Закрыть

Проверка npn транзистора мультиметром: NPN, PNP без выпаивания с платы

NPN, PNP без выпаивания с платы

Ни одна современная схема не обходится без полупроводниковых приборов. Самый распространённый из них — транзистор и именно он часто выходит из строя. Тому причиной — перепады напряжения, которые есть в наших сетях, нагрузки и т. д. Рассмотрим два способа позволяющие проверить исправность транзистора при помощи мультиметра. 

Содержание статьи

  • 1 Необходимый минимум сведений
  • 2 Цоколевка
  • 3 Как проверить транзистор мультиметром со встроенной функцией
  • 4 Проверка на плате
    • 4.1 Проверка биполярного транзистора PNP типа
    • 4.2 Тестируем исправность NPN транзистор
    • 4.3 Как определить базу, коллектор и эмиттер

Необходимый минимум сведений

Чтобы понять исправен биполярный транзистор или нет, нам необходимо знать хотя бы в самых общих чертах, как он устроен и работает. Это активный электронный компонент, который является полупроводниковым прибором. Есть два основных вида — NPN и PNP. Каждый из них имеет три электрода: база, эмиттер и коллектор.

Виды транзисторов и принцип работы

Коротко сформулировать принцип работы транзисторов можно таким образом, это управляемый электронный ключ. Он пропускает ток по направлению от коллектора к эмиттеру в случае NPN типа и от эмиттера к коллектору у PNP, при наличии напряжения на базе. Причём изменяя потенциал на базе, меняем степень «открытости» перехода, регулируя величину пропускаемого тока. То есть, если на базу подавать больший ток, имеем больший ток коллектор-эмиттер, уменьшим потенциал на базе, снизим ток, протекающий через транзистор.

Ещё важно знать, это то, что в обратном направлении ток течь не может. И неважно, есть потенциал на базе или нет. Он всегда течёт в направлении, на схеме указанном стрелкой. Собственно, это вся информация, которая нам нужна, чтобы знать как работает транзистор.

Цоколевка

У биполярных транзисторов средней и большой мощности цоколевка одинаковая в основном, слева направо — эмиттер, коллектор, база. У транзисторов малой мощности лучше проверять. Это важно, так как при определении работоспособности, эта информация нам понадобится.

Внешний вид биполярного транзистора средней мощности и его цоколевка

То есть, если вам необходимо определить рабочий или нет биполярный транзистор, нужно искать его цоколевку. Хотите убедиться или не знаете, где «лицо», то ищите информацию в справочнике или наберите на компьютере «имя» вашего полупроводникового прибора и добавьте слово «даташит». Это транслитерация с английского Datasheet, что переводится как «технические данные». По этому запросу вам в выдаче будет перечень характеристик прибора и его цоколёвка.

Как проверить транзистор мультиметром со встроенной функцией

Начнём с того, что есть мультиметры с функцией проверки работоспособности транзистора и определения коэффициента усиления. Их можно опознать по наличию характерного блока на лицевой панели. В ней есть гнездо под установку транзистора, круглая цветная пластиковая вставка с отверстиями под ножки полупроводникового прибора. Цвет вставки может быть любым, но обычно, он выделяется.

Первым делом переводим переключатель диапазонов (большую ручку) в соответствующее положение. Опознать режим можно по надписи — hFE. Перед тем как проверить транзистор мультиметром, определяемся с типом NPN или PNP.

Мультиметр с функцией проверки транзисторов

Далее рассматриваем разъёмы, в которые надо вставлять электроды. Они подписаны латинскими буквами: E — эмиттер, B — база, C — коллектор. В соответствии с надписями, ставим выводы полупроводникового элемента в гнёзда. Через несколько мгновений на экране высвечивается результат измерений, это коэффициент усиления транзистора. Если прибор неисправен, показаний не будет, транзистор неисправен.

