Закрыть

Проверка тиристора на исправность: Как проверить тиристор мультиметром на примере прозвона ку202н

Содержание

Как проверить тиристор мультиметром + видео

Тиристоры используются во многих электронных устройствах, начиная от бытовых приборов и заканчивая мощными силовыми установками. Ввиду особенностей этих полупроводниковых элементов проверить их на исправность с помощью только одного мультиметра затруднительно. В крайнем случае, можно определить пробой перехода. Для полноценного тестирования потребуется собрать несложную схему, ее описание будет приведено в статье.

Начнем с подготовительного этапа, а именно с того, что нам потребуется сделать перед проверкой.

Предварительная подготовка

Перед тестированием любого радиокомпонента будь то тиристор, транзистор или диод, нам необходимо ознакомиться с его спецификацией. Для этого находим маркировку на корпусе полупроводникового элемента.

Маркировка обозначена красным овалом

Найдя маркировку, начинаем поиск спецификации (достаточно сделать соответствующий запрос в поисковике или в тематических форумах). Даташит на электронный компонент содержит много полезной информации, начиная от технических характеристик и заканчивая расположением выводов и списком аналогов (что особенно полезно при поиске замены).

Даташит на BT151 (аналог КУ202Н)

Определившись с типом и цоколевкой, приступаем к первому этапу проверки, для этого нам понадобится только мультиметр. В большинстве случаев проверить элемент на пробой, можно не выпаивая его из платы, поэтому на данном этапе паяльник не нужен.

Тестирование на пробой

Начнем с предварительной проверки, которая будет заключаться в измерении сопротивления между выходами «К» и «УЭ», потом «А» и «К». Алгоритм наших действий будет следующим:

  1. Включаем прибор в режим «прозвонки» и снимаем измерения с перехода между выводами «К» и «УЭ», в соответствии с рисунком 3. Если полупроводник исправен, отобразится сопротивление перехода в диапазоне от 40 Ом до 0,55 кОм. Рис 3. Измеряем сопротивление между УЭ и К
  2. Меняем щупы местами и повторяем процесс, результат должен быть примерно таким же, как в пункте 1. Заметим, что чем больше сопротивление между выводами «УЭ» и «К», тем меньше ток открытия, а значит — выше чувствительность устройства.
  3. Меряем сопротивление между выводами «А» и «К» (см. рис. 4). На индикаторе мультиметра должно высветиться бесконечно большое сопротивление, причем, вне зависимости от полярности подключенного измерительного устройства. Иное значение указывает на пробой в переходе. Для «чистоты» проверки лучше выпаять подозрительную деталь и повторить тестирование.
Рис 4. Измеряем сопротивление перехода  Анод-Катод

Как уже упоминалось выше, такая методика проверки мультиметром не позволяет полностью протестировать работоспособность тиристора, нам потребуется несколько усложнить процесс.

Проверка на открытие-закрытие

Предыдущее тестирование позволяет определить, имеется ли пробой, но не дает возможности проверить отсутствие внутреннего обрыва. Поэтому переводим мультиметр в режим «прозвонки» и подключаем к нему тиристор, в соответствии с рисунком 5 (щуп с черным проводом к выводу «К», красный — к «А»).

Рис. 5. Подключение для проверки на открытие

При таком подключении отобразится бесконечно большое сопротивление. Теперь соединяем на несколько мгновений «УЭ» с выходом «А», прибор покажет падение сопротивления, и после отключения «УЭ», показание опять вырастет до бесконечности. Это связано с тем, что идущего через щупы тока недостаточно для удержания тиристора в открытом состоянии. Поэтому, чтобы убедиться в работоспособности полупроводникового элемента, необходимо собрать несложную схему.

Самодельный пробник для тиристоров

В интернете можно найти более простые схемы, где используется только лампочка и батарейка, но такой вариант не совсем удобен. На рисунке 6 представлена схема, позволяющая протестировать работу устройства, подавая на него постоянное и переменное питание.

Рисунок 6. Пробник для тиристоров

Обозначения:

  • Т1 – трансформатор, в нашем случае использовался ТН2, но подойдет любой другой, если у него имеется вторичная обмотка 6,3 V.
  • L1 – обычная миниатюрная лампочка на 6,3 V и 0,3 А (например, МН6,3-0,3).
  • VD1 – выпрямительный диод любого типа с обратным напряжением более 10 вольт и током от 300 мА и выше (например, Д226).
  • С1 – конденсатор емкостью 1000 мкФ, и рассчитанный на напряжение 16 В.
  • R1 – сопротивление с номиналом 47 Ом.
  • VD2 – тестируемый тиристор.
  • FU1 – предохранитель на 0,5 А, если в схеме для проверки тиристоров используется мощный силовой трансформатор, номинал предохранителя нужно увеличить (узнать потребляемый ток можно воспользовавшись мультиметром).

