Тепловое реле — принцип работы, назначение, характеристики, схема
Тепловое реле предназначено для контроля за температурой различных устройств и оборудования, управления режимами их работы.
По принципу действия, назначению, устройству этот тип реле можно разделить на несколько групп.
Одна из функций теплового реле — отключение электрической цепи при превышении номинального значения протекающего по ней тока (In) (схема рис.1). Она реализована, например, в автоматических выключателях.
Давайте рассмотрим как работает такое тепловое реле.
Тепловое реле — схема, характеристики
Термочувствительным элементом здесь является биметаллическая пластина, то есть две, механически соединенных между собой полоски металлов, имеющих разный температурный коэффициент расширения. За счет этого при нагревании она деформируется, тем или иным способом воздействуя на электрические контакты S.
Нагрев пластин может осуществляться специальным термоподогревателем, по которому протекает контролируемый ток I (рисунок 3).
Основными характеристиками такого реле являются номинальный рабочий ток In (при котором контакты реле будут замкнуты бесконечно долго) и время срабатывания t, которое зависит от величины тока I, причем чем он больше, тем срабатывание произойдет быстрее (рисунок 4).
Таким образом, можно говорить об определенной инерционности этого устройства.
После остывания термоэлемент возвращается в исходное состояние. Далее возможны два варианта:
- требуется принудительное приведение коммутирующих контактов S в замкнутое состояние,
- они замыкаются автоматически.
Первый вариант характерен для тепловых реле защиты (автоматические выключатели, электромагнитные пускатели и т.д.).
Второй же используется в устройствах, обеспечивающих регулировку (поддержание) температуры какого либо объекта в заданном диапазоне. При этом термочувствительные элементы могут иметь другую конструкцию, требующую механического контакта с контролируемым объектом или средой (рис.2).
Пример тому — такие электробытовые приборы как утюги, холодильники, стиральные машины.
© 2012-2020 г. Все права защищены.
Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов
Электротепловое реле РТИ для крупногабаритных контакторов КТИ IEK®
«Давно и с успехом применяем контакторы КМИ в сборе с реле РТИ. Но из-за увеличения объемов производства приходится использовать новые двигатели повышенной мощности. Для высокомощных двигателей у вас существуют контакторы КТИ, но реле к ним я не нашел. Подскажите, пожалуйста, вариант решения проблемы!»
Вениамин Гурьянов, г. Калуга
Решение проблемы очень простое! Группа компаний IEK расширила ассортимент электротепловых реле и ввела в линейку электротепловые реле РТИ для крупногабаритных контакторов КТИ IEK®. Применение реле РТИ поможет избежать перегрузки электродвигателя, пропадания одной из фаз, затянутого пуска, заклинивания ротора и подобных неприятностей и значительно продлить срок служы электродвигателя.
Потребителям хорошо знакомы тепловые реле РТИ торговой марки IEK для малогабаритных контакторов типа КМИ. Теперь магнитные пускатели можно будет собирать на большие токи, с применением крупногабаритных контакторов КТИ.
Тепловое реле РТИ: свойства и принцип действия
Основное назначение электротепловых реле — это защита электродвигателей от опасного перегрева при возникновении длительных токовых перегрузок. Контактор и тепловое реле в сборке образуют магнитный пускатель, который применяется для того, чтобы при срабатывании защиты реле происходило экстренное отключение контактора и обесточивание электродвигателя.
Принцип действия теплового реле РТИ основан на деформации биметаллической пластины при нагреве. Биметаллическая пластина — это пластина из двух сваренных по длине металлов, с различным коэффициентом теплового расширения. При нагревании такой пластины, расположенной в главной цепи реле, каждый металл расширяется согласно своим характеристикам, и пластина изгибается в сторону металла с меньшим коэффициентом теплового расширения. Соответственно чем больший ток будет протекать через главную цепь реле, тем быстрее будут греться пластины, и тем быстрее будет срабатывать защита. В реле РТИ применяется не прямой, а косвенный нагрев биметаллических пластин, то есть, ток не проходит напрямую через саму биметаллическую пластину, а проходит через специализированный нагревательный элемент, расположенный рядом с пластиной и контактирующий с ней, который выделяя тепло — греет биметаллическую пластину. Таким образом, возможность регулирования места и площади контакта нагревателя с биметаллической пластиной значительно повышает точность настройки защиты реле и соответствие заявленным времятоковым кривым (см. Рис.1).
Помимо защиты электродвигателя от перегрузки по току, защита тепловых реле РТИ чувствительна и к пропаданию фазы. То есть, при обрыве одной из фаз электродвигателя, за счет повышения тока потребления по двум оставшимся фазам и нагревания биметаллических пластин, произойдет срабатывание защиты РТИ.
Напомним, что тепловые реле РТИ не только не предназначены для защиты электродвигателя от короткого замыкания, но и сами нуждаются в такой защите. Дело в том, что при протекании тока короткого замыкания нагреватель реле перегорит быстрее, чем нагреются биметаллические пластины, и реле отключит двигатель.
Поэтому при установке тепловых реле в цепи защиты обязательно должен располагаться аппарат защиты от короткого замыкания (автоматический выключатель, плавкая вставка и т.п.).
Электротепловые реле РТИ для крупногабаритных контакторов КТИ IEK®
Шесть типов реле РТИ имеют два габарита, с номинальными токами от 55 А до 200 А. Применяются для крупногабаритных контакторов типа КТИ (см. Табл.1).
Таблица 1
Тип реле | РТИ-5369 | РТИ-5370 | РТИ-5371 | РТИ-5375 | РТИ-5376 | РТИ-6376 |
---|---|---|---|---|---|---|
Диапазон регулировки уставки тока, А | 55-80 | 63-90 | 90-120 | 120-150 | 150-180 | 125-200 |
Новые реле имеют схожую с РТИ для КМИ переднюю панель. На передней панели расположен поворотный регулятор уставки по току, позволяющий выставить необходимый ток защиты в зависимости от номинального тока электродвигателя. Кнопка ТЕСТ, позволяет провести как проверку работоспособности дополнительных контактов реле до момента установки, так и имитировать срабатывание защиты реле в уже смонтированной схеме. Также при применении реле в магнитных пускателях, кнопка ТЕСТ служит для отключения контактора.
В реле РТИ-6376 из-за большого значения номинального тока до 200 А применяются трансформаторы тока, ток вторичной обмотки которых производит нагрев биметаллических пластин.
Реле РТИ для КТИ может работать в двух режимах: ручном и автоматическом. В автоматическом режиме работы, при срабатывании защиты реле и после остывания биметаллических пластин, дополнительные контакты реле автоматически перейдут в исходное состояние. В ручном режиме перевод дополнительных контактов реле в исходно состояние произойдет только после нажатия кнопки сброса.
Режим работы реле переключается при помощи поворотного регулятора кнопки СБРОС. В нажатом положении регулятора реле находится в автоматическом режиме, в исходном положении регулятора — в ручном режиме. О срабатывании защиты реле сигнализирует зеленый флажок, расположенный на передней панели.
Реле РТИ для КТИ предназначены для работы при широком температурном диапазоне. Однако не стоит забывать, что тепловое реле должно располагаться в тех же тепловых условиях, что и защищаемый им электродвигатель. Не рекомендуется располагаться реле вблизи нагревательных приборов, систем отопления и т.п.