Как видите, проверить рабочий транзистор или нет мультиметром со встроенной функцией проверки просто. Вот только в гнёзда нормально вставляются далеко не все электроды. Удобно устанавливать транзисторы с тонкими выводами S9014, S8550, КТ3107, КТ3102. У больших, надо пинцетом или плоскогубцами менять форму выводов, ну а транзистор на плате так не проверишь. В некоторых случаях проще проверить переходы транзистора в режиме прозвонки и определить его исправность.

Проверка на плате

Чтобы проверить транзистор мультиметром не выпаивая или нужен мультиметр с функцией прозвонки диодов. Переключатель переводим в это положение, подключение щупов стандартное: чёрный в общее звено (COM или со значком земли), красный — в среднее (гнездо для измерения сопротивления, тока, напряжения).

Как проверить транзистор мультиметром не выпаивая

Чтобы понять принцип проверки, надо вспомнить структуру биполярных транзисторов. Как уже говорили, они бывают двух типов: PNP и  NPN. То есть это три последовательные области с двумя переходами, объединёнными общей областью — базой.

Строение биполярного транзистора и как его можно представить, чтобы понять как его будем проверять

Условно, мы можем представить этот прибор как два диода. В случае с PNP типом они включены навстречу друг другу, у NPN — в зеркальном отражении. Это представление на картинке в правом столбике и ни в коем случае не отображает устройство этого полупроводникового прибора, но поясняет, что мы должны увидеть при прозвонке.

Проверка биполярного транзистора PNP типа

Итак, начнём с проверки биполярника PNP типа. Вот что у нас должно получиться:

Итак, PNP транзистор будет открыт только тогда, когда плюс подаётся на эмиттер или коллектор. Если во время испытаний есть хоть какие-то отклонения, элемент неработоспособен.

Тестируем исправность NPN транзистор

Как видим, в NPN приборе ситуация будет другой. Практически она диаметрально противоположна:

  • Если подать на базу плюс (красный щуп), а на эмиттер или коллектор минус, переход будет открыт, на экране высветятся показания — от 600 до 800 мВ.
  • Если поменять местами щупы: плюс на коллектор или эмиттер, минус на базу — переходы заперты, тока нет.
  • При прикосновении щупами к эмиттеру и коллектору тока по-прежнему быть не должно.

 

Проверка работоспособности биполярного NPN транзистора мультиметром

Как видим, этот прибор работает в противоположном направлении. Для того чтобы понять, рабочий транзистор или нет, необходимо знать его тип. Только так можем проверить транзистор мультиметром не выпаивая его с платы.

И ещё раз обращаем ваше внимание, картинки с диодами никак не отображают устройство этого полупроводникового прибора. Они нужны только для понимания того, что мы должны увидеть при проверке переходов. Так проще запомнить, и понимать показания на экране мультиметра.

Как определить базу, коллектор и эмиттер

Иногда бывают ситуации, когда нет под рукой справочника и возможности найти цоколёвку в интернете, а надпись на корпусе транзистора стала нечитаемой. Тогда, пользуясь схемами с диодами, можно опытным путём найти базу и определить тип прибора.

Строение биполярного транзистора и как его можно представить чтобы понять как его будем проверять

Путём перебора ищем положение щупов, при котором «звонятся» все три электрода. Тот вывод, относительно которого появляются показания на двух других и будет базой. Потому, плюс или минус подан на базу определяем тип, PNP или NPN. Если на базу подаём плюс — это NPN тип, если минус — это PNP.

Чтобы определить, где эмиттер,а где коллектор, надо сравнить показания мультиметра при измерении. На эмиттере ток всегда больше. Так и найдём опытным путём базу, эмиттер и коллектор.

Как проверить транзистор?

Занимаясь ремонтом и конструированием электроники, частенько приходится проверять транзистор на исправность.

Рассмотрим методику проверки биполярных транзисторов обычным цифровым мультиметром, который есть практически у каждого начинающего радиолюбителя.