После того, как пробник собран, приступаем к проверке, выполняется она по следующему алгоритму:

  1. Подключаем к собранному прибору тестируемый полупроводниковый элемент (например, КУ202Н), в соответствии с рисунком 5 (для определения цоколевки следует обратиться к справочной информации).
  2. Переводим переключатель S2 для тестирования в режиме постоянного тока (положение «2»).
  3. Включаем пробник тумблером S1, индикатор L1 не должен засветиться.
  4. Нажимаем S3, в результате на «УЭ» подается напряжение через резистор R1, что переводит тиристор в открытое состояние, на индикаторную лампочку поступает напряжение, и она начинает светиться.
  5. Отпускаем S3, поскольку полупроводниковый элемент остается открытым, лампочка продолжает гореть.
  6. Меняем положение переключателя, переводя его в положение «О», тем самым мы отключаем питание от тиристора, в результате он закрывается и лампа гаснет.
  7. Теперь проверяем работу элемента в режиме переменного напряжения, для этой цели переводим S2 в положение «1». Благодаря такой манипуляции мы берем питание непосредственно со вторичной обмотки трансформатора (до выпрямительного диода). Индикаторная лампа не горит.
  8. Нажимаем S3, лампа начинает светиться в половину своей мощности, это связано с тем, что при открытии через тиристор проходит только одна полуволна переменного напряжения.
    Отпускаем S3 – индикаторная лампочка гаснет.

Если тестируемый элемент вел себя так, как описывается, то можно констатировать, что он находится в рабочем состоянии. Соответственно, если индикатор горит постоянно, это указывает на пробой, а когда при нажатии S3 он не загорается, можно определить внутренний обрыв (при условии, что лампочка рабочая).

Проверка без выпаивания детали с платы

В большинстве случаев проверить тиристор мультиметром на пробой можно прямо на плате, но чтобы выполнить диагностику самодельным тестером, полупроводник придется выпаять.

Как проверять тиристоры исправность не выпаивая

Тиристоры принадлежат к классу диодов. Но помимо анода и катода, у тиристоров есть третий вывод – управляющий электрод.

  • Применение тиристоров ↓
  • Проверка с помощью метода лампочки и батарейки ↓
  • Проверка мультиметром ↓
  • Другие варианты проверки ↓
  • Блиц-советы ↓

Тиристор – это своего рода электронный выключатель, состоящий из четырех слоев, который может быть в двух состояниях:

  1. Высокая проводимость (открытое).
  2. Низкая проводимость (закрытое).

Тиристоры обладают высокой мощностью, благодаря чему они проводят коммутацию цепи при напряжении доходящей до 5 тысяч вольт и с силой тока равняющейся 5 тысячам ампер. Подобные выключатели способны проводить ток лишь в прямом направлении, а в состоянии низкой проводимости они способны выдержать даже обратное напряжение.

Чтобы приключаться между состояниями, используется специальная технология, которая передает сигналы. С помощью сигнала от объекта управления, тиристор станет в положении высокой проводимости (открытое), а для того чтобы его выключить нужно заряженный конденсатор соединить с ключом.

Есть разные тиристоры, которые отличаются друг от друга характеристиками, управлением и т.д.

Самые известные типы данных устройств:

  • Диодный. Переходит в проводящий режим, когда уровень тока повышается.
  • Инверторный. Он переходит в режим низкой проводимости быстрей подобных устройств.
  • Симметричный. Устройство похоже на 2 устройства со встречно-параллельными диодами.
  • Оптотиристор. Работает благодаря потоку света.
  • Запираемые.

Применение тиристоров

Применение тиристоров очень широкое, начиная от устройств зарядки для автомобиля и заканчивая генераторами и трансформаторами.

Общее применение делится на четыре группы:

  • Экспериментальные устройства.
  • Пороговые устройства.
  • Силовые ключи.
  • Подключение постоянного тока.

Цены на устройства бывают разные, всё зависит от марки производителя и технических характеристик. Отечественные производители делают отличные тиристоры, по небольшой стоимости. Одни из самых распространенных отечественных тиристоров, это устройства серии КУ 202е – используются в бытовых приборах.

Вот некоторые характеристики данного тиристора:

  • Обратное напряжение в состоянии высокой проводимости, максимально 100 В.
  • Напряжение в положении низкой проводимости 100 В.
  • Импульс в состоянии высокой проводимости – 30 А.
  • Повторный импульс в этом же положении – 10 А.
  • Постоянное напряжение 7 В.
  • Обратный ток – 4 мА
  • Ток постоянного типа – 200 мА.
  • Среднее напряжение -1,5 В.
  • Время включения – 10мкс.
  • Выключение – 100 мкс.

Иногда возникают ситуации, в которых необходимо проверить тиристор на работоспособность. Есть различные методы проверки, в этой статье будут рассмотрены основные из них.

Тиристоры быстродействующие ТБ333-250

Проверка с помощью метода лампочки и батарейки

Для этого метода достаточно иметь под рукой лишь лампочку, батарейку, 3 проводка и паяльник, чтобы припаять провода к электродам. Такой набор найдется в доме у каждого.

При проверке прибора с помощью метода батарейки и лампочки, нужно оценить нагрузку тока сто mA, которую создает лампочка, на внутренней цепи. Применять нагрузку следует кратковременно. При использовании данного метода, редко случается короткое замыкание, но чтобы быть уверенным на сто процентов, что его точно не будет, достаточно пропустить ток через все пары электродов тиристора в обоих направлениях.