Из-за особенностей работы реле и в связи с возможными значительным нагревом контактных выводов и элементов реле, корпус устройства выполнен из прочного пластика, стойкого к аномальному нагреву и огню.
Реле комплектуется всеми метизами, необходимыми для монтажа РТИ на контакторы КТИ, а также для подключения внешних проводников.
С уважением,
Александр ИЛИНИЦКИЙ
Группа компаний IEK
Устройство теплового реле. Разбираем ИЭК РТИ-1308
Согласно закону Джоуля-Ленца, количество тепла, выделяемое участком электрической цепи, пропорционально квадрату силы тока и сопротивлению этого участка. Это дает возможность создавать устройства, выполняющие небольшую механическую работу (например, по замыканию/размыканию контактной пары) при достижении силы тока на исследуемом участке цепи определенного значения. Подобные устройства получили название тепловых (электротепловых) реле или реле тепловой защиты.
Тепловое реле, как правило, служит для защиты (аварийного отключения и/или сигнализации об аварийной ситуации) электрических цепей и электрооборудования от повышения тока потребления сверх некого номинального (нормального) значения. Повышение тока потребления может свидетельствовать, например, о чрезмерной нагрузке на вал двигателя, межвитковом замыкании и т.д.
Биметаллическая пластина.
Факт того, что проводник с током греется, не дает возможность напрямую совершить какую-либо существенную механическую работу, так как степень нагрева нуждается в оценке, например, термодатчиком. Оказывается, есть возможность поступить проще, а именно «научить» проводник закономерно изменять свою геометрическую форму пропорционально изменению температуры.
Как известно, линейные размеры металлов при нагреве меняются. Известно также, что у разных металлов коэффициенты теплового расширения различные. Например, при нагреве на одно и то же значение температуры, полоска из металла, обладающего большим коэффициентом теплового расширения, удлиниться на большее значение, чем полоска из другого металла, коэффициент теплового расширения которого ниже. Если соединить вместе две одинаковые по форме полоски разнородных металлов, то, при изменении температуры, геометрическая форма этой конструкции тоже будет изменяться — изгибаясь и распрямляясь, в зависимости от температуры. Скрепленные воедино две пластины разнородных металлов получили название биметаллической пластины. Биметаллическая пластина, как своеобразный прибор для оценки силы тока по его нагреву и последующего воздействия на какой-либо исполнительный механизм, широко применяется в различных бытовых и промышленных устройствах автоматики.
Принцип работы биметаллической пластины.
Устройство теплового реле на примере ИЭК РТИ-1308.
Теория принципа действия теплового реле была вкратце рассмотрена выше, обратимся к практике. Вскроем корпус и разберемся с внутренним устройством низковольтного трехфазного теплового (тепломеханического) реле ИЭК РТИ-1308. Его основные технические характеристики представлены в таблице ниже.
Таблица. Основные технические характеристики теплового реле ИЭК РТИ-1308.
Значение | |
---|---|
Диапазон регулировки тока срабатывания | 2,5–4 А |
Стандартные рабочие напряжения | 230, 400, 660 В |
Максимальная частота переменного тока | 400 Гц |
Характеристика цепи управления | Значение |
---|---|
Тип контактов | 1 замкнутый + 1 разомкнутый |
Максимальная коммутируемая мощность при напряжении 110 В | 400 ВА |
Максимальная коммутируемая мощность при напряжении 230 В | 600 ВА |
Максимальная коммутируемая мощность при напряжении 400 В | 600 ВА |
Принцип работы теплового реле РТИ можно описать следующим образом. При протекании электрического тока по биметаллическим пластинам (каждой из трех фаз предназначается своя пластина), происходит их нагрев. Чем выше ток, тем сильнее нагрев биметаллических пластин и, следовательно, больше их изгиб в определенную (конструктивно заданную) сторону. Изгибаясь, пластины давят на систему рычагов. При достижении хотя бы одной из трех пластин критического значения по углу изгиба, вследствие превышения на одной или нескольких фазах номинального установленного рабочего тока, происходит срабатывание исполнительного (контактного) механизма цепи управления, и контактные пары переводятся во взаимно противоположные состояния. В таком, нагретом до момента срабатывания реле, состоянии биметаллические пластины будут удерживать реле до тех пор, пока на все фазах тепловой ток не придет в норму. Ток снижается — биметаллические пластины охлаждаются, переводя систему рычагов в первоначальное состояние. Если у теплового реле активирован режим автоматического пуска, то контактные группы тоже автоматически переключаться в первоначальное состояние, если нет – нужно вручную включать реле после каждого его срабатывания. На фотографиях ниже можно увидеть процесс вскрытия РТИ-1308 и пояснения к нему.
Упаковка.
Вид сбоку (фото слева).
Вид на силовые контакты. Расстояния между контактами можно менять благодаря овальным отверстиям корпуса (фото справа).
Органы управления и настройки РТИ-1308.
Под шильдиком прячется подстроечный винт. Благодаря ему, происходит актуализация значений шкалы диска настройки тока.
Количество заводсткой краски, нанесенной на резьбу подстроечного винта, оказалось недостаточным (винт легко вращался на пару оборотов). Дополнительно закрашиваем резьбу цапонлаком (фото снизу).
Вскрываем корпус, подцепляя тонкой плоской отверткой пластмассовые защелки по периметру корпуса.
Вскрыть корпус, не отломив ни одной защелки, очень сложно — пластмасса хрупкая (фото справа внизу).
Корпус вскрыт.
Биметаллические пластины смешанного нагрева (ток идет через обмотку нагрева и через саму пластину).
Изгиб пинцетом любой биметаллической платины инициирует срабатывание реле. Чем выше установленный ток, тем сильнее нужно изгибать пластины.
Реле без биметаллических пластин.
Нажимаем пинцетом на рычаг — происходит срабатывание реле (фото справа).
Система рычагов для объединения изгибающих усилий пластин воедино по логическому закону «ИЛИ». То есть, изгиб хотя бы одной (любой) пластины вызывает пропорциональное смещение верхнего рычага системы.
Система находится в своём крайнем левом положении, соответствующем минимальному изгибу биметаллических пластин (фото слева).
Система находится в своём крайнем правом положении, соответствующем максимальному изгибу биметаллических пластин (фото справа).
Реле сработало (желтый Г-образный флажок в крайнем правом положении) и ждёт ручного пуска, так как синий переключатель в положении ручного управления (фото слева).
Нажимаем непосредственно на рычажок, идущий к контактным группам (фото справа).
Съём исполнительного механизма происходит путём откручиванием единственного винта.
Исполнительный механизм со стороны контактных групп.
При нажатии на кнопку «Стоп», происходит размыкание замкнутой пары контактов.
Все детали теплового реле ИЭК РТИ-1308.
Время срабатывания теплового реле зависит от кратности превышения тока, то есть от того, во сколько раз реальный ток превысил установленный (см. график ниже).
График (кривые) срабатывания РТИ-1308 (фото сверху).
Схематичное обозначение РТИ-1308 (фото снизу).
Кнопкой «тест» можно сымитировать срабатывание реле, то есть принудительно перевести контактные пары исполнительного механизма в противоположные состояния. Таким образом, можно проверить лишь правильность работы каких-либо электронных устройств (например, контактора), коммутируемых тепловым реле. Всецело же корректность работы теплового реле проверяется только на специальном испытательном стенде с моделированием прохождения через реле различных токов, как ниже, так и выше установленного тока срабатывания реле.