Несмотря на то, что методика проверки биполярного транзистора достаточно проста, начинающие радиолюбители порой могут столкнуться с некоторыми трудностями.

Об особенностях тестирования биполярных транзисторов будет рассказано чуть позднее, а пока рассмотрим самую простую технологию проверки обычным цифровым мультиметром.

Для начала нужно понять, что биполярный транзистор можно условно представить в виде двух диодов, так как он состоит из двух p-n переходов. А диод, как известно, это ничто иное, как обычный p-n переход.

Вот условная схема биполярного транзистора, которая поможет понять принцип проверки. На рисунке p-n переходы транзистора изображены в виде полупроводниковых диодов.

Устройство биполярного транзистора p-n-p структуры с помощью диодов изображается следующим образом.

Как известно, биполярные транзисторы бывают двух типов проводимости: n-p-n и p-n-p. Этот факт нужно учитывать при проверке. Поэтому покажем условный эквивалент транзистора структуры n-p-n составленный из диодов. Этот рисунок нам понадобиться при последующей проверке.

Транзистор со структурой n-p-n в виде двух диодов.

Суть метода сводиться к проверке целостности этих самых p-n переходов, которые условно изображены на рисунке в виде диодов. А, как известно, диод пропускает ток только в одном направлении. Если подключить плюс (+) к выводу анода диода, а минус (-) к катоду, то p-n переход откроется, и диод начнёт пропускать ток. Если проделать всё наоборот, подключить плюс (+) к катоду диода, а минус (-) к аноду, то p-n переход будет закрыт и диод не будет пропускать ток.

Если вдруг при проверке выясниться, что p-n переход пропускает ток в обоих направлениях, то значит он «пробит». Если же p-n переход не пропускает ток ни в одном из направлений, то значит переход в «обрыве». Естественно, что при пробое или обрыве хотя бы одного из p-n переходов транзистор работать не будет.

Обращаем внимание, что условная схема из диодов необходима лишь для более наглядного представления о методике проверки транзистора. В реальности транзистор имеет более изощрённое устройство.

Функционал практически любого мультиметра поддерживает проверку диода. На панели мультиметра режим проверки диода изображается в виде условного изображения, который выглядит вот так.

Думаю, уже понятно, что проверять транзистор мы будем как раз с помощью этой функции.

Небольшое пояснение. У цифрового мультиметра есть несколько гнёзд для подключения измерительных щупов. Три, а то и больше. При проверке транзистора необходимо минусовой щуп (чёрный) подключить к гнезду COM (от англ. слова common – «общий»), а плюсовой щуп (красный) в гнездо с обозначением буквы омега Ω, буквы V и, возможно, других букв. Всё зависит от функционала прибора.

Почему я так подробно рассказываю о том, как подключать измерительные щупы к мультиметру? Да потому, что щупы можно элементарно перепутать и подключить чёрный щуп, который условно считается «минусовым» к гнезду, к которому нужно подключить красный, «плюсовой» щуп. В итоге это вызовет неразбериху, и, как следствие, ошибки. Будьте внимательней!

Теперь, когда сухая теория изложена, перейдём к практике.

Какой мультиметр будем использовать?

В качестве мультиметра использовался многофункциональный мультитестер Victor VC9805+, хотя для измерений подойдёт любой цифровой тестер, вроде всем знакомых DT-83x или MAS-83x. Такие мультиметры можно купить не только на радиорынках, магазинах радиодеталей, но и в магазинах автозапчастей. Подходящий мультиметр можно купить в интернете, например, на Алиэкспресс.

Вначале проведём проверку кремниевого биполярного транзистора отечественного производства КТ503. Он имеет структуру n-p-n. Вот его цоколёвка.

Для тех, кто не знает, что означает это непонятное слово цоколёвка, поясняю. Цоколёвка — это расположение функциональных выводов на корпусе радиоэлемента. Для транзистора функциональными выводами соответственно будут коллектор (К или англ.- С), эмиттер (Э или англ.- Е), база (Б или англ.- В).

