предотвращается применением вспомогательной нагрузки.
Механизм возникновения электрического тока
Схема удивительного генератора СВЧ полей на разряднике Вина уникальное, в своём роде устройство
83046 Нагревание проводников электрическим током
remont220.ru
20. (?????)Резонанс напряжений. Условия резонанса. Добротность контура. Основные частотные характеристики.
Резонанс напряжений – явление, при котором цепь содержащая активные и реактивные сопротивления, будет только активное сопротивление (XL — XC = 0). При этом ток в цепи совпадает по фазе с напряжением. Условие возникновение резонанса напряжений – равенство нулю реактивного сопротивления.
Обычно наблюдается в цепях, содержащих катушку и конденсатор, включенные последовательно.
Таким образом:
–резонансная частота
При резонансе напряжений ток максимален, так как сопротивление минимально, а
и таким образом
Часто для оценки цепи в режиме резонанса применяют такие характеристики как характеристическое сопротивление и добротность контура.
— характеристическое сопротивление контура. В простейшем случае это сопротивление на одном из реактивных элементов.
Добротностью контура называется отношение модуля реактивной составляющей напряжения в цепи к модулю входного напряжения в момент резонанса.
Зависимость от частоты параметров цепи называют частотными характеристиками
21. Резонанс напряжений. Основные частотные характеристики. Векторные диаграммы.
Частотными характеристиками называются зависимости от частоты параметров, характеризующих свойства цепи. Зависимости тока и напряжения в цепи от частоты принято называть резонансными кривыми.
резонансная частота —
абсолютная настройка по частоте —
относительная настройка —
обобщенная настройка (кси) –
(при этом все настройки положительны, при ff0, отрицательны при f f0, при очень малых настройках (),).
Теперь можно построить характеристики I, Z, в зависимости от .
При этом можно видеть, что зависимости от относительной настройки различаются по величине добротности
Q, а зависимости от обобщенной настройки одинаковы для всех контуров.
Полосу частот вблизи резонанса, на границах которой ток снижается до величины отпринято называтьполосой пропускания резонансного тока.
Чем больше добротность, тем острее кривая и уже полоса пропускания
Векторные диаграммы при
Если источник не идеален и имеет своё внутреннее сопротивление, то это сопротивление фактически добавляется к активному сопротивлению цепи и влияет на добротность и полосу пропускания контура. Чем больше внутреннее сопротивление источника, тем меньше добротность и шире полоса пропускания. Поэтому, с точки зрения сокращения полосы пропускания контура, выгоден источник с малым внутренним сопротивлением.
Если колебательный контур идеален и в нём нет активного сопротивления, то общее сопротивление контура приравнивается к 0, а ток в цепи и добротность возрастают до бесконечности. Однако в реальной цепи такого быть не может.
22.Условие резонанса токов
Резонанс токов наблюдается в цепях с параллельным включением L и C. Условием резонанса токов является равенство 0 реактивной проводимости цепи.
Это уравнения для более общего случая. Резонанс в таком контуре не всегда возможен. В идеализированном случае, когда активными свойствами катушки и конденсатора пренебрегают. Резонансная частота контура определяется формулой:
, ,.
В момент резонанса ток достигает своего минимального значения и совпадает по фазе с напряжением.
Добротность – отношение модуля тока в реактивном элементе к модулю тока в неразветвлённой части схемы.
,
,
В отличие от последовательного колебательного контура с точки зрения сокращения полосы пропускания и колебательного контура выгоден источник тока с большим Ri.(внутренним сопротивлением источника), так как чем меньше Ri , присоединяемое к параллельному контуру, тем ниже добротность и шире полоса пропускания.
Анализируя полученную нами формулу для резонансной частоты резонанса тока, можно выделить 3 основных случая:
Есть резонанс если иодного знака
Безразличный резонанс
Нет резонанса если иразличного знака
Диаграмма:
studfile.net
в цепи переменного тока и напряжения
Многие люди, изучая электронику и все, что с ней связано, сталкиваются с таким понятием как резонанс токов. Что оно собой представляет, при каких условиях возникает резонанс токов, как используется и как его правильно подсчитать? Об этом далее.