В заключение, нужно сказать о трех важных вещах, касаемо тепловых (тепломеханических) реле. Во-первых, любое тепломеханическое реле имеет собственное (небольшое, но постоянное) потребление энергии, расходуемое на подогрев биметаллических пластин. Во-вторых, тепловое реле не предназначено для защиты от токов короткого замыкания, которому характерен сверхбыстрый рост тока. Это обусловлено относительно высокой инертностью биметаллических пластин, которые не способны нагреться так быстро. Для защиты от короткого замыкания, в паре с тепловыми реле, необходимо применять автоматические выключатели электромагнитного расцепления. В-третьих, ток срабатывания теплового реле зависит от температуры окружающей среды, условий охлаждения корпуса реле и прочих факторов. Таким образом, в качестве прецизионного устройства защиты, где требуется очень точная оценка электрического тока, тепловое реле тепломеханического типа использовать нельзя, погрешности весьма значительны.
Похожие статьи:
виды, основные параметры и сфера использования
Использование тепловых реле позволяет защитить электрические двигатели от токовой перегрузки: при превышении определенных параметров они отключают подачу электроэнергии.
При перегрузке в цепи происходит значительное повышение температуры. В некоторых случаях это может стать причиной неисправности или поломки оборудования. Применение тепловых реле дает возможность значительно продлить период эксплуатации аппаратуры, так как обеспечиваются нормальные условия для его функционирования.
Стоимость устройств варьируется в широком диапазоне. Во многом она зависит от особенностей эксплуатации, назначения и вида теплового реле. Например, РТЛ. Обеспечивают защиту электрических моторов от возможных перегрузок, исключают вероятность заклинивания ротора, перекоса фаз и затяжного пуска.
Цены на тепловые реле также зависят от того, какими технико-эксплуатационными характеристиками они обладают.
Основные параметры тепловых реле:
- Номинальный ток. При определенном значении ТР не срабатывает в течение длительного промежутка времени. В то же время превышение лимита не приводит к незамедлительному отключению цепи. Например, если значение больше номинального на 20 %, то ТР сработает примерно через 20-30 минут.
- Номинальное напряжение. Обычно бытовые модели предназначены для эксплуатации в однофазных сетях переменного тока (220 вольт и 50 Гц). При этом выпускаются и промышленные тепловые реле, которые могут быть рассчитаны на использование в трехфазных сетях.
- Эксплуатационные условия. Категория размещения тепловых реле определяется в соответствии с нормами ГОСТ 15150. Стандарт описывает возможные температурные значения и уровень влажности, а также устойчивость прибора к вибрациям, ударам, взрывоопасным газам.
- Граница срабатывания теплового реле.
- Количество и вид дополнительных контактов управления.
- Чувствительность к перекосу фаз.
ВИДЫ ТЕПЛОВЫХ РЕЛЕ, ИХ ПРИНЦИП ДЕЙСТВИЯ И СФЕРА ПРИМЕНЕНИЯ
Область применения такого оборудования — цеха промышленных предприятий, ремонтные мастерские, некоторые объекты сельского и коммунального хозяйства. Внедрение этих устройств позволяет защищать электроприводы от перегрузок.
Принцип действия реле основан на способности электрического тока повышать температуру проводника при прохождении через него.
Любой материал при нагреве увеличивает свой объем, но по-разному. Если нагреть две жестко соединенные пластины из разных металлов, то они деформируются. Движение передается на механическую защелку выключателя, который срабатывает и разъединяет электрические контакты.
Как правило, в тепловом реле используют 2 биметаллические пластины. Чаще всего это инвар, а также немагнитная или хромоникелевая сталь, имеющие разные коэффициенты расширения. Там, где пластины прилегают друг к другу, они жестко закрепляются путем штамповки, горячей прокатки или сварки. Когда происходит нагревание неподвижной части закрепленной пластины, она изгибается, что и приводит к срабатыванию — взаимодействию с контактным блоком реле.
Однако нагревание может происходить двумя способами. Например, тепло выделяется при прохождении через биметаллическую часть нагрузочного тока. Кроме того, нагрев возможен благодаря специальному нагревателю, также обтекаемому током нагрузки. Наиболее эффективно тепловое реле работает при комбинировании двух способов нагревания.
Разновидности применяемых в промышленности тепловых реле:
- РТЛ;
- РТТ;
- ТРН;
- РТП и др.
Серия РТЛ — устройства для защиты электродвигателей от длительных перегрузок или выпадения одной из фаз. Они применяются как в комплекте с пускателями типа ПМЛ, так и отдельно.
РТТ — тепловые реле для защиты промышленных асинхронных электромоторов (380 V) с короткозамкнутым ротором от затяжных перегрузок. Они также реагируют на выпадение фазы, иногда встраиваются в пускатели типа ПМА.
Серия ТРН — это двухфазные тепловые реле промышленного назначения. Они применяются в комплекте с магнитными пускателями и выполняют функцию защиты асинхронных электродвигателей от перегрузки.
РТП — тепловые реле с комбинированной системой нагрева биметаллической пластины. Конструкция устройства обеспечивает плавную ручную настройку тока срабатывания. Возврат якоря реле в исходное положение осуществляется двумя способами:
- вручную, посредством кнопки;
- автоматически, после остывания биметаллической пластины.
Особенности установки теплового реле
Обычно монтаж производится вместе с магнитным пускателем, который обеспечивает подключение и запуск электродвигателя. Некоторые тепловые реле устанавливаются как самостоятельные приборы на DIN-рейку либо на монтажные панели (ТРН или РТТ). Причем если у реле ТРН есть лишь пара входящих подключений, то фаз все равно 3.
Отключенный фазный провод выводится с пускателя к двигателю в обход устройства. Изменение тока будет происходить пропорционально во всех фазах, в результате чего достаточно контролировать только две из них.
Возможно подключение теплового реле и с помощью токовых трансформаторов, что целесообразно при использовании мощных моторов. Как бы там ни было, важно избегать ошибок при установке, например, нельзя подключать реле с параметрами, не соответствующими характеристикам электродвигателя.