Проверка методом лампочки и батарейки осуществляется по трём схемам:

  • В первой схеме на управляющий электрод положительный потенциал не подается, благодаря чему не пропускается ток и лампочка не загорается. В случае если лампочка горит, тиристор работает неправильно.
  • Во второй схеме тиристор приводится в состояние высокой проводимости. Для этого нужно подать плюсовой потенциал на управляющий электрод (УЭ). В этом случае, если лампочка не горит, значит с тиристором что-то не так.
  • На третьей схеме с УЭ питание отключается, ток в этом случае проходит через анод и катод. Ток проходит благодаря удержанию внутреннего перехода. Но в этом случае, лампочка может не загореться не только из-за неисправности тиристора, но и из-за протекания тока меньшей величины через цепь, чем крайнее значение удержания.

Так исправность тиристора легко проверить в домашних условиях, не имея под рукой специального оборудования. Если разорвать цепь через анод или катод, у тиристора активируется состояние низкой проводимости.

При использовании данного метода, редко случается короткое замыкание, но чтобы быть уверенным на сто процентов, что его точно не будет, достаточно пропустить ток через все пары электродов тиристора в обоих направлениях

Проверка мультиметром

Это самый простой вариант для проверки. В этом методе анод и контакты УЭ подключаются к прибору для измерения (мультиметру). Роль постоянного источника тока здесь играют батареи мультиметра. В качестве индикатора – стрелки или цифровые показатели.

Что нужно, чтобы проверить тиристор мультиметром:

  1. Подцепить черный щуп с минусом к катоду.
  2. Подцепить красный щуп с плюсом к аноду.
  3. Один конец выключателя соединить с разъемом красного щупа.
  4. Настроить мультиметр для измерения сопротивления, не превышающего 2 тысячи ОМ.
  5. Быстро включить и отключить выключатель.
  6. Если проход тока удерживается, значит с тиристором всё хорошо. Чтобы его отключить достаточно, отсоединить напряжение от одного из электродов (анод или катод).
  7. В случае если удерживания проводимости нет, нужно поменять щупы местами и проделать всё с самого начала.
  8. Если перекидывание щупов не помогло, то тиристор неисправен.

Чтобы проверить тиристор не выпаивая, нужно отсоединить УЭ от цепной схемы. Далее нужно проделать все пункты, которые описаны выше.

Роль постоянного источника тока здесь играют батареи мультиметра, в качестве индикатора – стрелки или цифровые показатели

Другие варианты проверки

Также тиристор можно проверить с помощью тестера. Для этого понадобится тестер, батарейка шести – десяти вольт и проводки.

Чтобы проверить устройство тестером нужно следовать следующей схеме:

Еще тиристор можно проверить с помощью омметра. Этот метод похож на проверку мультиметром и тестером. Потребуется:

  • Подключить плюс омметра к аноду, а минус к катоду. На датчике омметра должно быть показано высокое сопротивление.
  • Замкнуть вывод анода и УЭ, сопротивление на датчике омметра должно резко спасть.

Вот в принципе и вся инструкция для проверки. Если после этих действий отсоединить УЭ от анода, но не разрывать связь анода с омметром, датчик устройства должен показывать низкое сопротивление (это возникает, если ток анода, больше тока удержания).

Также существует еще один способ проверки тиристора с помощью омметров, для этого понадобится дополнительный омметр. Нужно плюсовой вывод одного омметра подключить к аноду, сопротивление в этот момент должно показываться высокое. Далее следует, также плюсовой вывод, но уже другого омметра, быстро подключить и отключить от управляющего электрода (УЭ), в этот момент сопротивление первого омметра резко уменьшится.

Блиц-советы

Рекомендации:

  1. Перед тем как проверять тиристор, следует внимательно ознакомиться с техническими характеристиками данного устройства. Эти знание помогут быстрей и эффективней проверить тиристор.
  2. Обычные, стандартные устройства для измерения (омметр, тестер, мультиметр) хорошо зарекомендовали себя для проверки тиристора, но современные приборы, дадут информацию намного точней. К тому же их гораздо легче использовать.
  3. Во избежание неприятных ситуаций все схемы должны собираться в точности.
  4. В работе с любыми диодными устройствами, включая тиристоры, нужно соблюдать технику безопасности.

Защита тиристора:

Тиристоры действуют на скорость увеличение прямого тока. В тиристорах обратный ток восстановления. Если этот ток упадет до низшего значения, может возникнуть перенапряжение. Чтобы предотвратить перенапряжения используются схемы ЦФТП. Также для защиты используют варисторы, их подключают к местам, где выводы индуктивной нагрузки.

Кремниевый выпрямитель (SCR) | Строительство | Операция | Характеристики | Тестирование

Хотите создать сайт? Найдите бесплатные темы и плагины WordPress.

В этой статье рассматривается конструкция выпрямителя с кремниевым управлением (SCR), работа, коммутация, характеристики, требования к затвору, тестирование и применение, а также соответствующие схемы и блок-схемы.