Что это такое
Резонанс токов — разновидность состояния электрической цепи, когда общий вид токовых показателей совпадает по фазам уровню напряжения, а мощность реактивного вида равна нулю или же она представлена в активном виде.
. Резонанс токов
Этот вариант развития событий характерен для переменного тока и имеет не только положительные свойства, но и некоторые нежелательные последствия. Так, благодаря резонансу работает радиотехника, автоматика и проволочная телефония, но в то же время возникают перенапряжения и сбои в работе электрической системы.
Определение из учебного пособия
При каких условиях возникает
Условием того, чтобы возникло это явление, является равные показатели проводниковой частоты, где BL=BC. То есть емкостная с индуктивной проводимостью должна быть равна. Только тогда подобное явление резонанса токов наблюдается в электрической цепи. Он при этом может быть как положительным, так и отрицательным. В любом радиоприемнике есть колебательный контур, который из-за индуктивного или емкостного изменения, настраивается на нужный сигнал радиоволны. В другом случае, это ведет к тому, что появляются скачки напряжения или ток в цепи и появляется аварийная ситуация.
В условиях лаборатории, он возникает во время, когда изменяется емкость и не изменяется индуктивность катушки L. В таком случае формула выглядит как Bc=C
При каких условиях возникает
Как используется
Резонансные токи используются сегодня в некоторых фильтрующих системах, радиотехнике, электричестве, радиостанциях, асинхронных двигателях, высокоточных электрических сварных установках, колебательных генераторных электрических контурах и высокочастотных приборах. Нередко, когда они применяются, чтобы снизить генераторную нагрузку.
Обратите внимание! Простейшая цепь, где наблюдаются они, это параллельного вида колебательный контур. Такие контуры используются в современном промышленном индукционном котловом оборудовании и улучшают показатели КПД.
Сфера применения
Принцип действия
Токовый резонанс можно заметить во внутренней поверхности электрической цепи, которая имеет параллельное катушечное, резисторное и конденсаторное подсоединение. Главный принцип того, как работает стандартный аппарат, не сложен в понимании.
Когда включается электрическое питание, внутри конденсаторной установки накапливается заряд до номинального напряжения. В этом время отключается питающий источник и замыкается цепь в контур. Этот момент сопровождается переносом разряда на часть катушки. Далее показатели тока, которые проходят по катушке, генерируют магнитное поле. Создается электродвижущая самостоятельная индукционная сила по направлению встречному току. При полном конденсаторном разряде максимально увеличиваются токовые показатели. Объем энергии становится магнитным индукционным полем. В результате данный цикл повторяется, и катушечное поле преобразовывается в конденсаторный заряд.
Принцип работы
Как правильно рассчитать
Токовый резонанс очень важно правильно рассчитать, если есть параллельное соединение, предотвращающая появление помех около системы. Для правильного расчета необходимо понять, какие показатели мощности в электросети. Средняя стандартная мощность, рассеивающаяся при резонансном контуре, выражается при помощи среднеквадратичных токовых показателей и напряжения. При резонансе мощностный коэффициент равен единице и формула имеет вид, как на картинке.
Формула расчета
Чтобы правильно определить нулевой импеданс, понадобиться воспользоваться стандартной формулой, которая дана ниже.
Формула резонансных кривых
Что касается аппроксимирования резонанса колебательных частот, это можно выяснить по следующей формуле.
Расчет колебательного контура
Обратите внимание! Для получения максимально точных данных по приведенным формулам, округлять данные не нужно. Благодаря этому получится грамотный расчет, который приведет к достойной экономии переменного тока, если речь идет о подсчете в целях снижения счетов.