Сначала подключаем красный (+) щуп к базе транзистора КТ503, а чёрный (-) щуп к выводу коллектора. Так мы проверяем работу p-n перехода в прямом включении (т. е. когда переход проводит ток). На дисплее появляется величина пробивного напряжения. В данном случае оно равно 687 милливольтам (687 мВ).

Далее не отсоединяя красного щупа от вывода базы, подключаем чёрный («минусовой») щуп к выводу эмиттера транзистора.

Как видим, p-n переход между базой и эмиттером тоже проводит ток. На дисплее опять показывается величина пробивного напряжения равная 691 мВ. Таким образом, мы проверили переходы Б-К и Б-Э при прямом включении.

Чтобы удостовериться в исправности p-n переходов транзистора КТ503 проверим их и в, так называемом, обратном включении. В этом режиме p-n переход ток не проводит, и на дисплее не должно отображаться ничего, кроме «1». Если на дисплее единица «1», то это означает, что сопротивление перехода велико, и он не пропускает ток.

Чтобы проверить p-n переходы Б-К и Б-Э в обратном включении, поменяем полярность подключения щупов к выводам транзистора КТ503. Минусовой («чёрный») щуп подключаем к базе, а плюсовой («красный») сначала подключаем к выводу коллектора…

…А затем, не отключая минусового щупа от вывода базы, к эмиттеру.

Как видим из фотографий, в обоих случаях на дисплее отобразилась единичка «1», что, как уже говорилось, указывает на то, что p-n переход не пропускает ток. Так мы проверили переходы Б-К и Б-Э в обратном включении.

Если вы внимательно следили за изложением, то заметили, что мы провели проверку транзистора согласно ранее изложенной методике. Как видим, транзистор КТ503 оказался исправен.

Пробой P-N перхода транзистора.

В случае если какой либо из переходов (Б-К или Б-Э) пробиты, то при их проверке на дисплее мультиметра обнаружиться, что они в обоих направлениях, как в прямом включении, так и в обратном, показывают не пробивное напряжение p-n перехода, а сопротивление. Это сопротивление либо равно нулю «0» (будет пищать буззер), либо будет очень мало.

Обрыв P-N перехода транзистора.

При обрыве, p-n переход не пропускает ток ни в прямом, ни в обратном направлении – на дисплее в обоих случаях будет «1». При таком дефекте p-n переход как бы превращается в изолятор.

Проверка биполярных транзисторов структуры p-n-p проводится аналогично. Но при этом необходимо сменить полярность подключения измерительных щупов к выводам транзистора. Вспомним рисунок условного изображения транзистора p-n-p в виде двух диодов. Если забыли, то гляньте ещё раз и вы увидите, что катоды диодов соединены вместе.

В качестве образца для наших экспериментов возьмём отечественный кремниевый транзистор КТ3107

структуры p-n-p. Вот его цоколёвка.

В картинках проверка транзистора будет выглядеть так. Проверяем переход Б-К при прямом включении.

Как видим, переход исправен. Мультиметр показал пробивное напряжение перехода – 722 мВ.

То же самое проделываем и для перехода Б-Э.

Как видим, он также исправен. На дисплее – 724 мВ.

Теперь проверим исправность переходов в обратном направлении – на наличие «пробоя» перехода.

Переход Б-К при обратном включении…

Переход Б-Э при обратном включении.

В обоих случаях на дисплее прибора – единичка «1». Транзистор исправен.

Подведём итог и распишем краткий алгоритм проверки транзистора цифровым мультиметром:

  • Определение цоколёвки транзистора и его структуры;

  • Проверка переходов Б-К и Б-Э в прямом включении с помощью функции проверки диода;

  • Проверка переходов Б-К и Б-Э в обратном включении (на наличие «пробоя») с помощью функции проверки диода;

При проверке необходимо помнить о том, что кроме обычных биполярных транзисторов существуют различные модификации этих полупроводниковых компонентов. К таковым можно отнести составные транзисторы (транзисторы Дарлингтона), «цифровые» транзисторы, строчные транзисторы (так называемые «строчники») и т. д.