Тиристор представляет собой кремниевый односторонний трехполюсный тиристор. В настоящее время это наиболее часто используемый тиристор с наивысшей номинальной мощностью. Доступны SCR с номинальным током от 1,0 А до значений, превышающих 1000 А, и номинальным напряжением до 5 кВ.

Устройство работает почти так же, как диод p–n  ; то есть он позволит току течь в одном направлении и заблокирует ток в другом направлении. Основное отличие состоит в том, что в SCR можно контролировать прямую проводимость. Проводимость контролируется пропусканием тока через клемму затвора.

Символ SCR показан на Рисунок 1 .

Рисунок 1 SCR Стандартный символ

SCR выпускаются в различных стилях корпуса, в основном в зависимости от рейтинга SCR. Некоторые стили чехлов показаны на Рисунок 2 .

Рисунок 2 Типы корпусов SCR

SCR большего размера изготавливаются в конфигурации «хокки-шайба». Они устанавливаются на радиаторы для отвода избыточного тепла, выделяемого во время работы с большим током.

На рисунке 3 показаны две хоккейные шайбы, два тринистора и два согласующих диода, установленные на радиаторах с водяным охлаждением. Батарейка типа «двойной А» включена в фото для сравнения размеров.

9Рис. 3 типа полупроводниковых материалов. Эта структура обозначается как p–n–p–n.  Таким образом, в устройстве сформированы три полупроводниковых перехода. Рисунок 4 на обороте представлена ​​структура слоев в SCR.

Рисунок 4 Конструкция слоя SCR

Когда само устройство смещено в прямом направлении, т. е. имеет положительный анод по отношению к катоду, два перехода будут смещены в прямом направлении, а третий — в обратном. Именно этот переход с обратным смещением позволяет тринистору блокировать анодный ток до тех пор, пока не потечет ток затвора. Фактический размер кремниевой пластины будет варьироваться во время изготовления для достижения требуемых значений напряжения и тока в штате. Чем выше мощность SCR, тем больше размер пластины.

Несмотря на то, что SCR представляет собой устройство с тремя клеммами, некоторые SCR могут иметь только две клеммы. Это связано с тем, что анод или катод соединены с корпусом.

Некоторые более крупные промышленные SCR также могут иметь четыре клеммы. Это связано с предоставлением отведения «ссылка на ворота». Этот вывод соединен с катодом и скручен вместе с фактическим выводом затвора. Это сводит к минимуму возможность возникновения наведенного напряжения в выводе затвора, вызывающего неправильное срабатывание.

Работа тиристора

Тиристор блокирует прямой ток до тех пор, пока он не будет переведен во включенное состояние с помощью пускового импульса. Это нормальный режим работы SCR. Как и диод p–n , тиристор должен быть смещен в прямом направлении, чтобы протекать анодный ток (прямой ток). Это означает, что анод должен быть положительным по отношению к катоду.

Тиристор переключается из выключенного состояния во включенное, если прямое напряжение слишком велико. Напряжение, при котором тринистор переключается из выключенного состояния во включенное, называется «прямым напряжением пробоя» (9). 0009 В BR ). Этот режим работы обычно не используется, так как нет реального контроля над SCR. Это пробивное напряжение приводит к включению тиристора, когда он преодолевает переход с обратным смещением в устройстве.

Нормальным режимом работы является управление проводимостью с помощью тока затвора. Ток проходит от затвора к катоду. Это означает, что переход затвор-катод должен быть смещен в прямом направлении; то есть затвор положителен по отношению к катоду.

Рассмотрим схему в Рисунок 5 . Если затворный переключатель ( S 1 ) разомкнут, ток затвора не течет, поэтому тринистор не будет переведен во включенное состояние (при условии, что анодное напряжение не превышает номинальное напряжение отключения устройства).

Рисунок 5 Работа тринистора

Если S 1 замкнут, то протекает небольшой ток затвора. Это заставит тиристор переключиться во включенное состояние и потечет анодный ток. После включения тиристора и при условии, что анодный ток достаточно высок, ток затвора можно отключить, и тиристор продолжит проводить ток. Теперь он действует так же, как p–n диод.

Прямое падение напряжения является относительно постоянным и имеет номинальное значение 0,6 В. На практике это значение оказывается близким к 1,0 В и может достигать 2,0 В для очень сильноточных тиристоров.

В некоторых случаях может обнаружиться, что тринистор снова выключается при снятии тока затвора. Это означает, что SCR не «защелкнулся» должным образом.

Чтобы тиристор зафиксировался, анодный ток должен возрасти до значения, известного как «ток защелкивания». Как только это значение будет превышено, тиристор защелкнется и продолжит работу, даже если ток затвора будет снят.

Чтобы тиристор выключился, анодный ток должен снизиться почти до нуля. Если ток анода упадет ниже значения, известного как «ток удержания», он вернется в выключенное состояние. Процессы, связанные с уменьшением анодного тока до этого значения, обсуждаются в разделе 10. 2.3.