В целом, резонанс токов — это то, что происходит в части параллельного колебательного контура, в случае его подключения к источнику напряжения, частота какого может совпадать с контурной. Возникает при условиях, когда цепь, имеющая параллельное соединение резисторной катушки и конденсатора, равна проводимости BL=BC. Правильно сделать весь необходимый подсчет можно по специальной формуле или, прибегая к использованию специальных измерительных инструментов в виде мультиметра.
rusenergetics.ru
условия возникновения и применение, как сделать самому, Ремонт и Строительство
Явление резонанса токов и напряжений наблюдается в цепях индуктивно-емкостного характера. Это явление нашло применение в радиоэлектронике, став основным способов настройки приемника на определенную волну. К сожалению, резонанс может нанести вред электрооборудованию и кабельным линиям. В физике резонансом является совпадение частот нескольких систем. Давайте рассмотрим, что такое резонанс напряжений и токов, какое значение он имеет и где используется в электротехнике.
Реактивные сопротивления индуктивности и емкости
Индуктивностью называется способность тела накапливать энергию в магнитном поле. Для нее характерно отставание тока от напряжения по фазе. Характерные индуктивные элементы — дросселя, катушки, трансформаторы, электродвигатели.
Емкостью называются элементы, которые накапливают энергию с помощью электрического поля. Для емкостных элементов характерно отставание по фазе напряжения от тока. Емкостные элементы: конденсаторы, варикапы.
Приведены их основные свойства, нюансы в пределах этой статьи во внимание не берутся.
Кроме перечисленных элементов другие также имеют определенную индуктивность и емкость, например в электрических кабелях распределенные по его длине.
Емкость и индуктивность в цепи переменного тока
Если в цепях постоянного тока емкость в общем смысле представляет собой разорванный участок цепи, а индуктивность — проводник, то в переменном конденсаторы и катушки представляют собой реактивный аналог резистора.
Реактивное сопротивление катушки индуктивности определяется по формуле:
Векторная диаграмма:
Реактивное сопротивление конденсатора:
Здесь w — угловая частота, f — частота в цепи синусоидального тока, L — индуктивность, C — емкость.
Векторная диаграмма:
Стоит отметить, что при расчете соединенных последовательно реактивных элементов используют формулу:
Обратите внимание, что емкостная составляющая принимается со знаком минус. Если в цепи присутствует еще и активная составляющая (резистор), то складывают по формуле теоремы Пифагора (исходя из векторной диаграммы):
От чего зависит реактивное сопротивление? Реактивные характеристики зависят от величины емкости или индуктивности, а также от частоты переменного тока.
Если посмотреть на формулу реактивной составляющей, то можно заметить, что при определенных значениях емкостной или индуктивной составляющей их разность будет равна нулю, тогда в цепи останется только активное сопротивление. Но это не все особенности такой ситуации.
Резонанс напряжений
Если последовательно с генератором соединить конденсатор и катушку индуктивности, то, при условии равенства их реактивных сопротивлений, возникнет резонанс напряжений. При этом активная часть Z должно быть как можно меньшей.
Стоит отметить, что индуктивность и емкость обладает только реактивными качествами лишь в идеализированных примерах. В реальных же цепях и элементах всегда присутствует активное сопротивление проводников, хоть оно и крайне мало.
При резонансе происходит обмен энергией между дросселем и конденсатором. В идеальных примерах при первоначальном подключении источника энергии (генератора) энергия накапливается в конденсаторе (или дросселе) и после его отключения происходят незатухающие колебания за счет этого обмена.
Напряжения на индуктивности и емкости примерно одинаковы, согласно закону Ома:
U=I/X
Где X — это Xc емкостное или XL индуктивное сопротивление соответственно.
Цепь, состоящую из индуктивности и емкости, называют колебательным контуром. Его частота вычисляется по формуле:
Период колебаний определяется по формуле Томпсона:
Так как реактивное сопротивление зависит от частоты, то сопротивление индуктивности с ростом частоты увеличивается, а у ёмкости падает. Когда сопротивления равны, то общее сопротивление сильно снижается, что отражено на графике:
Основными характеристиками контура являются добротность (Q) и частота. Если рассмотреть контур в качестве четырехполюсника, то его коэффициент передачи после несложных вычислений сводится к добротности:
K=Q
А напряжение на выводах цепи увеличивается пропорционально коэффициенту передачи (добротности) контура.