Технические характеристики тепловых реле: | |||||
Номинальное напряжение переменного тока, В | 660 | ||||
Частота переменного тока, Гц | 50 (60) | ||||
Время срабатывания при токе 1,2 Iном, мин | 20 | ||||
Время ручного возврата, мин, не менее | 1,5 | ||||
Время срабатывания при нагрузке 6-кратным Iном, с | РТЛ-1000 | 4,5 … 9,0 | |||
РТЛ-2000 | 4,5 … 12,0 | ||||
Термическая стойкость реле, с, при нагрузке 18-кратным Iном на ток: | до 10А | 0,5 | |||
свыше 10А | 1,0 | ||||
Тип реле | Диапазон регулирова-ния номинального тока несрабатывания, А | Мощность, потребляемая одним полюсом реле, Вт | Тип реле | Диапазон регулирова-ния номинального тока несрабатывания, А | Мощность, потребляемая одним полюсом реле, Вт |
Номинальный ток 25А | |||||
РТЛ-1001 | 0,10 … 0,17 | 2,05 | РТЛ-1008 | 2,40 … 4,00 | 1,87 |
РТЛ-1002 | 0,16 … 0,26 | 2,03 | РТЛ-1010 | 3,80 … 6,00 | 1,84 |
РТЛ-1003 | 0,24 … 0,40 | 1,97 | РТЛ-1012 | 5,50 … 8,00 | 1,68 |
РТЛ-1004 | 0,38 … 0,65 | 1,99 | РТЛ-1014 | 7,00 … 10,0 | 1,75 |
РТЛ-1005 | 0,61 … 1,00 | 1,8 | РТЛ-1016 | 9,50 … 14,0 | 2,5 |
РТЛ-1006 | 0,95 … 1,6 | 1,8 | РТЛ-1021 | 13,0 … 19,0 | 2,75 |
РТЛ-1007 | 1,50 … 2,60 | 1,8 | РТЛ-1022 | 18,0 … 25,0 | 2,8 |
Номинальный ток 80А | |||||
РТЛ-2053 | 23 … 32 | 2,43 | РТЛ-2059 | 47 … 64 | 3,69 |
РТЛ-2055 | 30 … 41 | 3,03 | РТЛ-2061 | 54 … 74 | 4,38 |
РТЛ-2057 | 38 … 52 | 3,3 | РТЛ-2063 | 63 … 86 | 5,62 |
КАК ПРАВИЛЬНО ВЫБРАТЬ НУЖНОЕ ТЕПЛОВОЕ РЕЛЕ
Для правильного выбора модели теплового реле нужно ориентироваться на мощностные параметры защищаемого электродвигателя. Основные характеристики устройства отображаются в условном обозначении. В маркировке теплового реле в обязательном порядке присутствуют следующие данные:
- диапазон токов установки;
- климатическое исполнение;
- режим возврата теплового реле (ручной или автоматический).
При выборе теплового реле рекомендуем учитывать и такие аспекты:
- некоторые разновидности имеют функцию недогрузки, позволяющую выявить уменьшение тока в цепи;
- устройства могут иметь опцию компенсации температуры внешней среды — такие считаются самыми удобными и надежными;
- выпускаются приборы, дополненные световыми индикаторами. Датчики или светодиоды отображают сигналы состояния и включения.
Тепловое реле — устройство и принцип действия
Тепловое реле — это электрическое устройство, которое защищает электродвигатель любого электрического прибора от критических значений температуры. В условиях высокой нагрузки двигатель, приводящий в движение любое оборудование электрической машины или электрического прибора, потребляет повышенное количество электроэнергии. Эта энергия может во много раз превышать установленную для двигателя норму. В результате процесса перегрузки температура в электрической цепи начинает быстро повышаться.Это, конечно, вполне может привести к поломке этого электроприбора. Для предотвращения этого в электрические цепи включаются дополнительные специальные устройства, предназначенные для прекращения подачи электроэнергии при возникновении любых аварийных режимов (переходные процессы в электрических сетях, перегрузки и т. Д.). Такое защитное устройство было названо тепловым реле (иногда его можно встретить в литературе как «тепловое реле»). Основная задача теплового реле — поддержание рабочего режима электроприбора и его общей работоспособности.
Тепловое реле имеет в своей внутренней конструкции специальную биметаллическую пластину. Под действием перегрузок и повышенного напряжения в электрической сети такая пластина изгибается (деформируется), и в нормальном состоянии имеет достаточно ровную поверхность. Эта биметаллическая пластина плотно замыкает электрические контакты, и поэтому ток может беспрепятственно протекать через электрическую цепь.
При повышении напряжения и увеличении величины электрического тока в цепи начинает быстро повышаться температура.Этому способствует нагрев основного элемента теплового реле — двухслойной металлической пластины. Последний начинает гнуть и прерывает поток электричества, так как тепловое реле предназначено для отключения нагрузки и напряжения при перегрузке электрической сети.
Однако биметаллическая пластина прогибается достаточно медленно. Если контакт подвижный и подключен к нему напрямую, то низкая скорость отклонения не обеспечит гашение дуги, возникающей при ее разрыве. Поэтому в конструкции теплового реле предусмотрено ускоряющее устройство, так называемый «прыгающий контакт».Из этого следует, что выбор теплового реле основывается на такой его характеристике, как зависимость времени срабатывания от величины электрического тока.
Ввиду этого разрыва машина будет работать прекращена. Через некоторое время (обычно полчаса — час) пластина остывает и возвращается в прежнее состояние, тем самым восстанавливая цепь электрической цепи. Устройство снова вернется в рабочее состояние.
Тепловое реле бывает нескольких типов.Широкое распространение получили реле TRP (для однофазной нагрузки), TRN (для двухфазной нагрузки), тепловое реле RTT (для длительной перегрузки в трехфазной цепи) и тепловое реле RTL (защита двигателей от длительных перегрузок). .
p >>Работа, преимущества и их применение
Разработка реле была начата в период 1809 года. Как часть изобретения электрохимического телеграфа, электролитическое реле было обнаружено Самуэлем в 1809 году. ученый Генри в 1835 году, чтобы сделать импровизированную версию телеграфа, а затем разработал ее в 1831 году.В то время как в 1835 году Дэви полностью открыл реле, но первоначальные патентные права были даны Сэмюэлем в 1840 году на первое изобретение электрического реле. Подход этого устройства выглядел так же, как цифровой усилитель, таким образом воспроизводя телеграфный сигнал и позволяя распространяться на большие расстояния. И эта статья дает четкое объяснение того, что такое реле, различные типы реле, работа и многие другие связанные концепции.
Что такое реле? Реле
обычно используются там, где требуется регулировать цепь с помощью отдельного сигнала минимальной мощности, или там, где необходимо регулировать несколько цепей с помощью одного сигнала.Изначально реле использовались в телеграфных цепях увеличенной длины, таких как ретрансляторы сигналов, поскольку они усиливают волну, которая принимается и передается в другие цепи. Основное применение реле было в телефонных станциях и первых версиях компьютеров.
Реле являются первичной защитой, а также переключающими устройствами в большинстве процессов управления или оборудования. Все реле реагируют на одну или несколько электрических величин, таких как напряжение или ток, так что они размыкают или замыкают контакты или цепи.Реле — это переключающее устройство, которое работает, чтобы изолировать или изменить состояние электрической цепи из одного состояния в другое.
Поскольку реле обеспечивает защиту цепи от повреждений. Каждое реле состоит из трех важнейших компонентов, которые рассчитываются, сравниваются и управляются. Вычисляемому компоненту известно изменение фактического измерения, а компонент сравнения оценивает фактическое значение с таким же значением заранее выбранного реле.А управляющий компонент обрабатывает быстрое изменение измеренной мощности, например, замыкание текущей функциональной цепи.
Реле повторного включения используются для подключения различных компонентов и устройств в сети системы, таких как процесс синхронизации, и для восстановления различных устройств вскоре после исчезновения любого электрического сбоя, а затем для подключения трансформаторов и фидеров к линейной сети. Регулирующие реле — это переключатели, которые контактируют так, что напряжение повышается, как в случае трансформаторов с переключением ответвлений.Вспомогательные контакты используются в автоматических выключателях и другом защитном оборудовании для увеличения числа контактов. Реле контроля контролируют состояние системы, например направление мощности, и соответственно генерируют аварийный сигнал. Их также называют реле направления.
В реле общего типа используется электромагнит, чтобы выполнять размыкание и замыкание контактов, тогда как в других типах подходов, таких как твердотельные реле, они используют свойства полупроводника для управления, независимо от подвижного составные части.Реле с калиброванными свойствами и, в некоторых случаях, различные функциональные катушки используются для защиты систем электрических цепей от токов перегрузки. В современных энергосистемах эти операции выполняются цифровыми устройствами, которые называются реле защитного типа.