Токи удержания и фиксации для конкретного тринистора всегда очень малы по сравнению с номинальным анодным током. Ток фиксации немного выше, чем ток удержания. Например, тиристор C122E имеет следующие номинальные значения тока:

  • ток анода — 8,0 А
  • ток фиксации — 25 мА
  • ток удержания — 20 мА.

Обратная работа SCR идентична работе диода p–n . Он будет блокировать ток до тех пор, пока не произойдет пробой. Это вызвано тем, что обратное напряжение превышает номинальное пиковое обратное напряжение (PRV) устройства.

Работа тиристора в прямом направлении может быть продемонстрирована с помощью тиристора и аналогового омметра (см. , рисунок 6 ):

Рисунок 6 Этапы работы SCR

1. Переключите омметр на диапазон Ω × 1 и закоротите провода, чтобы обнулить показания. При выполнении этого теста помните, что аналоговый мультиметр изменит полярность своих клемм при переключении на диапазон омов. Во избежание путаницы подсоедините красный провод к клемме с пометкой «минус», а черный провод к клемме с пометкой «плюс». Затем считайте красный провод положительным, а черный — отрицательным.
2. Определите конфигурацию выводов для SCR, используя листы технических данных производителя.
3. Подключите положительный провод к аноду, а отрицательный — к катоду SCR. Наблюдайте за чтением. Это показание должно быть высоким (около бесконечности), потому что SCR должен находиться в режиме прямой блокировки.
4. Подсоедините второй положительный провод от мультиметра к клемме затвора и наблюдайте за эффектом. Показание должно упасть до низкого значения (около 20 Ом).
5. Снимите провод с клеммы ворот и наблюдайте за эффектом. Показание должно оставаться низким, так как SCR должен быть зафиксирован.

Важно понимать, что этот тест не является надежным для сильноточных тиристоров, поскольку омметр может быть не в состоянии обеспечить ток, достаточный для того, чтобы тиристоры защелкнулись. Аналогичные тесты можно провести с использованием источника постоянного тока и подходящей нагрузки.

Из этого исследования работы тиристора следует отметить, что для того, чтобы заставить тиристор переключаться из выключенного состояния во включенное состояние и оставаться во включенном состоянии, должны быть выполнены следующие условия:

  • тиристор должен быть смещен в прямом направлении
  • импульс тока должен течь от затвора к катоду
  • анодный ток должен подняться до уровня, превышающего ток фиксации, чтобы тиристор зафиксировался во включенном состоянии
  • анодный ток должен оставаться выше тока удержания, чтобы оставаться во включенном состоянии.

Коммутация SCR

Процесс отключения SCR известен как «коммутация». Чтобы коммутировать SCR, анодный ток должен быть уменьшен до значения ниже тока удержания. Коммутацию можно принудительно вызвать несколькими способами, например:

1. Уменьшите или отключите напряжение питания — в большинстве случаев этот метод нецелесообразен.
2. Кратковременно закоротите клеммы анода и катода тиристора — этот метод может быть опасен в цепях с высоким током и/или высоким напряжением. В большинстве ситуаций это непрактично.
3. Обратное смещение тиристора и инжекция короткого импульса тока от катода к аноду — это наиболее удачный и широко используемый метод обеспечения принудительной коммутации тиристора. Это может быть достигнуто путем обеспечения вспомогательных цепей для подключения заряженного конденсатора или внешнего импульса через SCR, чтобы вызвать коммутацию.

Если тиристор подключен к источнику переменного тока для обеспечения контролируемого выпрямления или управления нагрузкой переменного тока, анодный ток упадет до нуля, когда напряжение питания переменного тока упадет до нуля. Когда питание реверсируется, SCR будет смещен в обратном направлении. Это означает, что SCR коммутируется напряжением питания переменного тока и известен как «коммутация сети переменного тока».

Характеристики и номинальные значения SCR

Типичные прямые и обратные характеристики SCR показаны на Рис. 7 .

Рисунок 7 Кривая прямой и обратной характеристик тиристора

Как и многие другие электронные компоненты, тиристоры имеют много электрических номиналов. Номиналы, наиболее важные в практической ситуации, особенно при замене компонентов, следующие:

1. Пиковое обратное напряжение (PRV) — максимальное пиковое значение напряжения, которое SCR может непрерывно выдерживать при обратном смещении.
2. Прямое напряжение пробоя (VBR) — максимальное значение прямого напряжения, которое можно подать на тиристор при прямом смещении, не вызывая переключения тиристора во включенное состояние.
3. Средний прямой ток (IT(ср)) — максимальный средний прямой анодный ток, который может выдержать тиристор. Чтобы пропускать это значение тока без повреждения тиристора, может потребоваться установка тиристора на радиаторе для отвода тепла, выделяемого в переходах устройства.
4. Ток удержания (IH) — минимальный анодный ток, который будет поддерживать проводимость в тринисторах. Если анодный ток упадет ниже этого значения, SCR переключится из включенного состояния в выключенное.
5. Ток фиксации (IL) — минимальный анодный ток, при котором тиристор фиксируется во включенном состоянии. Если анодный ток не превысит это значение при срабатывании тока затвора, тиристор вернется в выключенное состояние при снятии тока затвора.
6. Dv/dt — максимальная скорость нарастания анодного напряжения, которую может выдержать тринистор в выключенном состоянии, не переключаясь обратно во включенное состояние. Это значение обычно измеряется в вольтах на микросекунду
7. Di/dt — максимально допустимая скорость нарастания анодного тока в тринисторах при переключении из выключенного во включенное состояние. Если анодный ток растет слишком быстро, плотность тока в кремниевой пластине может быть слишком высокой.
8. Максимальное обратное напряжение затвора (VRGM) — величина аналогична номинальному значению PRV тиристора, но относится к переходу затвор-катод. Это значение является максимальным обратным напряжением, которое может быть приложено к переходу затвор-катод. Это значение обычно значительно ниже рейтинга PRV SCR.
9. Максимальное напряжение во включенном состоянии (VT) — максимальное падение прямого напряжения, которое можно ожидать, когда тринистор находится во включенном состоянии.

Для получения всей необходимой информации, касающейся конкретного SCR, может потребоваться обращение к листам технических данных производителя. Технические специалисты и торговцы, работающие в ситуациях, когда используются тиристорные устройства, могут счесть полезным получить полный набор спецификаций от производителя.

Требования к шлюзу SCR

Чтобы гарантировать точное и надежное срабатывание тиристоров, пусковые импульсы должны удовлетворять следующим требованиям:

  • Ток и напряжение затвора должны быть достаточно высокими для срабатывания тиристора.
  • Ток и напряжение затвора не должны быть достаточно высокими, чтобы вызвать повреждение перехода затвор-катод.
  • Импульс стробирования должен подаваться на период, позволяющий полностью включить SCR.

По мере увеличения тока затвора тиристора напряжение, необходимое для перехода тиристора в состояние проводимости, уменьшается. Чувствительность тиристора также увеличивается с повышением температуры. Рисунок 8  показывает зависимость между током затвора и напряжением пробоя.

Рисунок 8 Влияние затвора на напряжение пробоя тиристора

Важны не только величины тока и напряжения затвора, но также фактическая форма и длительность импульса.

Импульс тока затвора должен иметь очень быстрое время нарастания, чтобы обеспечить максимально быстрое распространение проводимости по кремниевой пластине. Это позволяет SCR включаться быстрее. В идеале импульс тока затвора должен иметь время нарастания менее  1  мкс.

Импульс тока затвора должен иметь достаточную длительность для завершения процесса включения. Процесс включения завершается, когда SCR фиксируется. В простой резистивной цепи это может занять всего несколько микросекунд, в то время как в индуктивной цепи процесс может занять больше времени.

Чтобы обеспечить полное включение тиристора до того, как ток затвора будет удален, длительность затвора должна составлять от 50 до 200 мкс.

Амплитуда и длительность стробирующего импульса будут зависеть от типа SCR и характера нагрузки. Рисунок 9  показывает типичный стробирующий импульс для SCR.

Рис. 9 Типичный импульс тока затвора тиристора

В некоторых случаях, когда нагрузка является высокоиндуктивной, необходимо иметь «последовательность импульсов», а не одиночный импульс. Это необходимо для того, чтобы SCR включился и зафиксировался до того, как ток затвора будет удален. «Последовательность импульсов» состоит из серии одиночных импульсов длительностью около 20 мкс с задержкой около 100 мкс между каждым импульсом.

Характеристики переключения SCR делают их идеальными для многих применений. SCR можно включать и выключать очень быстро. SCR классифицируются по времени включения и выключения. Они будут классифицироваться как:

  • тиристоры управления фазой — типичное время включения 20 мкс, типичное время выключения 40 мкс
  • тиристоры инвертора — типичное время включения 10 мкс, типичное время выключения 20 мкс.

Важно отметить, что время, необходимое для включения или выключения SCR, может зависеть от характеристик нагрузки. Время переключения больше при высокой индуктивной нагрузке, чем при резистивной.

Охлаждение и защита

Несмотря на то, что тиристор представляет собой экономически эффективное средство управления мощностью, некоторые сильноточные тиристоры очень дороги и могут стоить несколько сотен долларов каждый. Поэтому стоит инвестировать разумную сумму денег в компоненты или устройства для защиты SCR.

Тиристоры требуют защиты от:

  • чрезмерного тока (защита от короткого замыкания)
  • быстро нарастающих токов
  • быстро нарастающих прямых напряжений
  • чрезмерная температура перехода.