Uк=Uвх*Q
При резонансе напряжений, чем выше добротность, тем больше напряжение на элементах контура будет превышать напряжение подключенного генератора. Напряжение может повышаться в десятки и сотни раз. Это отображено на графике:
Потери мощности в контуре обусловлены только наличием активного сопротивления. Энергия из источника питания берется только для поддержания колебаний.
Коэффициент мощности будет равен:
cosФ=1
Эта формула показывает, что потери происходят за счет активной мощности:
S=P/Cosф
Резонанс токов
Резонанс токов наблюдается в цепях, где индуктивность и емкость соединены параллельно.
Явление заключается в протекании токов большой величины между конденсатором и катушкой, при нулевом токе в неразветвленной части цепи. Это объясняется тем, что при достижении резонансной частоты общее сопротивление Z возрастает. Или простым языком звучит так – в точке резонанса достигается максимальное общее значение сопротивления Z, после чего одно из сопротивлений увеличивается, а другое снижается в зависимости от того растет или снижается частота. Это наглядно отображено на графике:
В общем, всё аналогично предыдущему явлению, условия возникновения резонанса токов следующие:
- Частота питания аналогична резонансной у контура.
- Проводимости у индуктивности и ёмкости по переменному току равны BL=Bc, B=1/X.
Применение на практике
Рассмотрим, какая польза и вред резонанса токов и напряжений. Наибольшую пользу явления резонанса принесли в радиопередающей аппаратуре. Простыми словами, а схеме приемника установлены катушка и конденсатор, подключенные к антенне. С помощью изменения индуктивности (например, перемещая сердечник) или величины емкости (например, воздушным переменным конденсатором) вы настраиваете резонансную частоту. В результате чего напряжение на катушке повышается и приемник ловит определенную радиоволну.
Вред эти явления могут на нести в электротехнике, например, на кабельных линиях. Кабель представляет собой распределенную по длине индуктивность и емкость, если на длинную линию подать напряжение в режиме холостого хода (когда на противоположном от источника питания конце кабеля нагрузка не подключена). Поэтому есть опасность того, что произойдет пробой изоляции, во избежание этого подключается нагрузочный балласт. Также аналогичная ситуация может привести к выходу из строя электронных компонентов, измерительных приборов и другого электрооборудования – это опасные последствия возникновения этого явления.
Заключение
Резонанс напряжений и токов — интересное явление, о котором нужно знать. Он наблюдается только в индуктивно-емкостных цепях. В цепях с большим активным сопротивлениям он не может возникнуть. Подведем итоги, кратко ответив на основные вопросы по этой теме:
- Где и в каких цепях наблюдается явление резонанса?
В индуктивно-емкостных цепях.
- Какие условия возникновения резонанса токов и напряжений?
Возникает при условии равенства реактивных сопротивлений. В цепи должно быть минимальное активное сопротивление, а частота источника питания совпадать с резонансной частотой контура.
- Как найти резонансную частоту?
В обоих случаях по формуле: w=(1/LC)^(1/2)
- Как устранить явление?
Увеличив активное сопротивление в цепи или изменив частоту.
Теперь вы знаете, что такое резонанс токов и напряжений, каковы условия его возникновения и варианты применения на практике. Для закрепления материала рекомендуем просмотреть полезное видео по теме:
Материалы по теме:
www.remontostroitel.ru
Вопрос 3. В чем заключается явление резонанса напряжений и при каких условиях оно возникает?
Ответ 3.1: В данной цепи при равенстве индуктивного и емкостного сопротивлений полное сопротивление цепи будет минимальным и чисто активным Z=R, а ток – максимальным .
Падения напряжения на индуктивном и емкостном элементах рассчитываются по закону Ома: , и т.к.величина напряжения на идеальной индуктивности ULравнанапряжению на емкости UC. , но фазы напряженийULи UC противоположны (сдвинуты на 180°).
Режим работы цепи c последовательным соединением R,L,C элементов при котором и (или )называют резонансом напряжений.