Все они имеют свои особенности, как, например, встроенные защитные диоды и резисторы. Наличие этих элементов в структуре транзистора порой усложняют их проверку с помощью данной методики. Поэтому прежде чем проверить неизвестный вам транзистор желательно ознакомиться с документацией на него (даташитом). О том, как найти даташит на конкретный электронный компонент или микросхему, я рассказывал здесь.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

  • Какие бывают припои?

  • Как сделать печатную плату маркером?

  • Зачем нужен супрессор?

 

Как проверить транзисторы NPN и PNP с помощью мультиметра.

Нравится и делится

Интерпретация того, является ли транзистор типом PNP или NPN, ставила многих людей в затруднительное положение при выборе транзистора. Просто представьте, что вы работаете над схемой и вам нужны транзисторы, но вы не можете знать, какой у вас тип — PNP или NPN. Я хорошо помню те дни, когда они должны были маркировать мой транзистор в магазине, чтобы помочь мне идентифицировать их, не зная, только с помощью мультиметра, я мог определить, является ли транзистор PNP или NPN. Заставляет меня пройти через строгий стресс, проверяя этикетку, и иногда этикетка становится бледной для просмотра.

Но, зная, как пользоваться мультиметром, я смог умело определить, является ли транзистор транзистором NPN или PNP. Так что поверьте мне, что так много людей, у которых все еще есть проблемы, с которыми я сталкиваюсь, должны прочитать этот конкретный пост, поскольку я делюсь решением проблемы.

Прежде чем приступить к основному делу, давайте напомним себе, как мы можем определить цоколевку транзистора.

Как определить распиновку транзисторов BJT.
Для ТО9Транзисторы 2А, ТО92Б и ТО92С.

Транзистор этого типа имеет трехвыводную схему контактов: коллектор, база и эмиттер. Есть способ, которым мы пользуемся при определении этого вывода на биполярном транзисторе. Поместив транзистор плоской поверхностью вверх, с левой стороны пометьте первый вывод эмиттера, вторую базу и третий коллектор.

Для транзисторов ТО18.

Этот тип транзистора имеет круглый металлический корпус с выводами под металлической чашкой.

, чтобы определить клемму этого типа транзистора, выберите транзистор и обратите внимание на небольшой выступ вокруг металлического корпуса

. Ближний к проекции штифт — это эмиттер, а центральный — база с последним эмиттером.

Для транзисторов TO220

Это тип транзисторов, которые выглядят как микросхема регулятора напряжения. Обычно они подключаются к радиатору охлаждения в контурах охлаждения.

При идентификации цоколевки этого типа транзистора. Металлическая сторона транзистора обращена к земле, а другая сторона обращена вверх. Начиная с левой стороны, пронумеруйте и пометьте контакты. Первый — это база, второй — коллектор, а последний — излучатель.

Тип транзистора ТО3.

эта форма транзистора имеет металлический корпус корпуса и два контакта под транзистором. Металлический корпус транзистора является эмиттером, а оставшиеся два вывода — базой и коллектором.

Как проверить электронный диод с помощью мультиметра

Как мультиметр можно использовать для определения PNP и NPN транзисторов BJT.

Зная распиновку транзистора, следующим шагом будет определить, является ли транзистор типом PNP или NPN. И это можно сделать, просто воспользовавшись мультиметром или изучив схемы транзисторов. При проверке транзистора в цепи удалите транзистор из цепи перед проверкой.