1. Защита от короткого замыкания — последовательно с тиристором устанавливаются специальные предохранители. Эти предохранители могут ограничивать предполагаемый ток короткого замыкания, а также прерывать подачу питания. Они представляют собой разновидность обычного предохранителя HRC. Иногда их называют полупроводниковыми предохранителями или предохранителями с ловушкой.
2. Быстро нарастающий ток (di/dt) — если анодный ток возрастает слишком быстро, плотность тока в кремниевой пластине может стать слишком высокой и повредить тринистор, даже если фактическое значение тока не превышает тока Рейтинг СКР. Чтобы свести к минимуму вероятность этого, индуктивность подключается последовательно с тиристором, чтобы ограничить скорость нарастания анодного тока при включении тиристора.
3. Быстро нарастающие прямые напряжения (dv/dt) — при работе тиристора в режиме прямой блокировки и слишком быстром увеличении анодного напряжения тиристор может включиться, вызывая некорректную работу схемы. Обычно это происходит, когда SCR только что был выключен. Для предотвращения этого резистор и конденсатор соединены последовательно. Эта последовательная комбинация подключается параллельно с SCR. Сеть RC известна как «демпферная сеть» и ограничивает скорость нарастания прямого напряжения на SCR.
4. Чрезмерная температура перехода — несмотря на то, что мощность, рассеиваемая в SCR, относительно мала, температура перехода может стать чрезмерной из-за относительно небольшой массы устройства. Чтобы предотвратить чрезмерное накопление тепла, тиристоры обычно монтируются на радиаторе. Это может быть плоский кусок алюминия или экструдированный алюминиевый радиатор с ребрами для улучшения отвода тепла. Чтобы улучшить теплопроводность между устройством и радиатором, между устройством и радиатором часто смазывают теплоотводящий состав. Рассеивание тепла дополнительно улучшается, если радиатор выполнен из черного анодированного алюминия. В крайних случаях радиаторы могут иметь вентиляторное и/или жидкостное охлаждение.

Следующая схема ( Рисунок 10 ) показывает подключение защитных устройств к SCR.

Рисунок 10 Схема защиты SCR

В некоторых устройствах, использующих тиристорные устройства, могут использоваться другие, более сложные методы защиты. Сюда могут входить методы, предотвращающие включение тиристора при обнаружении неисправности в нагрузке.

Тестирование тиристора

На тиристорном тиристре можно провести ряд внутрисхемных тестов. Это простые тесты, которые дают представление о состоянии SCR. Например:

1. Измерьте прямое падение напряжения — оно должно быть около номинального значения 0,6 В, если SCR включен, или около напряжения питания, если SCR выключен. Если тиристор включен, а прямое падение напряжения равно 0 В, скорее всего, тиристор закорочен. Эта неисправность обычно вызвана чрезмерным обратным напряжением.
2. Используйте осциллограф (или высокоимпедансный вольтметр) для обнаружения запускающих импульсов. Если триггерные импульсы отсутствуют, это может быть связано либо с неисправной триггерной цепью, либо с коротким замыканием перехода затвор-катод.
3. Если подозревается неисправность цепи запуска, отсоедините затвор и очень осторожно подключите резистор между анодом и затвором (подходящим значением может быть около 1 кОм). Если SCR исправен, это действие обычно приводит к его включению. Если это не помогло, SCR следует удалить из цепи для более тщательного тестирования.

Проверка вне цепи может быть выполнена с помощью подходящего аналогового мультиметра, переключенного на диапазон Ом × 1. Помните, что большинство аналоговые мультиметры меняют полярность при переключении на диапазон Ом.

Измерьте сопротивление между каждой из клемм любой полярности, затем сравните результаты со стандартным набором. Ожидаемые сопротивления указаны ниже в Таблице 1 .

Таблица 1 Результаты теста SCR — SCRICALE SCR

измерено, его можно дополнительно протестировать, чтобы определить, может ли он срабатывать и фиксироваться. Для малых тиристоров это можно сделать с помощью омметра . Это достигается подключением омметра так, чтобы SCR был смещен в прямом направлении; анод положительный, катод отрицательный. Показания омметра должны быть близки к бесконечности.

Подсоедините второй провод к положительной клемме омметра (см. Рисунок 11(b) ). Подсоедините другой конец этого провода к клемме затвора SCR, и показания омметра должны упасть до низкого значения. Если этот вывод затвора затем отсоединяется, а показания омметра остаются низкими, это указывает на то, что SCR защелкнулся.

Если показания омметра приближаются к бесконечности, SCR не защелкнулся. Тест показан на рис. 9.0014 11(с).

Рис. 11 Тестирование SCR

Этот тест немного сложнее для сильноточного SCR. Возможно, потребуется использовать источник питания постоянного тока и подходящую нагрузку, чтобы обеспечить достаточный ток для фиксации SCR.

В большинстве случаев неисправности тиристоров очень очевидны. Как правило, это:

  • короткое замыкание между анодом и катодом, вызванное чрезмерным обратным напряжением
  • разрыв цепи между анодом и катодом — вызванный чрезмерным током анода
  • короткое замыкание между затвором и катодом — вызванный чрезмерным обратным напряжением затвора
  • разрыв цепи между затвором и катодом — вызванный чрезмерным током затвора.

Следует также иметь в виду, что чрезмерный прямой ток между анодом и катодом может привести к повышению внутренней температуры и разрушению пластины в результате плавления. В результате происходит короткое замыкание SCR. Аналогичная ситуация может возникнуть при чрезмерных токах затвора, необратимо повреждающих переход затвор-катод.