Сумма комплексов напряжений ŪLи ŪC равна нулю, следовательно и модуль суммы будет равен нулю. Вольтметр, измеряющий падение напряжения (модуль комплекса напряжения) на участке цепи с идеальной индуктивностью и емкостью, покажет значение =0. При этом ток и напряжениеВХ совпадает по фазе (коэффициент мощности ,φ0 =0). Активная мощность имеет наибольшее значение, равное полной мощностиS, в то время как реактивная мощность цепи оказывается равной нулю: .
При резонансе напряжения на емкости и на индуктивности могут значительно превышать подводимое напряжение U, если изначительно превышают R:
, .
Физическая причина возникновения повышенных напряжений – это колебания значительной энергии, запасаемой попеременно в электрическом поле емкостного и магнитном поле индуктивного элементов. При резонансе напряжений малые количества энергии, поступающей от источника и компенсирующие потери энергии в активном элементе – сопротивлении R, достаточны для поддержания незатухающих колебаний в системе относительно больших количеств энергии электрического и магнитного полей. Причем в любой момент времени суммарная энергия электрического и магнитного полей остается постоянной.
Резонанс напряжений в промышленных электрических установках нежелательное и опасное явление, так как оно может привести к аварии вследствие недопустимого перегрева отдельных элементов электрической цепи или пробою изоляции.
**) Для мощных двигателей отношение сопротивлений обмоток XL/R на промышленной частоте составляет несколько десятков. Напряжение питания двигателей обычно <380В. Поэтому в случае резонанса, напряжение на обмотке UL превысит напряжение питания в деcятки раз (UL>>3800В).
В тоже время резонанс напряжений в электрических цепях переменного тока широко используется в радиотехнике в различных приборах и устройствах, основанных на резонансных явлениях.
Вопрос 4. Изменением каких параметров электрической цепи (см. Рис.1) можно получить резонанс напряжений ?
Ответ 4: При резонансе напряжений выравниваются реактивные сопротивления ХL=XC.
Т.к. ХL=ω·L , а XC=1/ωС , то равенства сопротивлений можно добиться тремя способами:
при постоянных ω и L изменяя величину емкости С;
при постоянных ω и С изменяя величину индуктивности L;
при постоянных L и С изменяя частоту ω. При резонансе .
Вопрос 5. С помощью каких приборов и по какому признаку можно судить о возникновении резонанса напряжений в электрической цепи?
Ответ 5: 1) В данной лабораторной установке опыты проводятся при постоянных величинах ω и L. По мере увеличения емкости от минимального до резонансного значения С0=1/ωXL, полное сопротивление цепи будет уменьшаться, при этом ток в цепи согласно формуле для тока будет расти. При резонансе он достигнет максимального значения .
Вывод 1
1: Амперметр покажет максимальное значение тока.
2) Т.к. UL=I·XL, топадение напряжения на индуктивности UL будет расти пропорционально росту тока. При резонансе напряжений, это напряжение будет максимальным. Однако вольтметр PVК измеряет, согласно схеме замещения, падение напряжения на участке цепи из 2-х последовательно соединенных элементов: сопротивлений катушки R и индуктивности ХL. Падение напряжения на сопротивлении Rравно UR= I·R=Uвх, следовательнопри резонансе это напряжение также будет максимальным.
Вывод 2:
1)Вольтметр PVК также покажет максимальное значение
2)Падение напряжения на емкости С, измеряемое вольтметром PVC, равно: .
Т.к . ток в цепи один , а величины сопротивлений ХL, XC при резонансе одинаковы, то и напряжения одинаковы UL =UС. При этом Uвх = UR. При резонансе =.Следовательно показания вольтметров PVК и PVCбудут разными. Очевидно, что UК > UC.
Вывод 3: при резонансе показания вольтметра PVК больше показания вольтметра PVC .
4) Ваттметр PW измеряет активную мощность потребляемую цепью. Т.к. при резонансе ток максимальный, а активная мощность Р = I2·R, то и мощность P будет максимальной.
Вывод 4: Ваттметр покажет максимальное значение Рмакс = I02·R= U2вх / R.
studfile.net