Этапы идентификации BJT-транзистора типа NPN.
  • Установите мультиметр в режим измерения диодов. Это можно сделать, повернув ручку и установив ее в режим диода.
  • Включите мультиметр и поместите красный щуп мультиметра на средний контакт (базу) транзистора.
  • Используйте второй щуп измерителя (черный) и коснитесь первого контакта (эмиттера). Некоторые значения напряжения будут отображаться на измерителе.
  • оставив красный щуп на базе, меняем черный щуп на коллектор, третий пин, и записываем значение напряжения на мультиметре.
  • Логика теста NPN такова: эмиттер (E) из материала N-типа такой же, как катод диода.
Проверка транзистора NPN с помощью мультиметра

База (В) из материала N-типа такая же, как и анод диода.

коллектор (C) из материала типа N, такой же, как катод диода.

  • поэтому, если положительный щуп мультиметра подключен к аноду, а отрицательный щуп к аноду, то измеритель будет отображать напряжение от 0,5 В до 0,7 В. А когда щуп подключен наоборот, на индикаторе отображается OL, что означает обрыв цепи.
Идентификация транзистора BJT типа PNP
  • Установите мультиметр в режим диода.
  • Поместите отрицательный щуп мультиметра на контакт 2 (База) транзистора.
  • Прикоснитесь положительным щупом к контакту 1 (эмиттер) транзистора, и измеритель отобразит напряжение. Вольт будет между 0,5В-0,7В.
  • Прикосновение положительного щупа к контакту 3 (коллектор). Счетчик по-прежнему будет показывать вольт. Между 0,5В — 0,7В.
  • Снятие отрицательного щупа с основания и установка его на любой другой контакт. Мультиметр не будет отображать OL.

Нравится и делиться

By Sparkrey ElectronicsLeave a Comment on Как проверить транзисторы NPN и PNP с помощью мультиметра.

Как проверить биполярный транзистор с помощью цифрового мультиметра

Биполярные транзисторы состоят из трехслойного полупроводникового «сэндвича» либо PNP, либо NPN. Таким образом, транзисторы регистрируются как два диода, соединенных встречно-параллельно, при проверке мультиметра с помощью функции «сопротивление» или «проверка диода», как показано на рисунке ниже. Показания низкого сопротивления на базе с черными отрицательными (-) выводами соответствуют материалу N-типа в базе PNP-транзистора. На условном обозначении материал N-типа «указывает» стрелкой перехода база-эмиттер, который является базой для данного примера. Эмиттер P-типа соответствует другому концу стрелки перехода база-эмиттер, эмиттеру. Коллектор очень похож на эмиттер и также представляет собой материал P-типа PN-перехода.

Проверка транзисторного измерителя PNP: (a) вперед B-E, B-C, низкое сопротивление; (б) обратный B-E, B-C, сопротивление ∞.

Здесь я предполагаю использование мультиметра только с одной функцией диапазона непрерывности (сопротивления) для проверки PN-переходов. Некоторые мультиметры оснащены двумя отдельными функциями проверки непрерывности: сопротивления и «проверки диодов», каждая из которых имеет свое назначение. Если ваш измеритель имеет специальную функцию «проверки диодов», используйте ее, а не диапазон «сопротивления», и измеритель будет отображать фактическое прямое напряжение PN-перехода, а не только то, проводит ли он ток.

Конечно, показания счетчика будут прямо противоположными для NPN-транзистора, когда оба PN-перехода обращены в другую сторону.

Показания низкого сопротивления с красным (+) выводом на базе — это «противоположное» условие для NPN-транзистора.

Если в этом тесте используется мультиметр с функцией «проверки диодов», будет обнаружено, что переход эмиттер-база имеет несколько большее прямое падение напряжения, чем переход коллектор-база. Эта разница в прямом напряжении связана с разницей в концентрации легирования между областями эмиттера и коллектора транзистора: эмиттер представляет собой гораздо более сильно легированный кусок полупроводникового материала, чем коллектор, в результате чего его соединение с базой создает более высокое прямое напряжение. уронить.