Применение SCR

SCR является одним из наиболее широко используемых устройств управления мощностью. Он используется в бесчисленных приложениях в оборудовании, предназначенном для бытового, коммерческого и промышленного использования, включая:

  • регулируемые выпрямители
  • контроллеры переменного тока
  • регуляторы скорости двигателя
  • высокопроизводительные печи
  • сварочное оборудование
  • преобразователи DC/DC3
  • отопительное оборудование
  • зарядные устройства
  • Инверторы (DC/AC преобразователи)

Вы нашли apk для андроида? Вы можете найти новые бесплатные игры и приложения для Android.

GE Power Conversion — Преобразователи Powersemi на тиристорах

Силовая электроника

Наш высокий отраслевой стандарт Powersemi для различных применений

Powersemi с воздушным охлаждением (PA)

Обозначения PA56, PA75 и PA100 представляют варианты серии преобразователей Powersemi с воздушным охлаждением. Эти преобразователи имеют принудительное воздушное охлаждение и оснащены прессованными тиристорами в дисковых корпусах. Области применения: приводы большой мощности и другие системы электропитания. Подробно это кормление приложений:

  • Двигатели постоянного тока
  • Синхронные двигатели (двигатель LCI, циклопреобразователь, циклопреобразователь с звеном постоянного тока)
  • Асинхронные двигатели (циклопреобразователь)

Конструкция и электрические характеристики основаны на нашем многолетнем опыте работы с преобразователями максимальной мощности. диапазон. Powersemi убеждает своей модульной конструкцией и надежной технологией. Преобразователи соответствуют высоким отраслевым стандартам и полностью отвечают требованиям операторов крупных промышленных предприятий в отношении безопасности, удобства обслуживания и эксплуатационной готовности.

Преобразовательные шкафы ПА56, ПА75 и ПА100 сконструированы таким образом, что могут быть реализованы любые схемы и режимы работы на основе трехфазной мостовой схемы. Конструктивная концепция учитывает различные требования к преобразователям в диапазоне высокой мощности привода. Блоки PA56, PA75 и PA100 позволяют реализовать однонаправленные и двунаправленные преобразователи с симметричными по мощности или несимметричными тиристорными силовыми секциями.

Powersemi с водяным охлаждением (PW)

Компания GE Power Conversion имеет большой опыт в разработке и производстве сильноточных блоков с диодами или тиристорами. Параллельно соединенные полупроводники (диод или тиристор) в токовой цепи B6 или 1/2 B6 обеспечивают высокую масштабируемость преобразователя в диапазоне токов от 12,5 кА до 45 кА при напряжениях от 460В до 1360В.

Модули PW и используемые в них компоненты силовой электроники отвечают самым высоким промышленным стандартам. Конструкция и электрические характеристики основаны на нашем многолетнем опыте работы с преобразователями вплоть до самого высокого диапазона мощности. Преобразователи соответствуют высоким отраслевым стандартам и полностью отвечают требованиям операторов крупных промышленных предприятий в отношении безопасности, удобства обслуживания и эксплуатационной готовности.

Модули ПВ сконструированы таким образом, что могут быть реализованы комплекты преобразователей любой схемной конфигурации и режима работы:

  • Преобразователи 6-, 12-, 24-импульсные параллельные тиристоры/преобразовательные вставки
  • Несимметричные кольцевые бестоковые двунаправленные преобразователи
Для питания:
  • Двигатели постоянного тока
  • Синхронные машины (двигатель BL, прямой преобразователь, преобразователь DI, пусковой преобразователь)
  • Электролиз
  • КОМПАНИЕ БАСКОВОВ
LV3000 AFE

Снижение следа, меньше деталей и повышение надежности

Подробнее
LV7.
Высокопроизводительные модульные приводы низкого напряжения

Высокопроизводительные модульные приводы для промышленного применения

Дополнительная информация
Модульные многоуровневые приводы MM7

Модульный многоуровневый преобразователь для различных приложений, основанный на проверенной и проверенной технологии MV7

Подробнее
MV3000 AFE

Низковольтное преобразование энергии и управление для глобальных промышленных и энергетических приложений

Подробнее
Маломощные частотно-регулируемые приводы MV6 (VSI)

Гибкий привод общего назначения среднего напряжения

Подробнее
Преобразователи частоты MV7 (VSI)

Технология привода среднего напряжения и средней мощности для эффективного и гибкого управления мощностью

Подробнее
Приводы SD7000 (LCI)

Технология привода, обеспечивающая эффективное и гибкое управление электроэнергией

Подробнее
Статическая частота и возбуждение

Комбинация оборудования статического возбуждения и статического преобразователя частоты обеспечивает плавный запуск генератора при управлении изменением мощности сети с помощью единого интерфейса для управления электростанцией.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Тестовая полярность

.0366 Положительный (+) Отрицательный ( -) Ожидаемое сопротивление
ANODE (A) CATOD Anode (A) High (infinite)
Anode (A) Gate (G) High (infinite)
Gate (G) Anode (A) High (infinite )
Ворота (G) Катод (K) Низкий (20 Ом)
Катод (K) Затвор (G) Средний (200 Ом)