Твердотельные реле
Различные типы реле
В зависимости от принципа работы и конструктивных особенностей реле бывают разных типов, например, электромагнитные реле, тепловые реле, реле переменной мощности, многомерные реле и т. Д., С различными номинальными характеристиками, размеры и приложения.Классификация или типы реле зависят от функции, для которой они используются.
Некоторые категории включают реле защиты, повторного включения, регулирования, вспомогательные реле и реле контроля. Защитные реле постоянно контролируют следующие параметры: напряжение, ток и мощность; и если эти параметры нарушают установленные пределы, они генерируют аварийный сигнал или изолируют эту конкретную цепь. Эти типы реле используются для защиты оборудования, такого как двигатели, генераторы, трансформаторы и т. Д.
Различные типы релеВ целом классификация реле зависит от электрической мощности, которая активируется током, мощностью, напряжением и многими другими величинами.Классификация основана на механической мощности, активируемой скоростью истечения газа или жидкости, давлением. Тогда как на основе теплоемкости, активируемой мощностью нагрева, а другие величины — акустические, оптические и другие.
Различные типы реле в электромагнитных типах
Эти реле состоят из электрических, механических и магнитных компонентов и имеют рабочую катушку и механические контакты. Поэтому, когда катушка активируется системой питания, эти механические контакты размыкаются или замыкаются.Тип питания может быть AC или DC. Эти электромагнитные реле далее классифицируются как
- реле постоянного и переменного тока
- Тип притяжения
- Индукционный тип
Постоянный ток и реле переменного тока
Реле переменного и постоянного тока работают по тому же принципу, что и электромагнитная индукция, но конструкция несколько отличается дифференцированы и также зависят от области применения, для которой выбраны эти реле. Реле постоянного тока используются с диодом свободного хода для обесточивания катушки, а реле переменного тока используют ламинированные сердечники для предотвращения потерь на вихревые токи.
Очень интересным аспектом переменного тока является то, что на каждом полупериоде направление подачи тока изменяется; следовательно, для каждого цикла катушка теряет свой магнетизм, поскольку нулевой ток в каждом полупериоде заставляет реле непрерывно замыкать и размыкать цепь. Итак, чтобы предотвратить это — дополнительно, одна заштрихованная катушка или другая электронная схема помещается в реле переменного тока, чтобы обеспечить магнетизм в положении нулевого тока.
Электромагнитные реле притягивающего типа
Эти реле могут работать как с переменным, так и с постоянным током и притягивать металлический стержень или кусок металла, когда на катушку подается питание.Это может быть плунжер, притягиваемый к соленоиду, или якорь, притягиваемый к полюсам электромагнита, как показано на рисунке. Эти реле не имеют временных задержек, поэтому они используются для мгновенного срабатывания. Существует больше разновидностей притяжения электромагнитного реле , а именно:
- Сбалансированная стопка — Здесь две измеряемые величины связаны из-за того, что генерируемое электромагнитное давление изменяется вдвое по сравнению с количеством ампер-витков.Доля функционального тока для этого типа реле очень минимальна. Реле имеет тенденцию выходить за пределы допустимого диапазона, когда устройство настроено на работу в быстром режиме.
- Шарнирный якорь — Здесь чувствительность реле может быть увеличена для работы с постоянным током, вставив постоянный магнит. Это также называется реле поляризованного движения.
Это различных типов электромагнитных реле .
Реле индукционного типа
Они используются как защитные реле только в системах переменного тока и могут использоваться с системами постоянного тока.Приводная сила для движения контакта создается движущимся проводником, который может быть диском или чашей, за счет взаимодействия электромагнитных потоков из-за токов замыкания.
Индукционное релеОни бывают нескольких типов, например, с экранированным полюсом, ватт-часами и индукционными чашками, и в основном используются в качестве направленных реле для защиты энергосистемы, а также для высокоскоростных коммутационных операций. В зависимости от конструкции индукционные реле классифицируются как:
- Затененный полюс — Структурированный полюс обычно активируется протеканием тока в одиночной катушке, которая намотана на магнитную структуру, имеющую воздушный зазор.Нестабильности воздушного зазора, создаваемые регулирующим током, разделяются на два потока, смещаемые заштрихованным полюсом и во времени-пространстве. Это затемненное кольцо изготовлено из медного материала, окружающего каждую часть мачты.
- Двойная обмотка, также называемая ваттметром. — Реле этого типа поставляется с электромагнитами E и U-образной формы, имеющими бездисковый механизм для вращения между электромагнитами. Фазовый сдвиг, который находится между потоками, генерируемыми электромагнитом, достигается за счет развиваемого потока двух электромагнитов, которые имеют различные значения индуктивности сопротивления для обеих систем цепи.
- Индукционный стакан — Это основано на теории электромагнитной индукции и так называемое реле индукционного стакана. Устройство состоит из двух или более электромагнитов, которые активируются катушкой реле. Катушка, которая окружает электромагнит, создает вращающееся магнитное поле. Из-за этого вращающегося магнитного поля в чашке возникает индукция тока, и поэтому чашка может вращаться. Текущее направление вращения аналогично направлению вращения чашки.
Магнитные фиксирующие реле
В этих реле используется постоянный магнит или детали с высоким коэффициентом теплопередачи, чтобы якорь оставался в той же точке, в которой наэлектризована катушка, когда источник питания катушки отключен. Реле с защелкой состоит из минимальной металлической полосы, которая входит между двумя краями.
Реле с защелкойПереключатель либо прикреплен, либо намагничен на одном конце небольшого магнита. Другая сторона прикреплена к проводу небольшого размера, который называется соленоидами.Переключатель снабжен одним входом и двумя выходными секциями по краям. Это можно использовать для переключения цепи в положения ВКЛ и ВЫКЛ. Обозначение реле с защелкой показано следующим образом:
Обозначение реле с защелкойТвердотельные реле
Твердотельное реле использует твердотельные компоненты для выполнения операции переключения без перемещения каких-либо частей. Поскольку требуемая энергия управления намного ниже по сравнению с выходной мощностью, которая должна регулироваться этим реле, это приводит к увеличению мощности по сравнению с электромагнитными реле.Они бывают разных типов: ТТР с трансформаторной связью, ТТР с фотосвязью и так далее.
Твердотельные релеНа приведенном выше рисунке показан ТТР с фотосвязью, в котором управляющий сигнал подается светодиодом и обнаруживается светочувствительным полупроводниковым устройством. Выходной сигнал этого фотодетектора используется для запуска затвора TRIAC или SCR, который переключает нагрузку.
В полупроводниковых реле с трансформаторной связью минимальное количество постоянного тока подается на первичную обмотку трансформатора с помощью преобразователя постоянного тока в переменный.Подаваемый ток затем преобразуется в переменный ток и повышается, чтобы SSR работал вместе со схемой запуска. Степень изоляции между выходной и входной секциями зависит от конструкции трансформатора.
В то время как в сценарии твердотельного устройства с фотосвязью используется светочувствительное SC-устройство для выполнения функций переключения. На светодиод подается регулируемый сигнал, который заставляет светочувствительный компонент перейти в режим проводимости за счет обнаружения света, излучаемого светодиодом.Изоляция, создаваемая SSR, сравнительно больше по сравнению с изоляцией трансформаторного типа из-за теории фотодетектирования.
В большинстве случаев SSR имеют более высокую скорость переключения, чем реле электромеханического типа. Кроме того, отсутствуют подвижные компоненты, срок их службы больше, а уровень шума минимален.
Гибридное реле
Эти реле состоят из электромагнитных реле и электронных компонентов. Обычно входная часть содержит электронную схему, которая выполняет выпрямление и другие функции управления, а выходная часть включает электромагнитное реле.
Было известно, что в реле твердотельного типа больше энергии тратится в виде теплового потока, электромагнитное реле имеет проблему изгиба контактов. Чтобы избавиться от этих недостатков в твердотельных и электромагнитных реле, используется гибридное реле. В гибридном реле одновременно работают реле EMR и SST.
Твердотельное устройство принимает ток нагрузки, что устраняет проблему архивирования. Затем система управления включает катушку в ЭМИ и контакт замыкается.Когда контакт в электромагнитном реле установлен, то регулирующий вход твердотельного реле вынимается. Это реле также снижает проблему перегрева.
Тепловое реле
Эти реле основаны на тепловом воздействии, что означает — повышение температуры окружающей среды от предельного значения заставляет контакты переключаться из одного положения в другое. В основном они используются для защиты двигателей и состоят из биметаллических элементов, таких как датчики температуры, а также элементов управления.Реле тепловой перегрузки — лучшие примеры таких реле.
Герконовое реле
Герконское реле состоит из пары магнитных полос (также называемых язычковыми), помещенных в стеклянную трубку. Этот язычок действует как якорь и как контактный нож. Магнитное поле, приложенное к катушке, наматывается на эту трубку, что заставляет эти язычки двигаться так, что выполняется операция переключения.
Герконовые релеПо размерам реле бывают микроминиатюрные, сверхминиатюрные и миниатюрные.Также по конструкции эти реле классифицируются как герметичные, герметичные и реле открытого типа. Кроме того, в зависимости от рабочего диапазона нагрузки, реле бывают микро-, малой, средней и высокой мощности.
Релетакже доступны с различными конфигурациями контактов, например, с 3-, 4- и 5-контактными реле. Способы работы этих реле показаны на рисунке ниже. Переключающие контакты могут быть типа SPST, SPDT, DPST и DPDT. Некоторые из реле являются нормально разомкнутыми (NO), а другие — нормально замкнутыми (NC).
Конфигурации контактов релеДифференциальное реле
Эти реле работают, когда изменение вектора между двумя или более электрическими величинами одного типа превышает указанный диапазон. В случае токового дифференциального реле оно функционирует, когда существует выходное соотношение между величиной и изменением фазы токов, принимаемых и выходящих из системы, которое необходимо защитить.
В общих функциональных условиях токи, принимаемые и выходящие из системы, будут иметь одинаковую фазу и величину, так что реле не работает.Принимая во внимание, что когда в системе возникает проблема, эти токи не будут иметь одинаковых величин и фаз.
Дифференциальное релеЭто реле будет иметь такое соединение, при котором колебания между входящими и выходящими токами проходят через функциональную катушку реле. Следовательно, катушка в реле активируется в состоянии проблемы из-за изменения величины тока. Таким образом, срабатывает реле и автоматический выключатель, и происходит срабатывание.
В дифференциальном реле один ТТ соединен с первичной обмоткой трансформатора, а другой ТТ — с вторичной обмоткой трансформатора. Реле связывает текущие значения с обеих сторон, и если есть какая-либо дестабилизация в значении, то реле будет работать.
Существуют дифференциальные реле тока, напряжения и смещения.
Различные типы реле в автомобильной промышленности
Это общий вид электрохимических реле, используемых в различных автомобилях, таких как автомобили, фургоны, прицепы и грузовики.Они допускают минимальный ток для регулирования и обеспечивают работу большего количества токовых цепей в транспортных средствах. Они доступны во многих типах и размерах, некоторые из них:
Реле переключения
Это наиболее внедренное автомобильное реле, которое имеет пять контактов, которые имеют следующие электрические соединения:
- Нормально разомкнутые до 30 и 87 штырьки
- Нормально замкнутые через контакты 30 и 87a
- Переключение, подключенное через 30 и (87 и 87a)
Когда реле работает в режиме переключения, оно переключается с одной цепи на другую и возвращается к исходному состоянию состояние в зависимости от состояния катушки (ВЫКЛ или ВКЛ).
Нормально разомкнутые реле
В качестве переключателя реле может иметь проводное соединение как нормально разомкнутое, тогда как в этом типе у него есть только четыре контакта, которые позволяют подключать проводку только одним способом, который обычно открыт.
Реле мигающего сигнала
Реле любого общего типа имеет 4 или 5 контактов, но в этом реле мигания будет 2 или 3 контакта.
В двухконтактном реле указателя поворота один вывод соединен со световой цепью, а другой — с питанием.В трехконтактном реле мигалки два контакта подключены к питанию и свету, а третий — к светодиодному индикатору, который указывает, что мигалка находится в состоянии ВКЛ. Несмотря на то, что название указывает на то, что это тип реле, некоторые из них работают как выключатели.
Электромеханический проблесковый маячок
Этот тип автомобильного реле содержит печатную плату с конденсатором, парой диодов и одной катушкой для создания формы вспышки, такой же, как у стандартного проблескового маячка.Эти реле обладают способностью управлять увеличенными нагрузками, обеспечивая более высокую производительность, чем у тепловых мигалок. Несмотря на то, что в этом типе подключено больше источников света, он оказывает минимальное влияние на результат.
Терморегуляторы
Большинство реле мигающих сигналов имеют терморегуляцию, например автоматические выключатели. Протекание тока через катушку мигалки генерирует тепло, когда есть необходимое количество тепла, это вызывает отклонение контактов, тем самым вызывая размыкание контактов и прерывая ток.Когда имеется необходимое количество теплоотвода, то отклонение контактов меняется на исходное, и снова будет протекать ток.
Этот процесс непрерывного размыкания и замыкания контактов генерирует мигающую последовательность сигналов. Общее количество огней, которые связаны с термомигальщиком, показывает влияние на выход.
Светодиодные мигалки
Они полностью электронные по регулировке и функциям. Они управляются минимальными твердотельными платами IC.Общее количество огней, которые связаны со светодиодной мигалкой, не влияет на выход. Эти реле в основном предназначены для работы от минимального тока с использованием светодиодов, не вызывая каких-либо проблем.
В дополнение к этому существует еще больше различных типов автомобильных реле , в том числе:
- В горшке
- Wig-Wag
- Skirted
- Время задержки
- Двойной открытый контакт
Ртутное реле, контактирующее со средой
Это подпадает под классификацию герконовых реле, в которых используется ртутный переключатель, а контакты в этом реле увлажняются ртутью.Этот металл снижает значение контактного сопротивления и снижает соответствующее падение напряжения. Повреждение оболочки может ухудшить характеристики проводимости для сигналов с минимальным значением тока.
Принимая во внимание, что для увеличения скорости приложений, ртуть устраняет функцию отскока контактов и предлагает почти быстрое замыкание цепи. Эти реле полностью зависят от положения и должны быть установлены в соответствии с требованиями проектировщика. Но с учетом вредных свойств жидкой ртути и ее стоимости, реле, контактирующие с ртутью, используются в приложениях минимально.
Повышенная скорость переключения в этих реле является дополнительным преимуществом. Капли ртути, присутствующие на каждом краю, объединяются, и приращение текущего значения по краям обычно учитывается как пикосекунды. Но в практических схемах это может регулироваться индуктивностью проводки и контактов.
Реле защиты от перегрузки
Электродвигатели широко используются в различных приложениях, например, в двигателях с вращающимися инструментами.Поскольку двигатели немного дороги, более важно следить за тем, чтобы двигатели не подвергались повреждениям.
Для предотвращения повреждений необходимо использовать реле защиты от перегрузки. Реле защиты от перегрузки предотвращают выход из строя двигателя, наблюдая за величиной тока в двигателе и, таким образом, разрывают цепь, когда происходит электрическая перегрузка или обнаруживается любое повреждение фазы. Поскольку реле не дороже двигателей, они предлагают недорогой подход к защите двигателей.
Существуют различные типы реле защиты от перегрузки, и лишь немногие из них включают электромеханические реле, электронные реле, предохранители и тепловые реле.Предохранители широко применяются для защиты устройств с минимальным током, например, в домашних условиях. В то время как электронные, тепловые и электромеханические реле используются для защиты повышенных значений тока в устройствах, таких как инженерные двигатели. Ключевыми преимуществами использования реле защиты от перегрузки являются:
- Простое управление
- Соответствующие горные комплекты будут доступны для различных типов реле защиты от перегрузки
- Точная синхронизация с подрядчиками
- Надежная защита
Статические реле
Реле которые не имеют подвижных компонентов, называются статическими реле.В этих статических реле результат достигается за счет статических частей, таких как электронные и магнитные цепи и другие статические устройства. Реле, которое входит в состав электромагнитного и статического реле, даже называется статическим реле по той причине, что статические секции получают обратную связь, тогда как электромагнитное реле используется для целей переключения. Лишь немногие из преимуществ статических реле:
- Минимальное время сброса
- Использует минимальную мощность там, где это снижает нагрузку на измерительные устройства и повышает точность
- Обеспечивает быстрый выход, увеличенный срок службы, повышенную надежность и высокую точность
- Ненужное срабатывание минимально, и благодаря этому эффективность будет увеличена.
- Эти реле не будут сталкиваться с какими-либо проблемами накопления тепла.
- Усиление входного сигнала выполняется в самом реле, и это повышает чувствительность.
- Эти устройства могут работать при землетрясениях. также в местах, подверженных наклону, что показывает, что они также устойчивы к ударам.
Существует различных типов статических реле . Вот некоторые из них:
Электронное статическое реле
Эти электронные статические реле были первыми в классификации статических реле. Ученый по имени Фитцджеральд в 1928 году продемонстрировал испытание на несущем токе, которое демонстрирует защиту линий электропередачи. Вследствие этого была обнаружена последовательность электронных систем для большинства основных типов реле предохранительных механизмов.Устройства, которые используются для измерения, представляют собой электронные клапаны.
Преобразователь статических реле
Это устройство в основном состоит из магнитного сердечника, который состоит из двух частей обмоток, обычно называемых функциональной и регулирующей обмотками. Каждая секция может состоять из одной обмотки или, если имеется более одной обмотки, будет магнитная связь всех подобных типов обмоток. Когда существуют обмотки разных групп, они не будут связаны магнитным способом.
В то время как обмотки регулирования активируются с помощью постоянного тока, а функциональные обмотки получают питание от переменного тока. Это реле работает, чтобы отображать изменяющиеся значения импеданса для токов, протекающих по функциональным обмоткам.
Статические реле выпрямительного моста
Реле пользуются повышенной популярностью благодаря усовершенствованию полупроводниковых диодов. Он включает в себя два выпрямительных моста и подвижную катушку или реле типа подвижного железа с поляризацией. Тогда общий тип — это релейные компараторы, которые зависят от выпрямительных мостов, где они могут быть скомпонованы в виде фазовых или амплитудных компараторов.
Транзисторные реле
Это обычно используемые типы статических реле. Транзистор, который работает по принципу триода, может преодолеть большинство недостатков, создаваемых электронными лампами, поэтому это наиболее развитый тип электронных реле, так называемых статических реле.
Реальность, что транзистор можно использовать как усилительный инструмент, так и как переключающий инструмент, что позволяет ему подходить для выполнения любых рабочих функций.Транзисторные схемы не только выполняют важные функции реле (например, сравнение входов, вычисление и их усвоение), но и обладают существенной эластичностью, позволяющей удовлетворить потребности множества реле.
В дополнение к этим другим типам статических реле относятся:
- Реле эффекта Холла
- МТЗ с обратнозависимой выдержкой времени
- Направленное статическое реле максимального тока
- Статическое дифференциальное реле
- Статическое дистанционное реле
Применение различных типов Реле
Поскольку существует множество типов реле, эти устройства найдут применение в различных отраслях промышленности, включая электрическую, авиационную, медицинскую, космическую и другие.Области применения:
- Используется для регулирования различных цепей
- Защищает устройства от перегрузки по напряжению и току и снижает влияние электрического повреждения на цепи
- Реализован как автоматическое изменение
- Используется для изоляции минимального уровня цепь напряжения
- Автоматические стабилизаторы — одна из его реализаций, в которых реализовано реле. Когда уровень питающего напряжения отличается от номинального напряжения, тогда набор реле анализирует изменения напряжения и регулирует цепь нагрузки, интегрируя автоматические выключатели.
- Используется для регулирования переключателей электродвигателя. Чтобы включить электродвигатель, нам обычно требуется питание 230 В переменного тока, но в некоторых ситуациях / приложениях может потребоваться включить двигатель с использованием напряжения питания постоянного тока. В таких случаях можно использовать реле.
Это некоторые из различных типов реле, которые используются в большинстве электронных, а также электрических цепей. Информация о различных типах реле служит целям читателей, и мы надеемся, что они сочтут эту основную информацию очень полезной.Учитывая огромное значение реле с zvs в схемах, эта конкретная статья о них заслуживает отзывов, запросов, предложений и комментариев читателей. Еще более важно знать о других темах, связанных с реле, таких как реле против контактора , реле и переключатель , и многие другие.
Тепловые датчики массового расхода. Каков их принцип работы?
Тепловые датчики массового расхода напрямую измеряют массовый расход газов и жидкостей. На объемные измерения влияют все условия окружающей среды и процесса, которые влияют на единицу объема или косвенно влияют на падение давления, в то время как на измерение массового расхода не влияют изменения вязкости, плотности, температуры или давления.
Тепловые массовые расходомеры часто используются для мониторинга или управления массовыми процессами, такими как химические реакции, которые зависят от относительных масс непрореагировавших ингредиентов. При обнаружении массового расхода сжимаемых паров и газов на измерения не влияют изменения давления и / или температуры.
Одна из возможностей тепловых массовых расходомеров — точно измерять низкие скорости потока газа или низкие скорости газа (менее 25 футов в минуту) — намного ниже, чем может быть обнаружено с помощью любого другого устройства.
Тепловые расходомеры доступны в исполнениях для высокого давления и высоких температур, а также из специальных материалов, включая стекло, Monel® и PFA. Проточные конструкции используются для измерения небольших потоков чистых веществ (теплоемкость постоянна, если газ чистый), в то время как конструкции с байпасом и зондами могут обнаруживать большие потоки в каналах, факельных трубах и сушилках.
Теория работы
Тепловые датчики массового расхода чаще всего используются для регулирования малых потоков газа.Они работают либо путем подачи известного количества тепла в текущий поток и измерения соответствующего изменения температуры, либо путем поддержания датчика при постоянной температуре и измерения энергии, необходимой для этого. В состав базового теплового массового расходомера входят два датчика температуры и электрический нагреватель между ними. Нагреватель может выступать в поток жидкости (Рисунок 5-8A) или может находиться вне трубы (Рисунок 5-8B).
В версии с прямым нагревом фиксированное количество тепла (q) добавляется электронагревателем.Когда технологическая жидкость течет по трубе, резистивные датчики температуры (RTD) измеряют повышение температуры, в то время как количество подводимого электрического тепла остается постоянным.
Массовый расход (м) рассчитывается на основе измеренной разницы температур (T2 — T1), коэффициента счетчика (K), расхода электрического тепла (q) и удельной теплоемкости жидкости (Cp), следующим образом:
м = Kq / (Cp (T2 — T1))
РИСУНОК 5-8A: ПОГРУЖНОЙ НАГРЕВАТЕЛЬ РИСУНОК 5-8B: ТРУБКА ВНЕШНЕГО НАГРЕВАКонструкция с подогреваемой трубкой
Расходомерыс подогреваемой трубкой были разработаны для защиты нагревателя и сенсорных элементов от коррозии и любых покрытий в процессе.При установке датчиков снаружи на трубопроводе (рис. 5-8B) чувствительные элементы реагируют медленнее, и зависимость между массовым расходом и разностью температур становится нелинейной. Эта нелинейность возникает из-за того, что вводимое тепло распределяется по некоторой части поверхности трубы и передается технологической жидкости с разной скоростью по длине трубы.
Температура стенки трубы самая высокая около нагревателя (определяется как Tw на рис. 5-8B), в то время как на некотором расстоянии нет разницы между температурой стенки и температуры жидкости.Следовательно, температуру ненагретой жидкости (Tf) можно определить путем измерения температуры стенки в этом месте, дальше от нагревателя. Этот процесс теплопередачи является нелинейным, и соответствующее уравнение отличается от приведенного выше следующим образом:
m0.8 = Kq / (Cp (Tw — Tf))
Этот расходомер имеет два режима работы: один измеряет массовый расход, поддерживая постоянную потребляемую электрическую мощность, и обнаруживая повышение температуры. Другой режим поддерживает постоянную разницу температур и измеряет количество электроэнергии, необходимое для ее поддержания.Этот второй режим работы обеспечивает гораздо больший диапазон измерений.
Байпасная конструкция
Байпасная версия теплового массового расходомера была разработана для измерения больших расходов. Он состоит из тонкостенной капиллярной трубки (приблизительно 0,125 в диаметре) и двух самонагревающихся резистивных датчиков температуры (RTD) с внешней обмоткой, которые нагревают трубку и измеряют результирующее повышение температуры (рис. 5-9A). Датчик помещается в байпас вокруг сужения в основной трубе и рассчитан на работу в области ламинарного потока во всем рабочем диапазоне.
При отсутствии потока нагреватели повышают температуру байпасной трубки примерно на 160 ° F выше температуры окружающей среды. При этом условии существует симметричное распределение температуры по длине трубы (Рисунок 5-9B). Когда имеет место поток, молекулы газа переносят тепло вниз по потоку, и профиль температуры смещается в направлении потока. Мост Уитстона, подключенный к клеммам датчика, преобразует электрический сигнал в массовый расход, пропорциональный изменению температуры.
Небольшой размер байпасной трубки позволяет минимизировать потребление электроэнергии и увеличить скорость отклика при измерении. С другой стороны, из-за небольшого размера необходимы фильтры для предотвращения засорения. Одним из серьезных ограничений является падение высокого давления (до 45 фунтов на кв. Дюйм), необходимое для развития ламинарного потока. Обычно это приемлемо только для газов высокого давления, когда давление необходимо в любом случае снизить.
Это низкая точность (2% полной шкалы), низкие эксплуатационные расходы и недорогой расходомер.Электронные блоки внутри блоков позволяют осуществлять сбор данных, запись диаграмм и взаимодействие с компьютером. Эти устройства популярны в индустрии обработки полупроводников. Современные блоки также доступны в виде полных контуров управления, включая контроллер и автоматический регулирующий клапан.
РИСУНОК 5-9A: БАЙПАС ИСПОЛЬЗУЕТ МАЛЫЙ ПРОЦЕНТ ПОТОКА РИСУНОК 5-9B: ТЕМПЕРАТУРНЫЙ ПРОФИЛЬДатчики скорости воздуха
Датчики массового расходазондового типа используются для измерения воздушных потоков и нечувствительны к присутствию умеренного количества пыли.Они поддерживают разность температур между двумя RTD, установленными на сенсорной трубке. Верхний датчик измеряет температуру газа окружающей среды (Рисунок 5-10A) и постоянно поддерживает второй RTD (рядом с кончиком зонда) на 60 ° F выше температуры окружающей среды. Чем выше скорость газа, тем больший ток требуется для поддержания разности температур.
Другой вариант датчика скорости — это массовый расходомер с тепловым насосом типа Вентури, в котором датчик массового расхода с подогревом устанавливается на минимальном диаметре расходомера Вентури, а датчик температурной компенсации ниже по потоку (Рисунок 5-10B).Входной экран смешивает поток, чтобы сделать температуру однородной. Эта конструкция используется для измерения как газа, так и жидкости (включая суспензии), причем диапазон расхода зависит от размера трубки Вентури. Падение давления относительно невелико, а точность зависит от выбора правильной глубины введения зонда.
Также доступна версия реле потока, которая содержит два датчика температуры в наконечнике. Один из датчиков нагревается, и разница температур является мерой скорости. Переключатель может использоваться для определения высокого или низкого расхода в пределах 5%.
РИСУНОК 5-10A: КОНФИГУРАЦИЯ ДАТЧИКА РИСУНОК 5-10B: ВСТАВКА ВЕНТУРИАнемометры с горячей проволокой
Термин анемометр произошел от греческих слов anemos, «ветер», и metron, «мера». Механические анемометры были впервые разработаны еще в 15 веке для измерения скорости ветра.
Термоанемометр состоит из электрически нагреваемого тонкого проволочного элемента (диаметром 0,00016 дюйма и длиной 0,05 дюйма), поддерживаемого иглами на концах (Рисунок 5-11).Вольфрам используется в качестве материала проволоки из-за его прочности и высокотемпературного коэффициента сопротивления. При помещении в движущийся поток газа проволока охлаждается; скорость охлаждения соответствует массовому расходу.
Схема нагреваемого чувствительного элемента управляется одним из двух типов твердотельных электронных схем: постоянной температуры или постоянной мощности. Датчик постоянной температуры поддерживает постоянный перепад температур между нагретым датчиком и эталонным датчиком; количество энергии, необходимое для поддержания дифференциала, измеряется как показатель массового расхода.
Анемометры постоянной температуры популярны из-за их высокочастотного отклика, низкого уровня электронного шума, устойчивости к перегоранию датчика при резком падении потока воздуха, совместимости с термопленочными датчиками и их применимости к потокам жидкости или газа.
Анемометры постоянной мощности не имеют системы обратной связи. Температура просто пропорциональна расходу. Они менее популярны, потому что их показания при нулевом расходе нестабильны, реакция на температуру и скорость медленная, а температурная компенсация ограничена.
РИСУНОК 5-11: АНЕМОМЕТР ГОРЯЧЕЙ ПРОВОЛОКИ Техническое обучение Техническое обучение .