Зная это, становится возможным определить какой провод какой на немаркированном транзисторе. Это важно, поскольку корпуса транзисторов, к сожалению, не стандартизированы. Все биполярные транзисторы, конечно, имеют три провода, но расположение трех проводов на фактическом физическом корпусе не расположено в каком-то универсальном стандартизированном порядке.

Предположим, техник находит биполярный транзистор и приступает к измерению целостности цепи с помощью мультиметра, установленного в режим «проверка диодов». Измеряя между парами проводов и записывая значения, отображаемые измерителем, техник получает данные на рисунке ниже.

Неизвестный биполярный транзистор. Какие выводы являются эмиттерными, базовыми и коллекторными? Показания омметра между клеммами.
  • Провода 1 (+) и 2 (-) измерителя: «OL»
  • Провода 1 (-) и 2 (+) измерителя: «OL»
  • Провода 1 (+) и 3 (-) ): 0,655 В
  • Провода 1 (-) и 3 (+) измерителя: «OL»
  • Провода 2 (+) и 3 (-) измерителя: 0,621 В
  • Провода 2 (-) и 3 измерителя (+): «OL

Единственными комбинациями контрольных точек, дающих показания электросчетчика, являются провода 1 и 3 (красный щуп на 1 и черный щуп на 3) и провода 2 и 3 (красный щуп на 2 и черный щуп на 3). Эти два чтения

должен указывать прямое смещение перехода эмиттер-база (0,655 В) и перехода коллектор-база (0,621 В).

Теперь ищем один провод, общий для обоих наборов токопроводящих показаний. Это должно быть соединение базы транзистора, поскольку база является единственным слоем трехслойного устройства, общим для обоих наборов PN-переходов (эмиттер-база и коллектор-база). В этом примере этот провод имеет номер 3, являясь общим для комбинаций контрольных точек 1-3 и 2-3. В обоих этих наборах показаний счетчика черный  (-) измерительный щуп касался провода 3, что говорит нам о том, что база этого транзистора изготовлена ​​из полупроводникового материала N-типа (черный = минус). Таким образом, транзистор представляет собой PNP с базой на проводе 3, эмиттером на проводе 1 и коллектором на проводе 2, как показано на рисунке ниже.

Клеммы BJT, определяемые с помощью омметра
  • E и C high R: 1 (+) и 2 (-): «OL»
  • C и E high R: 1 (-) и 2 (+): « OL”
  • E и B вперед: 1 (+) и 3 (-): 0,655 В
  • E и B реверс: 1 (-) и 3 (+): «OL»
  • C и B вперед: 2 (+) и 3 (-): 0,621 В
  • C и B реверс: 2 (-) и 3 (+): «OL»

Обратите внимание, что базовый провод в этом примере — это , а не средний вывод транзистора, как можно было бы ожидать от трехслойной модели «сэндвич» биполярного транзистора. Это довольно часто имеет место и может сбить с толку новых студентов, изучающих электронику. Единственный способ убедиться в том, какой вывод какой, — это проверить измерительным прибором или обратиться к «паспорту данных» производителя по этому конкретному номеру детали транзистора.

Знание того, что биполярный транзистор ведет себя как два встречно включенных диода при проверке измерителем проводимости, помогает идентифицировать неизвестный транзистор исключительно по показаниям измерителя. Это также полезно для быстрой функциональной проверки транзистора. Если бы технический специалист измерил непрерывность цепи в более чем двух или менее чем в двух из шести комбинаций измерительных проводов, он или она немедленно определил бы, что транзистор неисправен (или что

не был биполярным транзистором, а скорее что-то еще — вполне возможная возможность, если для точной идентификации нет номеров деталей!). Однако «двухдиодная» модель транзистора не может объяснить, как и почему он действует как усилительное устройство.

Чтобы лучше проиллюстрировать этот парадокс, давайте рассмотрим одну из схем транзисторного переключателя, используя физическую схему на рисунке ниже , а не условное обозначение транзистора. Таким образом, два соединения PN будут лучше видны.

Небольшой ток базы, протекающий в переходе база-эмиттер, смещенный в прямом направлении, позволяет протекать большому току через переход база-коллектор, смещенный в обратном направлении.

Диагональная стрелка серого цвета показывает направление потока электронов через переход эмиттер-база. Эта часть имеет смысл, поскольку электроны текут от эмиттера N-типа к базе P-типа: переход явно смещен в прямом направлении. Однако переход база-коллектор — это совсем другое дело. Обратите внимание, как толстая стрелка серого цвета указывает направление потока электронов (вверх) от базы к коллектору. С основанием из материала P-типа и коллектором из материала N-типа это направление потока электронов явно противоположно направлению, обычно связанному с PN-переходом! Обычный узел PN не допускал бы этого «обратного» направления потока, по крайней мере, без значительного противодействия. Однако насыщенный транзистор показывает очень небольшое сопротивление электронам на всем пути от эмиттера к коллектору, о чем свидетельствует свечение лампы!

Очевидно, что здесь происходит что-то, что не поддается простой «двухдиодной» объяснительной модели биполярного транзистора. Когда я впервые узнал о работе транзистора, я попытался сконструировать собственный транзистор из двух встречно-параллельных диодов, как показано на рисунке ниже.

Пара встречных диодов не работает как транзистор!

Моя схема не работала, и я был озадачен. Каким бы полезным ни было описание транзистора с двумя диодами для целей тестирования, оно не объясняет, как транзистор ведет себя как управляемый переключатель.

В транзисторе происходит следующее: обратное смещение перехода база-коллектор предотвращает ток коллектора, когда транзистор находится в режиме отсечки (то есть когда ток базы отсутствует). Если переход база-эмиттер смещен в прямом направлении управляющим сигналом, нормально блокирующее действие перехода база-коллектор отменяется, и ток через коллектор разрешается, несмотря на то, что электроны проходят через этот PN «неправильным путем». узел. Это действие зависит от квантовой физики полупроводниковых переходов и может иметь место только тогда, когда два перехода правильно разнесены, а концентрации легирования трех слоев правильно пропорциональны. Два последовательно соединенных диода не соответствуют этим критериям; верхний диод никогда не может «включиться» при обратном смещении, независимо от того, какой ток проходит через нижний диод в петле основного провода. Дополнительные сведения см. в разделе Биполярные переходные транзисторы, глава 2.

О том, что концентрации примесей играют решающую роль в особых возможностях транзистора, свидетельствует и тот факт, что коллектор и эмиттер не взаимозаменяемы. Если рассматривать транзистор просто как два встречно-параллельных PN-перехода или просто как простой сэндвич из материалов N-P-N или P-N-P, может показаться, что любой конец транзистора может служить коллектором или эмиттером. Однако это не так. При подключении «назад» в цепи ток база-коллектор не сможет управлять током между коллектором и эмиттером. Несмотря на то, что и эмиттерный, и коллекторный слои биполярного транзистора имеют одинаковое легирование тип  (либо N, либо P), коллектор и эмиттер точно не идентичны!

Ток через переход эмиттер-база позволяет протекать через переход база-коллектор с обратным смещением. Действие базового тока можно рассматривать как «открытие ворот» для тока через коллектор. Более конкретно, любая заданная величина тока между эмиттером и базой допускает ограниченную величину тока между базой и коллектором. На каждый электрон, который проходит через переход эмиттер-база и далее через провод базы, определенное количество электронов проходит через переход база-коллектор и не более.

В следующем разделе это ограничение тока транзистора будет исследовано более подробно.

  • При проверке мультиметром в режимах «сопротивление» или «проверка диода» транзистор ведет себя как два встречно-параллельных PN (диодных) перехода.
  • PN-переход эмиттер-база имеет несколько большее прямое падение напряжения, чем PN-переход коллектор-база, из-за более сильного легирования эмиттерного полупроводникового слоя.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *