Закрыть

Размеры заземляющего контура: Заземление треугольником: схема, размеры, этапы монтажа

Содержание

Заземление треугольником: схема, размеры, этапы монтажа

Некоторые люди задаются вопросом, нужно ли делать заземление в частном доме? Согласно нормативам ГОСТ, СНиП и ПУЭ требуется делать отвод, который защитит и обезопасит человека от поражения электрическим током. Поэтому при строительстве частного дома в первую очередь следует подключить такую систему. Самой удобной и распространенной конфигурацией считается равносторонний треугольник – это металлическая конструкция, которая забивается в землю при помощи штырей. Расстояние между штырями должно быть равным. Размеры зависят от грунта, в котором он будет располагаться. Стержнями образуют контур из арматуры, трубы или стальных уголков. Их форма должна быть удобной, чтобы их легко можно было забивать в землю. В этой статье мы подробно расскажем о том, как сделать заземление треугольником в частном доме.

Преимущество треугольной формы контура

Какое преимущество над контуром в виде полосы имеет треугольник? Оно заключается в том, что такая конструкция занимает меньшую площадь, соответственно земляных работ будет значительно меньше. Да и соединять штыри гораздо проще в яме, чем в узкой и длинной траншее. Однако самое главное преимущество треугольного заземления – заключается в надежном функционировании защиты, т.к. если перемычка из металла между электродами повредится, заземляющее устройство будет все равно рабочим (с другой стороны).

Высота каждого заземляющего электрода имеет определенные нормы и составляет 2 – 3 метра. Форма расположения электродов в земле – равнобедренный треугольник, расстояние между которыми должно быть не меньше 1,2 м, лучше расстояние в длину каждого заземлителя (т.е. 2-3 метра). Для того чтобы получить хорошее контактное соединение, используется металлическая пластина, которая накладывается с помощью сварки. Чтобы подвести заземление от контура к дому рекомендуется использовать шину из такого же металла или провод из стали подходящего сечения. Размеры уголка должны быть не менее 50х50 мм.

Этапы установки

Сделать заземление треугольником можно по следующей пошаговой инструкции:

  1. На выбранном месте помечаем места закапывания вертикальных электродов. После чего нужно выкопать траншею глубиной до одного метра. Глубина должна быть ниже промерзания земли. Линии конструкции должны образовывать треугольник, длина стороны которого указывается в расчетах.
  2. Затем необходимо вырыть траншею от конструкции к силовому щитку. Угол контура, к которому будет подсоединяться щиток, выбирается самый ближний. Это делается для экономии материалов.
  3. Далее необходимо забить электроды в землю, оставив над грунтом 20 см.
  4. С помощью стальной полосы необходимо сделать замкнутую систему. Она приваривается к электродам и образует треугольник.
  5. От ближайшей точки прокладывается полоса к силовому щитку и выводится на стену.
  6. К подведенной к шкафу планке приварить болт, при этом его резьба должна быть наружу. Это означает, что привариваться будет шапка болта. Чтобы подключить заземление к щитку в доме, важно заранее в стене высверлить отверстие для заземляющего кабеля.
  7. С помощью гайки присоединяется заземляющий кабель к болту. После этого необходимо обработать места сварки и соединений специальными веществами от коррозии и герметиком.

Инструкция в картинках выглядит следующим образом:

Завершающим этапом установки заземлителя своими руками будет проверка сопротивления заземления. Для этого нужно иметь специальный электрический прибор, который называется омметр. Но так как такой прибор стоит не дешево, то лучше пригласить специалиста из энергоуправления. Специалисту нужно сделать замеры и внести данные в паспорт контура заземлителя.

Важно проверку делать в сухую погоду, так как атмосферная влага может дать погрешности измерению. Норматив сопротивления контура не должен превышать 4 Ом для сети 220 Вольт. Если же сопротивление превышает этот показатель, то нужно доработать заземление. Для этого нужно добавить еще один заземлитель или сделать конструкцию в форме ромба.

В случае, если параметры соответствуют всем нормам и требованиям и подтверждается низкое сопротивление контура, то можно зарывать траншею. Делается это однородным грунтом, без щебня и мусора. Подключать заземление к щитку следует не параллельно, а отдельно каждую техническую единицу.

Есть еще один способ проверить сопротивление без вызова специалиста. Для этого достаточно иметь лампу, мощность которой не меньше 100 Вт. Источник света одним контактом подсоединяется к системе, а вторым – к фазе. Если треугольник установлен правильно, то лампочка будет гореть ярко. Если же она светит тускло, значит контакты между заземлителями слабые и стыки нужно будет переделывать. Если свет вообще не горит, то треугольник установлен неправильно. В этом случае следует проверить саму схему и посмотреть где была допущена ошибка.

На видео ниже наглядно показывается, как собрать заземляющий контур треугольной формы:

Вот и все, что хотелось вам рассказать о том, как сделать заземление треугольником своими руками. Надеемся, предоставленные схемы, фото и инструкция по монтажу были для вас полезными!

Будет полезно прочитать:

Контур заземления — его конструкция и выбор заземлителя





Устройство так называемого заглубленного контура заземления внешне представляет собой электроды - металлические стержни, которые забиты в землю и соединены меж собой. Наиболее эффективной считается конструкция, в которой электроды располагаются в одну линию. Однако при благоприятных условиях вполне сгодится и конструкция, в которой стержни располагаются треугольником.

Устройство заземления в случае расположения штырей в одну линию


Устройство заземления в случае расположения штырей в виде треугольника

Расположение треугольником несколько хуже, поскольку электроды гораздо больше друг друга экранируют, а это значит, расход материала при организации такой конструкции при остальных равных условиях станет больше. С иной стороны на небольшом расстоянии треугольное расположение значительно уменьшает число земляных работ, и между собой соединять штыри с шиной значительно удобнее в яме треугольной формы, нежели в узкой траншее.

Конструкция контура глубинного заземления с помощью уголка: 1. Уголок из стали 50 на 50 на 5 миллиметров, 2. соединительная полоска из стали 50 на 5 миллиметров, 3. Стальная шина заземления 50 на 5 миллиметров.

Расстояние заземлительного контура от домовых стен должно быть не менее 1-ного метра.
Электроды заземления следует закопать на приличную глубину возможного промерзания грунта. Всё дело в том, что будучи замерзшим грунт весьма плохо проводит электрический ток. В частности, при замерзании самого верхнего грунтового слоя высотой полметра, сопротивление его увеличивается приблизительно в десять раз, а на глубине около метра — раза в три. Летом же поверхностные слои грунта (примерно до метра глубиной) заметно высыхают, что довольно резко повышает показатели его сопротивления. Потому и необходимо поглубже закапывать электроды в так называемые стабильные почвенные слои, которые залегают на глубине 1-2 метров. На подобной глубине грунтовые параметры грунта почти не меняются в течение всего года.

Конечно, вполне можно взять и более длинные электроды из металла, однако это увеличит материальный расход. Расчет заземлительного контура приведен в статье под названием «Расчёт заземления» на нашем ресурсе. Кроме того, стоит отметить, что забить вручную в землю стержни заземлителя свыше 2,5 метров длиной бывает довольно-таки проблематично.

Таблица 1-вая Коэффициенты применения 3-ёх электродов, которые размещены в ряд

Отношение расстояния между 3 стержнями

Коэффициент использования, η

Отношение расстояния между 3 стержнями

Коэффициент использования, η

0,5

0,62-0,68

2

0,85-0,88

1

0,76-0,8

3

0,9-0,92



Арматура Строительная не подходит для заземлительных стержней

В таблице 1-вой видно, каким образом расстояние меж 3-емя стержнями оказывает влияние на коэффициент их применения. Отношение расстояния меж стержнями является отношением используемой стержневой длинны к расстоянию меж ними. К примеру, если взять пару электродов длинной 2,5 метра, полностью углублённых в землю на необходимую глубину промерзания (используется вся их длина) и расположить их на расстоянии два с половиной метра от друг друга, то отношение их будет равно 1=2,5/2,5.

Глядя на таблицу, можно сделать такой вывод, что самое оптимальное расстояние меж стержнями заземлительного контура бывает равно обычно их длине. При увеличенном расстоянии эффективностный прирост будет небольшим при довольно большом объёме работ на земле и расходе материала на проведение соединения стержней шиной.

Для производства глубинных электродов использовать можно любые материалы, имеющие минимальные размеры, указанные в таблице 2.

Следует обратить внимание, что в таблице 2 не присутствует арматуры с так называемым периодическим профилем, которую обычно применяют для выполнения армирования бетона. Стержни такого рода арматуры совершенно не подходят для глубинного заземления, поскольку при вбивании в землю они разрыхляют её возле себя, что ведет к повышению сопротивления.

Таблица 2-рая Минимальные размеры электродов заземляющих с точки зрения механической и коррозионной стойкости

Материал

Поверхность

Профиль

Минимальный размер

Диаметр, мм

Площадь сечения, мм2

Толщина, мм

Толщина покрытия, мк

Сталь

Черный1 металл без антикоррозионного покрытия

Прямоугольный2

 

150

5

 

Угловой

 

150

5

 

Круглые стержни для заглублённых электродов3

18

 

 

 

Круглая проволока для поверхностных электродов4

12

 

 

 

Трубный

32

 

3.5

 

Горячего цинкования5 или нержавеющая сталь5,6

Прямоугольный

 

90

3

70

Угловой

 

90

3

70

Круглые стержни для заглублённых электродов3

16

 

 

70

Круглая проволока для поверхностных электродов4

10

 

 

507

Трубный

25

 

2

55

В медной оболочке

Круглые стержни для заглублённых электродов3

15

 

 

2000

С гальваническим медным покрытием

Круглые стержни для заглублённых электродов3

14

 

 

100

Медь

Без покрытия5

Прямоугольный

 

50

2

 

Круглый провод

Для поверхностных электродов4

 

258

 

 

Трос

1,8

каждой проволоки

25

 

5

Трубный

20

 

2

 

Луженная

Трос

1,8

каждой проволоки

25

 

5

Оцинкованная

Прямоугольный9

 

50

2

40

1 Срок службы 25-30 лет при скорости коррозии в нормальных грунтах 0,06 мм/год.

2 Прокат или нарезанная полоса со скругленными краями.

3 Заземляющие электроды рассматриваются как заглублённые, когда они установлены на глубине более 0,5 м.

4 Заземляющие электроды рассматриваются как поверхностные, когда они установлены на глубине не более 0,5 м.

5 Может так же использоваться для электродов, уложенных (заделанных) в бетоне.

6 Применяется без покрытия.

7 В случае использования проволоки, изготовленной методом непрерывного горячего цинкования, толщина покрытия в 50 мк принята в соответствии с настоящими техническими возможностями.

8 Если экспериментально доказано, что вероятность повреждения от коррозии и механических воздействий мала, то может использоваться сечение 16 мм2.

9 Нарезанная полоса со скруглёнными краями.

Очевидно, что самыми дешевыми являются те электроды, что состоят из круглых, прошедших оцинковку стержней диаметром шестнадцать миллиметров. Но поскольку найти и приобрести их бывает довольно накладно, то зачастую контур заземления изготавливают из стандартного черного уголка из стали 50 на 50 на 5 миллиметров. Соединять уголок вместе следует стальной полосой, чьи размеры не менее 50 на 5 миллиметров.

Хомуты оцинкованные для проведения скрепления заземлителей


Осуществление соединения оцинкованного стержня с также оцинкованной полосой с помощью хомута на болтах

С целью соединения контурных стержней с шиной заземления и соединителями используются два способа:

— в случае использования оцинкованного проката можно применять соединение без применения сварки, при помощи обжимных резьбовых хомутов. Причём место соединения обязательно должно быть защищенным от коррозии при помощи антикоррозийного бинта, либо обмазки горячим битумом;

— при применении проката из черной стали без каких-либо покрытий он соединяется с помощью использования дуговой электросварки.


Проведение антикоррозийной обработки соединения на хомутах

Касаемо провода (так называемый защитный проводник), что подключают непосредственно к заземляющей конструкции (то есть к шине заземления), лучше всего применять провод из меди. Размер минимального сечения заземляющего провода следует выбирать по таблице 3. К примеру, если попросту подключить провод из меди к стальной шине при помощи резьбового оцинкованного соединения, причём соединение находится в распределительной пластиковой коробке, сам же провод скрыт в пластиковой гофре, то такого рода подключение надо считать плохо защищённым от коррозийного воздействия, поскольку оно напрямую контактирует с воздухом. Однако соединение заземлительного контура такого рода и проводника защищено механически, а значит минимально возможное сечение провода из меди будет равным 10 миллиметрам2. Детали по обустройству защитного домового заземления собственноручно приведены в статье под названием «Монтаж контура заземления самостоятельно».

Наличие защиты

Сечение провода мм2

Механически защищенные

Механически незащищённые

Защищённые от коррозии

6

16

Незащищённые от коррозии

10

25




Всего комментариев: 0


Устройство заземления в частном доме своими руками

В статье будет затронут вопрос устройства заземления в частном доме, даче или на небольшом производстве своими руками. Многие ошибочно полагают, что заземление — это ненужная, дополнительная вещь, которую из вредности, требует энергоснабжающая организация или проверяющие инспектора.

Самое главное, что должен понять любой потребитель электроэнергии — заземление это неотъемлемая часть любого электроснабжения. Это такая же необходимость, как установка автоматических выключателей в распредщитке, прибора учета и другой аппаратуры.

Чтобы качественно выполнить заземление, необходимо произвести большой объем земляных работ. Грубо рассчитывайте, что минимум, Вам придется вручную вырыть один кубометр земли. Также необходим будет сварочный аппарат и умения сварочных работ.

Самый оптимальный вариант выполнить заземление собственными руками, так как не все электрики любят это делать, да и те кто берется, в большинстве своем делают это не качественно.

И так, как же правильно делается контур заземления?

Существует два самых распространеных варианта контура заземления — треугольником и линейный, в виде сплошной полосы вдоль дома.

Оба правильные. Какой выбрать, решать Вам самим, исходя из свободного пространства возле дома.

контур заземления треугольником линейный контур заземления

Материал для контура заземления

Контур заземления состоит из вертикальных и горизонтальных заземлителей.
Материал из которого не рекомендуется делать вертикальные заземлители:

  • рифленая арматура
  • круглая сталь диаметром менее 10мм

Из чего можно делать:

  • круглая сталь 14мм и более (меньшим диаметром электрод проблематично забить в землю)
  • стальной уголок размерами минимум 40*40*5

Конец уголка или круглой стали срезают на угол в 30 градусов. Это наиболее оптимальный угол для вхождения стали в землю.

Горизонтальный заземлитель делают из стальной полосы 40*4.

Размеры и расстояния для заземляющих электродов

Обязательные условия которые необходимо соблюдать при устройстве заземления в частном доме:

    • длина электрода, который забивается в землю. Он должен быть минимум 2,5-3 метра

Изначально лучше брать электрод длиной 3м. Так как в процессе забивания его кувалдой, будет расплющиваться та часть, по которой наносится удар. В конце Вам придется болгаркой несколько сантиметров такого расплющенного электрода срезать.

    • расстояние между электродами. Оно также должно быть 2,5-3 метра

Вне зависимости от того, какого вида у Вас контур — в виде треугольника или прямой линии. Это связано с явлением растекания тока от заземлителей. Если электроды будут забиты ближе чем 2,5м то получается нет никакой разницы, сколько электродов Вы забили.

Работать они будут почти как один электрод.

    • заглубление траншеи от планировочной отметки земли — 0,7-0,8м

Траншея — это место для укладки полосы, связывающей электроды. При меньшем углублении траншеи, полоса будет подвержена воздействию осадков и быстрому процессу коррозии. При большем углублении — опять возникает риск воздействия сырости от грунтовых вод.

  • расстояние контура заземления от фундамента дома — не менее 1м
  • после раскопки траншеи ее подсыпают песком для лучшего отвода воды от горизонтального заземлителя.

Заглубление электродов

Когда весь материал и траншеи готовы приступают к процессу забивания электрода. Для облегчения процесса в яму подливают немного воды. Вертикальный электрод можно забивать двумя способами:

      • кувалдой
      • мощным перфоратором или отбойным молотком с насадкой

Первоначально верхний конец электрода будет на большой высоте. Поэтому потребуется стремянка.

Забивать до конца весь электрод в землю не надо. Минимум 20см оставляйте на поверхности, так как в этом месте нужно будет приварить полосу. Длина сварочного шва — не менее 6-10см. Сам шов прокрашивается.

Ни в коем случае не красьте горизонтальные и вертикальные заземлители.

Тем самым Вы увеличите сопротивление заземления и ухудшите связь с землей.

Чтобы улучшить контур заземления, можно его соединить с уже существующими металлическими конструкциями заглубленными в земле — например с забором.

Соединение заземления с электрощитом

Когда контур сделан, его необходимо соединить с электрощитом. Здесь уже можно использовать не полосу, а проволоку диаметром 10мм. С горизонтальным заземлителем ее связывают сваркой, а с корпусом щита при помощи болтового соединения.

Также Вы можете вывести полосу горизонтального заземлителя на поверхность возле щита, и приварив к полосе болт, медным проводником сечением 10мм2 соединить контур с щитовой. Болтовое соединение должно быть на поверхности и доступно для ревизии.

Проверив надежность соединения сварочных швов, траншею засыпают землей. На этом монтаж контура заземления окончен.

Статьи по теме

Контур заземления, его устройство, расчет и схема

Устройство контура заземления, установка и проверка уровня сопротивления контура – это работы, необходимость которых обусловлена спасением жизни человека и предохранением зданий от пожаров. Для производства работ следует выполнять требования ПУЭ, знать способы производства работ по монтажу защитного контура.

Каждый новичок хочет знать, что же это такое заземление и его контур.

Устройство и принцип действия заземления

Защитное устройство и его основное назначение – соединение всех потребителей электричества, при помощи заземляющего провода с контуром защиты. Систем заземления 3, но в жилом помещении наиболее часто устанавливают систему с маркировкой TN – 5. Эта система предусматривает проведение ноля и земли двумя отдельными проводами.

При коротком замыкании или утечке тока с корпуса приборов снимается опасное напряжение и по проводу подается на контур защитного заземления. Он должен монтироваться и изготавливаться, выполняя требования ГОСТа. Нормы, предусматривают оборудование контура с учетом уровня сопротивления. На его величину влияют:

  • виды почвы;
  • влажность и уровень грунтовых вод;
  • глубина погружения заземлителей;
  • количества заземлителей в контуре;
  • материалы электрода и всех составляющих устройства.

По форме, контур заземления, согласно нормам СНиП, делают в форме равностороннего треугольника, из вертикальных заземлителей и горизонтальных электродов. Они должны располагаться на определенной глубине. Из этого значения и свойства грунта производится расчет контура заземления. Каждый вид грунта имеет свой уровень сопротивления растекания токов КЗ.

Для обустройства контура защиты лучшим вариантом будет:

  • торфяник;
  • суглинистая почва;
  • глинистая, с близко расположенными грунтовыми водами.

Худшими свойствами обладают каменистые участки грунта и монолитные скалы. На выбор влияют климатические особенности региона установки.

Проведение расчета защитного контура

Сопротивление контура заземления следует проводить, определив несколько значений:

  1. Определить удельное сопротивление почвы на участке.
  2. Выявить влажность грунта.
  3. Уровень солености почвы.
  4. Средней температуры в регионе.
  5. Расстояние от фундамента до контура.
  6. Размеров заземлителей и других деталей устройства.

Методика расчетов «проста» — нужно знать множество физических формул и иметь инженерное образование. Но, как правило, никакая методика выполнения расчетов не может учитывать все значения. Поэтому, проведя монтаж наружного контура заземления и измерив, значение сопротивления защиты – вы увидите, что расчет не совпадает с фактическим результатом.

По этой причине, для обустройства в данном регионе выполняется типовой проект, остается только провести изменения, учитывая удаление устройства от здания. И затем проводят измерение сопротивления контура, вносят изменения до достижения номинального значения сопротивления, не более 4 Ом в жилищном строительстве.

Поэтому, выбрав лучшую схему, соблюдая все размеры и глубину забивания заземлителей, подобрав качественный материал, правильно сделать работу для вашего жилья не составит труда. А рассчитать заземление нужно обязательно для крупных промышленных и торговых зданий.

Объекты, требующие оснащения контуром

Для безопасного проживания и условий труда, каждое помещение, в котором установлены промышленные или бытовые электроустановки обязано быть защищено.

Для этого, оборудуется как внутренний контур заземления, так и наружный. Защита должна быть установлена в помещениях:

  • С различными по мощности железными кожухами и корпусами приборов, станков и осветительных устройств.
  • В электрощитовых, в которых находятся стальные корпуса щитков, шкафов и другого электротехнического оборудования, а также в комплектных трансформаторных подстанциях (ктп).
  • В местах с металлоконструкциями, оболочками кабелей, проводов различного сечения, а также защитных стальных трубопроводов для кабелей.
  • Вторичная обмотка измерительного трансформатора.

Заземление не проводится:

  • для арматуры изоляторов и штырей, крепления их на опорах электропередачи;
  • оборудования установленного на заземленные корпуса электроустановок;
  • электроизмерительные устройства, автоматы защиты, установленные в электрощитках или на одной из стен камеры распределяющего устройства.

При особо оговоренных условиях может не заземляться металлическая защитная оболочка контрольного кабеля.

Наружный контур заземления потребует проведения земляных работ, поэтому, приготовьтесь к тяжелой и небыстрой работе.

Установка контура заземления

Способов установки несколько. Новая, но более затратная методика модульно-штырьевого монтажа всем хороша. Но этот способ мы рассмотрим несколько позже. Мы разберем классический монтаж контура заземления.

Сначала проводятся подготовительные работы.

Подготовка к монтажу

Определяемся с местом установки защиты. Лучшим решением будет расположение контура недалеко от здания и со стороны установки распределительного электрощита.

Исходя из требований пункта 1.7.111 ПУЭ — все вертикально и горизонтально расположенные электроды должны изготавливаться из меди, оцинкованного или обычного стального уголка или другого профиля. Окрашивать поверхность заземлителей нельзя, для лучшего токоотведения и обнаружения дефектов.

Для обустройства, нам потребуется 50 уголков толщиной полок — 5 мм и полоса шириной — 40 мм. Это основные материалы для изготовления самого контура. Также нам потребуются провода достаточного сечения, для обустройства внутреннего контура заземления и разделения проводки на нулевой провод и проводник земли.

Теперь готовим к работе лопату и начинаем выполнение основного этапа работ.

Монтаж защитного устройства

Копаем треугольную траншею — длиной стороны 3 м, на ширину штыка лопаты и глубиной не менее полуметра. Можно выполнить прямую траншею — длиной не менее 6 м (таким способом оснащаются устройства с недавнего времени). Если делаем по старой методе, в углах равностороннего треугольника кувалдой забиваем заземлители до необходимой глубины. Его нельзя засовывать в готовую скважину, он должен плотно и без зазоров погрузится на глубине не более 3 м.

При оснащении прямолинейной системы, через каждый метр, забиваем по 1-му заземлителю, но не более 5-ти штук. Для лучшего захода в землю, заострите края уголка на заточном станке или обрежьте их болгаркой. Погрузиться в грунт колья должны не полностью, над поверхностью земли должен быть отрезок уголка не менее 200 мм.

Надеваем сварочный костюм и маску, готовим аппарат и подвариваем к вертикальным заземлителям горизонтальные электроды, из полосы шириной не менее 40 мм. От нее, к стене здания, по выкопанной траншее проводим полосу или отрезок силового кабеля достаточного сечения. Теперь, заводим в здание и подводим к входящему электрощиту, а от него выполняем заземление внутридомовой системы.

При проведении заземляющего проводника, с помощью силового кабеля, работы выполняют следующим способом: на вертикальный заземлитель, болтом и гайкой с надежным гровером, закрепляем, запакованный в концевой контакт отрезок кабеля. Для выполнения этой работы понадобится:

  • медная шина сечение которой более 10 мм2;
  • алюминиевая, сечением более 16 мм2;
  • металлический проводник более 75 мм2 сечением.

Все места сварки, проверив качество шва, покрываем грунтовкой или растопленной смолой. В месте сварки металл ослаблен из-за высокой температуры при сваривании и сильнее поддается коррозии. Выполнив все завершающие работы, засыпаем траншею. Сначала слоем песка, а потом заполняем вынутым грунтом.

Все основные работы выполнены, теперь нам остается выполнить измерение сопротивления контура заземления.

Замер сопротивления защитного устройства

Выполнять эту работу лучше в летнее или зимнее время. В эти моменты грунт имеет наибольшую величину электрического сопротивления. В разных условиях применения величина может быть различной. Для жилого здания, это значение не должно превышать 30 Ом. Для измерения сопротивления применяют специальные измерители сопротивления «МС- 08» или «М-416». Выполняется с использованием системы пробных электродов.

Выполнение замеров разбито на несколько этапов.

Между контуром и зданием расположен потенциальный зонд на расстоянии не менее 20–ти метров, а второй выносной электрод располагаем на прямой линии с потенциальным электродом и контуром, на расстоянии не более 40 метров. Подключаем напряжение и выполняем замер уровня сопротивления. Выполняем эту операцию несколько раз, приближая выносной кол на расстояние не менее 5 метров. Выполнив эти замеры, определяем сопротивление контура.

При замерах в обширных подземных коммуникациях, потребуется выполнение дополнительного измерения данной физической величины. Такие замеры проводятся на различных расстояниях между заземлителями и по разным направлениям.

Но во всех измерениях, номинальной величиной сопротивления заземления будет наихудший результат выполненных замеров. В любое время года и в различных погодных условиях, значение сопротивления защиты не должно быть выше наибольшей допустимой величины.

После выполнения замеров и определения сопротивления электрического тока цепи защитного устройства, комиссия составляет акт проведения и контрольного измерения заземления здания. В процессе пользования необходимо проверять надежность обтяжки болта на подключении к заземляющему проводнику, а также при очень высокой температуре, не забывайте смачивать места заглубления электродов.

Проведя все работы по монтажу и контрольному замеру, мы получаем безопасное жилое помещение, защищенное от токов короткого замыкания.

что это такое, пример выполнения для частного дома

Что такое заземляющее устройство?

Заземляющее устройство (earthing arrangtmtnt), согласно ГОСТ 30331.1-2013 [1], — совокупность заземлителя, заземляющих проводников и главной заземляющей шины. Данный термин имеет жаргонизм «контур заземления», что некорректно.

Пример технологии выполнения для электроустановки индивидуального жилого дома.

На одном из форумов я наткнулся на типовой проект (далее ТП) серии 5.407-155.94, который был утвержден Департаментом электроэнергетики Минтопэнерго РФ и в котором, непосредственно, можно отыскать необходимую информацию о выполнении заземляющего устройства для электроустановки частного дома.

Этот проект не лишен недостатков, например, в плане терминологии, так как был выпущен до появления стандартов комплекса ГОСТ Р 50571, но, тем не менее, в нем можно найти нужную нам реализацию заземляющего устройства для индивидуального жилого дома. Показанные там эскизы схем заземлителей были разработаны и использовались еще со времен СССР, что говорит о достаточной проверке временем на практике и, следовательно, высокой надежности.

Далее, нам нужно знать удельное сопротивление типа почвы, в которой будут находится заземляющие электроды. К примеру, тип почвы – глинистый песок. Расчетное удельное сопротивление глинистого песка — ρ = 220 Ом*м. Тогда согласно 5.407-155.94.1-57 выбираем подходящий эскиз заземлителя (в нашем случае это схема N4). Я немного видоизменил его под стандарт ГОСТ Р 50571.5.54–2013 и получилось следующее:

Реализация заземляющего устройства (ГЗШ не показана на рисунке)

Данное заземляющее устройство, согласно ТП, актуально для типов грунта с расчетным ρ ≤250 Ом*м и должно обеспечивать Rзу ≤ 30 Ом. И состоит оно из:

  • 2 вертикальных заземляющих электродов, длинной 3 метра и расположенных на расстоянии L ≥ 6 м.
  • одного горизонтального заземляющего электрода, соединенного с заземляющим проводником.
  • Главной заземляющей шины (ГЗШ), установленной в здании (на эскизе не показана) и соединенной с заземляющим проводником. Саму ГЗШ подключают защитным проводником к защитной шине ВРУ, от которой «начинаются» все защитные проводники. К последним присоединяют открытые проводящие части (ОПЧ) электрооборудования.

Некоторые технические подробности:

  • Заземляющие электроды углубляют так, чтобы верхняя их часть была на 0.5 метра ниже поверхности грунта.
  • Минимальные размеры проложенных в земле электродов и заземляющего проводника можно найти в таблице 54.1 ГОСТ Р 50571.5.54–2013. К примеру, для круглого вертикального заземляющего электрода, выполненного в виде стержня из стали горячего цинкования минимальный диаметр составит – 16 мм. А для горизонтального заземляющего электрода и заземляющего проводника, выполненного в виде круглой проволоки из той же стали, минимальный диаметр составит – 10 мм.
  • Части заземлителя, которые находятся в земле, cогласно ТП, следует соединять между собой посредством электросварки двойным швом. Длина сварочного шва, при этом, больше либо равна 6 наибольшим диаметрам при круглом сечении. То есть, если нам нужно сварить между собой два электрода диаметром 20 и 16 мм, то длина сварочного шва должна составить минимум 6*20=120 мм
  • ГЗШ должна иметь зажимы для подключения защитных проводников и защитных проводников уравнивания потенциалов. Эти зажимы должны допускать подключение проводников сечением ≥ 16 кв.мм. ГЗШ должна иметь один или два зажима для подключения заземляющих проводников диаметром ≥ 10 мм.
  • Число вертикальных электродов зависит от удельного сопротивления грунта и максимально допустимого сопротивления заземляющего устройства (ЗУ). Если электроустановка здания имеет тип заземления системы TN-C-S, сопротивление ЗУ не влияет на защиту от поражения электрическим током. Здесь необходимо обеспечить непрерывность электрической цепи PEN-проводник — защитный проводник. Поэтому сопротивление ЗУ может быть нормировано, например, требованиями к защите дома от молний.

Типовые часто задаваемые вопросы от читателей

Как проверить заземление выполненное для индивидуального жилого дома?

Начать нужно с того, что заземление, согласно его определения, представляет собой действие, а именно – выполнение электрического присоединения проводящих частей к локальной земле. Поэтому, если ориентироваться на ваш вопрос и дословно отвечать на него, то да — вам нужно проверить все электрические соединения проводящих частей соответствующего электрооборудования к локальной земле.

В ходе проверки, доступной в домашних условиях, могу порекомендовать вам лишь такие базовые мероприятия:

Произведите визуальный осмотр – целью данного действия является выявление видимого разрыва или повреждения каких-либо электрических цепей защитных проводников. Как правило, проверке подлежат видимые открытые участки защитного проводника, места его подключения и соединения с главной заземляющей шиной (ГЗШ) (у вас она должна быть если мы говорим о правильной реализации заземляющего устройства) и далее непосредственно с самим заземляющим устройством.

Нужно проверить заземляющий проводник, посредством которого ГЗШ соединяют с заземлителем;

Нужно проверить защитный проводник, посредством которого к ГЗШ присоединяют защитную шину вводно-распределительного устройства (ВРУ).

При отсутствии видимого разрыва, необходимо проверить «наличие цепи» между защитным проводником (ами) и ГЗШ. Для «прозвонки цепи» вам достаточно подключить выводы мультиметра, в соответствующем режиме, к защитному проводнику и к главной заземляющей шине. Также можно проверить цепь между защитным проводником и заземляющим устройством.

Наиболее эффективным вариантом, на мой взгляд, является измерение переходного сопротивления между заземляющими электродами и локальной землей. Но для этого вам понадобиться специальный прибор — «измеритель сопротивления заземлений», который подключается определенным образом. Но эту работу может выполнить только квалифицированное или обученное лицо — поэтому я не буду расписывать как это делать в пределах данного ответа.

Однако, даже при наличии сопротивления токам растекания в земле не более 4 Ом нельзя дать гарантию, что вы будете в безопасности. Так как никакие электрические приборы не должны подавать опасный потенциал на корпус при нормальных условиях эксплуатации. Поэтому помимо проверки заземляющего устройства я бы рекомендовал вам также проверить состояние изоляции самого используемого электрооборудования. Как правило, повреждение или дефект изоляции в самом электрооборудовании или цепи его питания могут приводить к появлению потенциала на на его корпусе.

Список использованной литературы

  1. ГОСТ 30331.1-2013
  2. Типовой проект серии 5.407-155.94
  3. ГОСТ Р 50571.5.54–2013

Контур заземления | Заметки электрика

Здравствуйте, дорогие гости сайта «Заметки электрика».

Сегодня я расскажу Вам про контур заземления, для чего он необходим и как правильно выполнить его монтаж своими руками.

Покупая дачные участки для строительства домов и коттеджей, мы должны получить разрешение от энергоснабжающей организации на присоединение определенной мощности. И на данном этапе практически у всех возникает проблема с электромонтажом контура заземления, т.к. в технических условиях на электроснабжение дома он обязателен.

Также он необходим при реконструкции старой электропроводки. Более подробно об организации электропроводки в своем доме читайте в статье: электропроводка в деревянном доме.

Что такое контур заземления?

Для начала давайте разберемся, что такое заземление?

Заземление — это ЗУ (заземляющее устройство), предназначенное для электрического соединения с «землей» различных заземляемых частей электрооборудования.

Для каждой системы заземления (TN-C, TN-C-S, TN-S, TT и IT) существуют свои требования к сопротивлению заземляющего устройства (переходите по ссылкам соответствующих систем заземления и знакомьтесь).

Сопротивление ЗУ очень сильно зависит от:

  • типа грунта
  • структуры грунта
  • состояния грунта
  • глубины залегания электродов
  • количества электродов
  • свойств электродов

Контур заземления — это и есть, соединенные между собой, горизонтальные и вертикальные электроды, которые заложены на определенной глубине в грунте Вашего участка.

Все вышеописанные свойства грунта определяются его сопротивлением растекания тока. И чем это сопротивление меньше, тем лучше для монтажа контура заземления.

Грунты, идеально подходящие для монтажа контура заземления:

  • торф
  • суглинок
  • глина с высокой влажностью

Грунты, подходящие для монтажа контура заземления

Грунты, не подходящие для монтажа контура заземления:

Грунты, не подходящие для монтажа контура заземления

В зависимости от условий окружающей среды, даже один и тот же тип грунта может иметь разные свойства.

Поэтому производить монтаж контура заземления необходимо осознанно, а выбор количества и длины заземляющих электродов рассматривать по конкретному случаю.

В данной статье я опишу Вам самый распространенный и простой способ монтажа контура заземления. Существуют и более современные способы, например, модульно-штырьевая система заземления. Но к ним мы вернемся в других моих статьях. Чтобы не пропустить новые выпуски статей, подпишитесь.

 

Подготовка

Выбираем место для установки и монтажа заземляющего устройства.

Рекомендую выбирать место для заземления вблизи вводного распределительного устройства (сборки) Вашего дома. 

Согласно ПУЭ (п.1.7.111), искусственные вертикальные и горизонтальные заземлители (электроды) должны быть либо медными, либо из черной или оцинкованной стали. Также их поверхность не должна быть окрашена.

Вот таблица (ПУЭ, табл.1.7.4) рекомендуемых размеров вертикальных и горизонтальных заземлителей (электродов) и заземляющих проводников для прокладки в земле:

В качестве вертикальных и горизонтальных заземлителей (электродов) мы используем:

  • стальной уголок размером 50х50х5 (мм) с поперечным сечением 480 (кв.мм)
  • стальную полосу размером 40х4 (мм) с поперечным сечением 160 (кв.мм)

Материалы для контура заземления

Вот мои заготовки материала для монтажа контура заземления для повторного заземления PEN-проводника жилого многоквартирного дома и дальнейшего его разделения: на защитный проводник РЕ и нулевой рабочий проводник N.

 

Монтаж контура заземления

Теперь нам необходимо взять лопату и выкопать траншею в виде треугольника с размерами (3 х 3 х 3) метра. Можно выкопать траншею в виде прямой линии длиной порядка 4-5 метров. Последнее время мы именно так и делаем.

Ширина траншеи составляет 0,3-0,5 метра, а глубина 0,5-0,8 метра.

Траншея для контура заземления

В вершины данного треугольника забиваем кувалдой стальной уголок (вертикальные заземлители) длиной 2,5-3 метра. Вместо кувалды можно использовать специальные буры. Если траншея у Вас выкопана в виде прямой линии, то забиваем вертикальные электроды в количестве 4-5 штук через каждый метр.

Чтобы легче забивать стальные уголки в землю, заострите их концы болгаркой.

Забиваем стальные уголки (вертикальные электроды) не полностью, а оставляем около 20 (см). Затем с помощью сварочного аппарата привариваем к нашим стальным уголкам по периметру треугольника или прямой линии горизонтальную стальную полосу, идущую в силовой электрический щиток на шину РЕ (ГЗШ).

Проводник, который соединяет заземляющее устройство с заземляющей частью электроустановки (вводным распределительным устройством или сборкой), называется заземляющим.

В нашем примере в качестве заземляющего проводника применяется стальная полоса размерами 40 х 4 (мм), что удовлетворяет требованиям ПУЭ.

В итоге у нас получается вот такая конструкция (схема). Кстати забыл сказать, что места сварки нужно обработать антикоррозийным составом, например, битумом, а траншею закопать однородным грунтом.

Далее стальную полосу прокладываем до шины РЕ (ГЗШ). Вот фотография для наглядности.

Можно сделать и по-другому, воспользовавшись ПУЭ, п.1.7.117. Выводим из земли горизонтальный заземляющий проводник в виде стальной полосы, а к нему с помощью болтового соединения подключаем проводник, который прокладываем до шины РЕ (ГЗШ):

  • медный сечением не менее 10 кв.мм
  • алюминиевый сечением не менее 16 кв.мм
  • стальной сечением не менее 75 кв.мм

Я использовал заземляющий проводник из медной шины.

Окончание работ

После монтажа необходимо произвести замер его сопротивления. Как сделать это самостоятельно — читайте в статье замер контура заземления (заземляющего устройства).

P.S. В завершении хотелось бы Вам напомнить, что правильное и качественное заземление является Вашей защитой от поражения электрическим током.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


Контур заземления

Конструкции и размеры контура заземления дома:

Контур заземления представляет собой конструкцию, состоящую из соединённых друг с другом и проложенных в земле заземлителей.

Ориентировочные размеры при устновке в грунт вертикального заземлителя.


Заземлители, выполняя монтаж, устанавливают в ряд или в виде тругольника, квадрата, прямоугольника и т.п., исходя из требований и наличия площади для монтажа. В грунтах с большим удельным сопротивлением один заземлитель [даже глубинный] - может имеет большое сопротивление и для получения требуемой меньшей величины сопротивления растеканию тока приходится устраивать заземление из нескольких, соединённых между собой, единичных заземлителей, включенных параллельно. Такой контур заземления называется многоэлектродным.

Токи, растекающиеся с параллельно соединенных одиночных заземлителей, оказывают взаимное влияние, возрастает общее сопротивление заземляющего контура, которое тем больше, чем ближе расположены вертикальные заземлители друг к другу. Поэтому расстояние между вертикальными заземлителями должно быть не менее их длины.

Верхние слои грунта подвержены значительным изменениям влажности. Вследствие этого сопротивление контура будет тем стабильнее, чем глубже он расположен в грунте.
Для уменьшения влияния климатических условий на сопротивление заземления верхнюю часть заземлителя размещают в грунте на глубину не менее 0,7 метра. Контур устанавливается с меньшими затратами, где грунт имеет низкое удельное сопротивление, эффективность заземления при правильном расчёте выборе его расположения может быть повышена в несколько раз.

Материалы для заземления:

Материалы для контура заземления должны выбираться с учетом защиты от коррозии, соответствующих термических и механических воздействий, эти значения указаны в нормативных документах

Заземлители и проводники, проложенные в земле, должны иметь размеры не менее приведенных в табл. 1.7.4.(ПУЭ)


Дополнения к ПУЭ - это перечень и требования для материалов с антикоррозионными покрытиями ( для омеднённой и нержавеющей стали) - Указаны в ГОСТ Р 50571.5.54-2013 "Выбор и монтаж электрооборудования. Заземляющие устройства, защитные проводники и защитные проводники уравнивания потенциалов."

Виды контуров заземления:

В зависимости от назначения контура заземления, используемой площади и удельного сопротивленя грунта - заземлители, для контура, могут устанавливаться различных видов - некоторые из них:
- Кольцевой контур заземления - чаще всего монтаж производится плоским проводником(полоса). Важный момент - полоса в траншее должна укладываться на ребро. Кольцевой заземлитель является заземлителем поверхности, который должен быть проложен в виде замкнутого кольца на расстоянии 1,0 м и на глубине 0,5/0,7 м в земле вокруг фундамента дома.
- Многоэлектродный контур заземления - это совмещённый монтаж горизонтального и вертикальных заземлителей, чаще всего выполняется в виде треугольника, а при необходимости - с большим количеством электродов.

Для монтажа "треугольника" или контура с большим числом вертикальных заземлителей, могут использоваться модульные электроды - установка выполняется сборным вертикальным стержнем, который поэтапно наращивается и забивается электроинстументом с большой ударной силой на требуемую глубину с одной точки. Такие заземлители в зависимости от вида почвы могут прокладываться в земле вручную или с помощью соответствующих электрических, бензиновых или пневматических молотов.

Сопротивление контура заземления частного дома:

Электросеть загородного частного дома относится к электроустановкам напряжением до 1кВ (1000 Вольт), соответственно сопротивление заземляющего контура не должно превышать допустимые параметры.

Значения сопротивления заземляющих устройств для каждого вида электроустановок должны удовлетворять значениям, приведенным в соответствующих главах Правил(ПУЭ) и таблице 1.8.38.

Наибольшие допустимые значения сопротивлений заземляющих устройств(ПУЭ)

Расчёт контура заземления:

Чтобы правильно произвести расчет- длину и количество заземлителей, входящих в будущую конструкцию контура, нужно знать знать максимальное значение удельного сопротивления слоя грунта на глубине, приблизительно в три раза превышающей глубину закладки заземлителя. Это значение определяется путем измерений удельного сопротивления грунта в месте устройства заземления с учетом коэффициентов влажности.
Если взять значение удельного сопротивления грунта из таблиц(как чаще всего это делают при проектировании в офисе и не выезжая на место строительства), то после монтажа такого контура заземления - расчетное значение может не совпасть с измеренным после выполнения работ..
Поэтому часто в проектах заземления указывают, что если значение сопротивления установленного контура будет превышать допустимое, следует увеличить количество заземлителей, т.е. увеличить объём работ, соответсвенно увеличивается заложенная в смете цена.
Для заземления газового котла расчетное сопротивление не должно превышать 10 Ом.

Подключение контура заземления к электросети дома:

Следует иметь в виду, что только монтажа и подключения контура заземления - не достаточно для обеспечения электробезопасности, например дачи или частного дома и т.п. Для этого, должны быть соблюдены требования к электроустановкам указанные в гавах ПУЭ:
Глава 1.7. "Заземление и защитные меры электробезопасности"
Глава 7.1. "Электроустановки жилых, общественных, административных и бытовых зданий"
Эти требования являются взаимосвязанными и их частичное выполнение может привести к непредсказуемым последствиям, как для электро, так и пожарной безопасности..

Чтобы произвести монтаж и подключение заземления, нужно обладать знаниями по устройству электроустановок и нормативных документов.
Если при монтаже самой конструкции контура своими руками проблем особо не возникает, то при проверке сопротивления и подключении заземляющего устройства в электросеть дома, часто совершаются ошибки.
Когда нет ответа на часть из многих существенных вопросов, неоходимых для монтажа и подключения контура заземления - например:
- Чем отличается система заземления ТТ от системы заземления TN(три типа)?
- Почему эксплуатация электросети дома с системой заземления ТТ без УЗО - запрещена?
- Какая система заземления будет применяться в вашем доме?
- Почему сопротивление растеканиЮ тока является основным показателем качества контура заземления и как оно проверяется во время монтажа?
- и т.п.

В этом случае, чтобы не совершать ошибок, следует изучить правила.

Проверка:

Основной критерий качества установленного контура заземления для частного дома (и не только) - это сопротивление растеканию тока, точное значение которого возможно узнать только после поверки измерительным прибором.

Производить замеры нужно в обязательном порядке и сопротивление заземления должно соответствовать нормативам. Но чаще всего владельцы загородных частных домов при самостоятельном монтаже(или нанятые работники), пренебрегают замерами, без которых нельзя оценить в полной мере качество установленного заземляющего устройства.
При профессиональном монтаже, после установки выполняются приемо-сдаточные испытания согласно ПУЭ и выдаётся электроизмерительной лабораторией протокол. В дальнейшем, измерение сопротивления растеканию тока заземляющих устройств должно производиться в сроки, установленные ПТЭЭП, а также после каждого капитального ремонта.
Периодичность проверки в полном объеме производится не реже 1 раза в 12 лет.
Проверка коррозионного состояния элементов, находящихся в земле:
Локальные коррозионные повреждения в земле выявляются при осмотрах со вскрытием грунта. Если элементы конструкции выполнены из чёрного металла (уголков, труб, полосы и т.п.), то самыми уязвимыми для коррозии являются сварные соединения и такие места проверяются в первую очередь.

Контур заземления для молниезащиты III Категории.

Молниезащита III Категории (РД 34.21.122-87)
2.26.....каждый токоотвод молниеприемников должен быть присоединен к заземлителю, состоящему минимум из двух вертикальных электродов длиной не менее 3 м, объединенных горизонтальным электродом длиной не менее 5 м;

.......Во всех возможных случаях заземлитель защиты от прямых ударов молнии должен быть объединен с заземлителем электроустановки, указанным в гл. 1.7 ПУЭ.
Из этого следует, что для электорустановки и молниезащиты дома устанавливается общий контур заземления.

Избегание контуров заземления при измерениях электронных устройств

В замкнутой цепи должен быть предусмотрен обратный путь для тока, протекающего обратно к источнику питания; этот возврат часто называют электрическим заземлением. В идеале эти заземляющие соединения не должны иметь сопротивления или паразитной емкости, и можно предположить, что все опорные заземления имеют один и тот же потенциал. Однако все провода имеют небольшое сопротивление, а также паразитную емкость.

Оценка лабораторных измерений с использованием нескольких приборов (и нескольких источников питания) усугубляет эту проблему.Когда два или более устройства подключаются к общей земле разными путями, возникает контур заземления; разность напряжений генерирует ток в виде наведенного шума. Этот шум контура заземления может появляться или исчезать без очевидной причины, что может сделать диагностику шума чрезвычайно сложной задачей.

При поиске неисправностей в цепи лучше избегать одновременного изменения нескольких переменных. Следующие советы помогут вам применить более методичный подход.

3 совета по предотвращению замыкания на землю

1.Создайте единую точку заземления.

Создав единую точку заземления, обычно на месте измерения, вы, в первую очередь, можете избежать потенциальных контуров заземления. Хотя это не всегда может быть практично реализовать, учитывая физическое расположение электрических компонентов, это хороший руководящий принцип, который поможет вам избежать большинства проблем.

2. Внимательно ищите непреднамеренные пути заземления.

Мне известна ситуация, когда был создан контур заземления, потому что корпус DUT находился в криогенном сосуде Дьюара, который покоился на бетонном полу, на котором покоился металлический стол, на котором находился прибор с заземленным корпусом.Это не «цепь», как в учебнике, но она функционировала как единое целое. Реальная проблема диагностики неприятных контуров заземления часто заключается в вашей способности творчески мыслить, чтобы найти контур.

3. Сохраняйте заземление.

Сопротивляясь желанию отключить все заземляющие соединения, вы можете избежать увеличения шума из-за эффекта антенны.Заземление корпуса на приборах также обеспечивает безопасное заземление в случае внутренней неисправности, предотвращая попадание в корпус опасного напряжения. При изменении схемы заземления в системе всегда соблюдайте меры безопасности.

Загрузите нашу бесплатную статью, чтобы узнать о других ошибках, которых следует избегать при измерении электронных устройств:

Определение размеров контуров заземления

Термин «контур заземления» часто используется в проектной литературе в качестве заменителя любой цепи, вызывающей шум заземления.

По правде говоря, контур заземления - одна из многих проблем электрической конструкции, которые могут вызывать или усиливать существующий шум заземления. Как в печатных платах, так и в проводных системах контур заземления по определению представляет собой любую законченную цепь заземления с низким сопротивлением. Это может быть очевидно, как в случае с заземляющим экраном с воздушным зазором внутри:

Рисунок 1: Контур заземления в медной плоскости.

Это явление также может быть более абстрактным, например, в схемах связи:

Рисунок 2: Цепь связи (слева) с выделенным контуром заземления (справа)

Цепи заземления

обычно вызывают проблемы из-за одного из трех событий:

  1. Магнитные поля переменного тока проходят через контур (или магнитные поля постоянного тока, если контуры заземления перемещаются относительно них).Изменяющийся поток индуцирует ток в контуре. Это единственный способ, которым контур заземления сам по себе может генерировать зашумленный ток.

    Рисунок 3: Ток, индуцированный магнитным потоком.

  2. Две или более цепи, соединяющиеся с контуром заземления, индуцируют разные уровни напряжения на их соответствующих землях.

    Рисунок 4: Множественный опорный ток заземления.

  3. Две или более цепи присоединяются к контуру заземления на значительном расстоянии друг от друга, создавая радиочастотный шум. Высокочастотные сигналы могут вызывать шум в цепях значительной длины (цепи с длиной более 1/20 длины волны)

Важно помнить, что шум земли может существовать без контура заземления.Например, внешняя цепь может сама создавать шум земли:

Рисунок 5: Шум от земли от внешней цепи.

В компании Ball Systems мы склонны использовать следующие три метода для устранения шума из-за контуров заземления. Эти методы являются отраслевым стандартом рентабельности и надежности.

  1. Уменьшение площади контура: это помогает снизить эффективный магнитный поток переменного тока. Если площадь воздушного зазора в медной плоскости или площадь между проводами в системе уменьшится, через контур заземления будет проходить меньший поток, и наведенный ток будет меньше.

    Рисунок 6: Уменьшение площади петли.

  2. Изолируйте путь заземления: этот метод предотвращает прохождение тока через контур заземления за счет использования трансформаторов или оптоизоляторов, которые будут поддерживать уровни напряжения между путями сигнала и заземления. Возникнут такие осложнения, как паразитная емкость и затухание постоянного тока.

    Рисунок 7: Размещение трансформатора и оптоизолятора

  3. Используйте синфазный дроссель: это отличный метод ослабления высокочастотного синфазного шума.

    Рисунок 8: Синфазный дроссель.

Есть несколько способов устранить контуры заземления, но следует обратить внимание на то, чтобы не жертвовать безопасностью, нарушая любые необходимые заземляющие соединения. Доступны несколько вариантов, позволяющих сбалансировать доступность места, стоимость и эффективность, и важно определиться, на каком именно треугольнике сосредоточены ваши интересы.

Если вы заинтересованы в сотрудничестве с нами над вашим следующим проектом, свяжитесь с нами по телефону (317) 804-2330.

Основы контура заземления

Что такое контур заземления?

Контур заземления возникает, когда есть более одного пути заземления между двумя единицами оборудования.В дублированные наземные пути образуют эквивалент рамочной антенны, которая очень эффективно улавливает помехи токи. Преобразование сопротивления свинца эти токи превращаются в колебания напряжения. Как следствие замыкания на землю индуцированные напряжения, заземление в система больше не стабильная потенциал, поэтому сигналы движутся на шуме. Шум становится частью программы сигнал.

Контур заземления - это обычное состояние проводки, при котором ток заземления может проходить по нескольким путям, чтобы вернуться к заземляющему электроду на СЕРВИСНОЙ ПАНЕЛИ.Все компьютеры с питанием от переменного тока подключены друг к другу через заземляющий провод в общей проводке здания. Компьютеры также могут быть соединены кабелями передачи данных. Поэтому компьютеры часто соединяются друг с другом более чем одним путем. Когда существует многолучевое соединение между компьютерными цепями, результирующее устройство известно как «контур заземления». Всякий раз, когда существует контур заземления, существует вероятность повреждения из-за ВНУТРЕННИХ СИСТЕМНЫХ ЗЕМНЫХ ШУМОВ.

Контур заземления в силовом или видеосигнале возникает, когда некоторые компоненты в одна и та же система получает питание от другого заземления, чем другие компонентов, или потенциал земли между двумя частями оборудования не идентичный.

Обычно разность потенциалов в заземлении вызывает протекание тока. в межкомпонентных соединениях. Это, в свою очередь, модулирует вход схемы и обрабатывается как любой другой сигнал, подаваемый через нормальный входы. Вот пример ситуации, когда два заземляющего оборудования соединены между собой через заземление сигнального провода и заземляющий провод сети. В этой ситуации в проводе течет ток 1А. что вызывает разницу в напряжении 0,1 В между этими двумя устройствами. точки заземления.

Из-за разницы напряжений между электронными приборами сигнал в соединительном проводе видит эту разницу, добавленную к сигналу. Это можно услышать как гудение на проводе, потому что переменный ток привести к тому, что разность напряжений этих потенциалов земли также будет Напряжение переменного тока. Это одна из причин шума 50 или 60 Гц, который вы слышите. в аудиосигнале (или увидеть в видеосигнале раздражающие горизонтальные полосы).

Еще одна проблема - ток, протекающий в заземляющем проводе сигнального кабеля.Этот ток проходит через кабель и через оборудование. Из способ, которым curren parsses не разработан, это может вызвать много шума к оборудованию или другим проблемам (например, зависанию компьютера). Многие дизайнеры рассчитывают на то, что земля будет заземлена, и не оптимизируют их конструкция исключает их чувствительность к шумам от земли. Если вы дизайнер продукта, не забудьте позаботиться о том, чтобы контур заземления ток не вызывает проблем в вашем оборудовании, проектируя правильная схема заземления внутри оборудования.

Почему контур заземления является проблемой?

Контур заземления - распространенная проблема при подключении нескольких аудиовизуальных компоненты системы вместе, есть хорошее изменение, чтобы сделать неприятный контуры заземления. Проблемы контура заземления - одна из самых распространенных проблем с шумом в аудиосистемах. Типичным признаком проблемы с контуром заземления является слышно 50 Гц или 60 Гц (в зависимости от частоты сетевого напряжения, используемой в ваша страна) шум в звуке. Наиболее частая ситуация, когда вы сталкиваетесь с проблемами контура заземления, - это когда ваш система включает оборудование, подключенное к заземленной розетке, и антенная сеть или оборудование, подключенное к разным заземленным розеткам по комнате.

Все подключено к единой электросети, которая обычно подключается к все контакты заземления во всех розетках в одной комнате. Тогда антенная сеть также заземлен к той же точке заземления. Обычно это нормально, поскольку заземления соединены друг с другом только звездообразным образом от центрального заземляющего провода (ведущего к реальной Земле через заземление кабель или металлическая труба) кабели заземления проходят через силовые кабели в оборудование.

Как только вы примете во внимание, что часть вашего оборудования связана с экранированный кабель вы, скорее всего, столкнетесь с некоторыми проблемами.Вполне возможно, что токи могут течь от одной части оборудования в кабель заземления, в другую часть оборудования, а затем обратно в первую часть через экранированный аудиокабель. Эта проволочная петля также может улавливать помехи от близлежащих магнитных полей и радиопередатчиков.

В результате нежелательный сигнал будет усиливаться до тех пор, пока не будет слышно и явно нежелательно. Даже разница в напряжении ниже чем 1 мВ может вызвать раздражающий жужжащий звук в вашей аудиосистеме.

Проблема со слышимым шумом, исходящим от вашей аудиосистемы, когда другой электронные компоненты (холодильник, кулер для воды и т. д.)) может быть результатом загрязненного заземляющего / нейтрального проводника в вашей проводке кондиционера и контур заземления в нашей аудиосистеме. Этот может произойти при включении определенного типа устройств. Обычно их мощность поставки нелинейны и выбрасывают мусор обратно на нейтраль и / или заземляющие проводники. Обычно линейные кондиционеры или устройства ИБП не подходят. все, что поможет решить эту проблему.

Распространенные причины неполадок компьютерной системы

Много раз, когда пользователь думает, что его система «плохая» или «испортилась» неисправность имеет электрическую или магнитную природу.Проблемы с монитором очень часто вызваны близлежащими магнитными полями, гармоники нейтрального провода или наведенные / передаваемые электрические помехи. Периодические зависания компьютеров очень часто вызваны: контур заземления, электрическое явление, которое иногда проявляется сам, когда система и ее периферийные устройства неправильно подключены к различных, электрических цепей. Многие даже не знают, что их стена розетка правильно подключена и заземлена, что абсолютно необходимо для компьютера и периферийное оборудование для надежной и безопасной работы.

Вы исключили заземление в своей компьютерной системе? Контуры заземления могут вызвать проблемы с подключениями к локальной сети, если не правильно подключен. Контур заземления, вызванный подключением RS-232 к другому компьютеру может вызвать зависание компьютера.

Когда контур заземления не является проблемой

Контур заземления не вызывает проблем, если все следующие вещь верна:

  • Ни один из проводов контура не пропускает ток
  • Петля не подвергается воздействию внешних изменяющихся магнитных полей.
  • Рядом нет радиопомех

Если в каких-либо проводах есть ток, значит, есть потенциальная разница, которая заставляет ток течь и по другим проводам что вызывает проблемы.Петля также будет действовать как катушка и забирать ток из изменяющегося магнитного поля. поля вокруг него. Проволочная петля также действует как антенна, принимающая радио. сигналы.

О каком размере проблемы разности потенциалов земли идет речь?

В литературе говорится о синфазном шуме от 1 до 2 вольт в "хорошо заземленных" установках и более 20 Вольт в "слабо заземленных" установках. В литературе также говорится о токе, измеряемом в сети. служебное заземление (в большом здании) в амперах.

Откуда эта разница тока и напряжения?

Утечка тока конденсаторов между горячим и заземленным и между нейтралью и землей в течение Например, основные фильтры, вызовите ток в заземляющих проводах (и контурах заземления). Ток утечки обычно измеряется в миллиамперах (обычно меньше чем 1 мА в компьютерном оборудовании) на одно оборудование. Когда вы подводите итог, может быть, сотни такого оборудования вы легко можете получить в амперах.

Емкость между линией и землей больших нагревателей и двигателей, для Например, может быть намного больше, чем емкость конденсаторов фильтра.Токи от этого источника обычно порядка 1 ампер (а не 0,1 А или 10 А)

Даже очень небольшое индуцированное напряжение может вызвать очень большой ток в контур заземления, потому что сопротивление (и индуктивность) очень низкий. Эти токи действительно могут составлять десятки ампер. Индукция тока может быть вызвана, например, кабелями, по которым проходят большие токи. и от трансформаторов.

На что способны эти заземляющие токи и разность напряжений?

Небольшая разница в напряжении просто приводит к добавлению шума к сигналам.Это может вызвать жужжание звука и помехи для видеосигнала. и ошибки передачи в компьютерные сети.

Более высокие токи могут вызвать более серьезные проблемы, такие как искрение в соединениях, повреждает оборудование и сгорает проводка. Мой собственный опыт в этой области ограничен к искрообразующим разъемам, нагревательным кабелям и поврежденным платам последовательного порта компьютера. Я читал о сгоревших сигнальных кабелях и дымящих компьютерах из-за перепад заземления и вызванные ими большие токи.Так что будьте осторожны об этой потенциальной проблеме и не выполняйте глупых установок.


Томи Энгдал <[email protected]>

Контуры индуктивности Правильное размещение и размер

Контуры индуктивности: правильное размещение и размер
Используйте контуры правильного размера для всех ваших приложений
Брайан Диксон

Миссис Джонс ехала на работу в своем новеньком роскошном автомобиле. Она нажимает на пульт для своих качающихся ворот, и они послушно открываются.Когда она начинает расчищать подъездную дорожку, она вспоминает, что забыла свой портфель, который ей нужен для важной встречи. Миссис Джонс ставит машину на стоянку и выскакивает, чтобы забрать портфель из кухни. По пути к дому она слышит громкие хрустящие звуки - ее новую машину врезают ее откатные ворота!

Миссис Джонс была явно расстроена. Как это можно было предотвратить? Помимо запоминания ее портфеля в первую очередь, можно было установить петли, чтобы определить, что ее машина находилась на пути к воротам.Петли - это самый безопасный метод обнаружения транспортных средств на пути к воротам, поскольку на них не влияют погодные условия или препятствия, как это могут быть фото-глаза. Дилеры и установщики должны понимать, сколько петель необходимо разместить в различных системах ворот и где. Чтобы лучше понять это, мы рассмотрим три типа распространенных систем ворот: откатные ворота, распашные ворота и двустворчатые распашные ворота.

Сколько петель и какой размер мне использовать?


В приведенном выше примере показаны рекомендации по размещению петли для 16-футовых раздвижных ворот.


Откатным воротам требуются две обратные петли, по одной с каждой стороны ворот - в двух футах от каждого бордюра и в четырех футах от ворот - чтобы полностью закрыть путь к воротам. Вы можете подойти к воротам на расстоянии не более двух футов, если петли правильно расставлены. Используя правильную планировку и зная ширину проезжей части, вы можете определить размер необходимых петель. Два измерения, которые вам нужно найти, - это короткая и длинная части петли. Чтобы найти длинную часть петли (z), вычтите ширину проезжей части (x) на четыре фута, представленные этой формулой: x - 4 = z.Короткий этап определяется тем, какие автомобили проезжают через ворота. Это важно, потому что короткая полоса петель определяет высоту обнаружения. Если проезжают только жилые (низко расположенные к земле) транспортные средства, рекомендуется использовать четыре фута. Если будут проезжать коммерческие автомобили (например, грузовики UPS), требуется более высокая степень обнаружения и рекомендуется 6 футов. Петля выхода в этой системе ворот является необязательной и следует тем же формулам, что и обратные петли.Выходные петли могут быть расположены на расстоянии до 1000 футов от ворот. Преимущество более длительного захода на выходную петлю состоит в том, чтобы минимизировать время ожидания открытия ворот.


В приведенном выше примере показаны рекомендации по размещению петель на 16-футовых распашных воротах.

Распашные ворота требуют в общей сложности трех петель: двух обратных петель с каждой стороны ворот и теневой петли. Обратные петли, устанавливаемые на распашных воротах, необходимо размещать с каждой стороны ворот, в двух футах от каждого бордюра и в четырех футах от ворот в открытом положении.Их размер определяется по той же формуле, что и скользящие ворота: x - 4 = z. Отличие этой системы ворот - добавление теневого контура. Эта петля размещается под траекторией открывания ворот, в двух футах от бордюра, в четырех футах от ворот в закрытом положении и в четырех футах от ворот в открытом положении. Чтобы определить отрезок петли, параллельный воротам в их закрытом положении (y), вычтите ширину проезжей части (x) на 6 футов, представленных следующей формулой: x - 6 = y.Чтобы найти отрезок петли, параллельный бордюру (a), вычтите ширину проезжей части (x) на четыре фута, представленные этой формулой: x - 4 = a. Выходная петля в этой системе ворот является необязательной и может быть обратной петлей внутри собственности (для чего потребуется отдельный детектор) или другая петля может быть расположена на расстоянии не менее четырех футов от обратной петли на внутренней стороне собственности.


В приведенном выше примере показаны рекомендации по размещению петель на воротах с двойным распашным ходом 16 футов.

Двустворчатые распашные ворота требуют всего трех петель: двух обратных петель с каждой стороны ворот и теневой петли. Обратные петли устанавливаются по тому же методу, что и распашные ворота; в двух футах от каждого бордюра и в четырех футах от ворот в открытом положении. Их размер определяется по той же формуле, что и откатные и распашные ворота (x - 4 = z). Чтобы найти ножку теневой петли, которая параллельна воротам в закрытом положении (b), вам нужно вычесть ширину проезжей части (x) на восемь; представлен этой формулой: x - 8 = b.Чтобы найти ножку теневой петли, которая параллельна воротам в ее открытом положении (c), вам нужно разделить ширину проезжей части (x) на два, а затем вычесть это количество на четыре фута, представленных этой формулой: (x / 2) - 4 = с. Выходная петля в этой системе ворот является необязательной и может быть обратной петлей внутри собственности (для чего потребуется отдельный детектор), или другая петля может быть расположена на расстоянии не менее четырех футов от обратной петли внутри собственности.

Вертикальные двери - скоро откроется секция.

Дорожные полосы - например, в зоне парковки или проезжей части в заведении быстрого питания. Секция
Скоро в продаже.

По возможности следует использовать установку прямых погребальных петель вместо пропилов. Петли прослужат дольше, чтобы избежать распиловки, из-за которой на подъездной дорожке миссис Джонс останется татуировка с бороздками.

Количество материалов!
Теперь, когда вы понимаете правильное расположение и размер петель, мы подробно рассмотрим материал, который вы используете.Проволока лучшего качества, которую вы должны использовать, должна быть около 14AWG или около нее, так как проволока более высокого калибра имеет меньшее сопротивление и гораздо более высокую прочность на разрыв. Петли никогда не должны иметь воздушных карманов внутри петли, потому что колебания земли могут вызывать ложные срабатывания, что приводит к повторным обращениям в службу поддержки. Это означает, что петли никогда не должны находиться внутри кабелепровода. Входная часть петли должна находиться внутри пластиковой / ПВХ трубы.

BD Loops Loopalator
Loopalator - это бесплатный калькулятор компоновки петель.Компьютерная программа может рассчитать, где должны быть размещены петли и какой размер, просто зная ширину проезжей части. Программа даже сгенерирует подробное изображение того, где должны быть размещены ваши петли и какого размера. Это изображение может быть подробными инструкциями, которые вы можете передать своей монтажной бригаде, или может быть включено в тендерные предложения в качестве рекомендаций непосредственно от производителя. Для работы Loopalator требуется любая версия Mircrosoft Excel. Если вы не можете запустить Loopalator, мы будем рады сгенерировать для вас диаграммы и отправить их вам по факсу или электронной почте.

Брайан Диксон - генеральный директор BD Loops, сборщика предварительно отформованных индуктивных петель прямого закапывания и пропила для ворот, дверей и парковок. За более чем 10 лет работы качество наших петель не имеет себе равных. Продукция BD Loops доступна более чем у 220 дистрибьюторов по всей стране. BD Loops предлагает 45 стандартных размеров предварительно отформованных петель, все стандартные и нестандартные размеры петель готовы к отправке в тот же день. Компания имеет несколько рекомендательных писем, свидетельствующих об их профессионализме и дизайне, и является членом следующих ассоциаций: AFA, IDA, NOMMA, IPI, CODA и IMSA.Посетите сайт www.bdloops.com и воспользуйтесь функцией поиска дистрибьюторов, чтобы найти ближайшего к вам дистрибьютора. Если вы хотите поговорить с Брайаном Диксоном, позвоните в BD Loops по телефону 714-890-1604.

Контуры заземления - обзор

1.10 Контуры заземления и излучаемые помехи

Ранее указывалось, что контуры заземления могут вносить значительный вклад в излучаемые электромагнитные помехи. Это важно, потому что такой излучаемый шум может влиять на другие чувствительные схемы аналогового или цифрового характера.Рассмотрим, например, сценарий, изображенный на рисунке 1.33.

Рисунок 1.33. Иллюстрация контуров заземления между разъемами карты.

На этом рисунке два разъема (разъем 1 и разъем 2) используются для реализации двух конфигураций платы драйвера / приемника. В разъеме 1 обратный ток от драйвера 1 может возвращаться через ближайший контакт заземления; некоторые из них, особенно на высоких частотах, могут вернуться через гораздо более удаленный заземленный контакт, ближайший к драйверу n. Площадь контура 1 (0) (драйвер 1 и контакт заземления 0), образованная обратным током драйвера 1 через его ближайший заземляющий контакт, намного меньше, чем площадь контура 1 ( n ) (драйвер 1 и контакт заземления n ), вызванный некоторым обратным током, использующим контакт n разъема 1 в качестве его возврата. Также возможны другие сценарии использования обратным током других заземляющих контактов в разъеме 1. Поскольку область петли 1 ( n )>> область петли 1 (0), излучаемое излучение от разъема 1 может значительно увеличиться, особенно на высоких частотах, где значительная часть обратного тока может выбрать контакт n в качестве возврата. дорожка.Величина электрического поля от тока контура прямо пропорциональна не только самому току, но и площади контура, через которую проходит этот ток.

На рисунке мы также наблюдаем другой сценарий, очень распространенный на высоких частотах: емкостная связь между контактом заземления n в разъеме 1 и металлическим корпусом разъема ( C C3 , C C4 ). Дальнейшая связь приведет к емкостному соединению обоих разъемов 1 и 2. Часть тока заземления от разъема 1 будет течь в разъем 2 и его заземляющие штыри через емкостную связь.Общая площадь петли теперь становится суммой площадей петли, площадь петли 1 ( n ) + площадь петли 2 ( n ), с потенциалом создания еще большей проблемы излучаемых выбросов. Количество излучаемых излучений, создаваемых областями контуров сигнальных / обратных токов, равно

(1,74) EV / м = 263 × 10−16F2HzAm2IampsRm,

, где F (Гц) - интересующая частота, A (м 2 ) - это площадь контура, образованная управляющим сигналом и обратным током, I (амперы) - величина тока, а R (м) - расстояние в метрах, на котором должно быть вычислено электрическое поле.

Предполагая, например, сценарий на рисунке 1.33, полное излучаемое электрическое поле можно приблизительно рассчитать для наихудшего сценария как

(1,75) | EtotalV / m | = | E10 | + | E1n | + | E2n |,

, где E 1 (0) , E 1 ( n ) и E 2 ( n ) - электрические поля, создаваемые областями контура заземления через контакт 0, контакт n разъема 1 и контакт n разъема 2:

(1.76) E10V / m≅263 × 10−16f2Hzlooparea10Ig1ampsRm

(1,77) E1nV / m≅263 × 10−16f2Hzlooparea1nIg2ampsRm

(1.78) E2nV / m≅263 × 10−16f2Hzlooparea.

При вычислении I gl , I g 2 , I g3 и I g 4 , мы знаем, что

= 1.79 + Ig2 = Ig1 + Ig3 + Ig4,

и максимум I 1 можно приблизительно рассчитать, используя выражение

(1.80) I1 = 5VZ0ohms.

Ток в I gl определяется как

(1.81) Ig1 = 5.0VZ0ohmsLg10Lg1n,

, где L g1 (0) и L g1 ( n - это индуктивность контура заземления через контакт (0) в разъеме 1 (область контура 1 (0)) и L g1 ( n ) - индуктивность контура заземления через контакт n в разъеме 1 (контур площадь l ( n )) соответственно.Таким же образом

(1,82) Ig2 = Ig3 + Ig4 = 5,0VZ0ohmsLg1nLg0n.

Обозначения L g1 ( n ) и L g0 ( n ) получаются из индуктивности вывода, заданной по формуле

(1.83) LpinnH = 10.16d⁢ln⁡Lr + L ⁢Ln⁡dr,

, где d - расстояние в дюймах между сигналом и землей. Член d будет либо d 1 , либо d 2 , как показано на рисунке 1.33 для расчетов L g0 ( n ) и L g1 ( n ) соответственно. L - длина штифта в дюймах, а r - радиус штифта. Таким же образом, как только мы вычислили I g2 , мы можем вычислить I g3 и I g4 следующим образом:

(1,84) Ig3 = Ig2Lg3Lg4Ig4 = Ig2Lg3Lg3, где

g3 , L g4 можно рассчитать по уравнению (1.84), используя d 3 , d 4 , показанный на рисунке 1.33.

Один из самых тривиальных выводов предыдущего анализа состоит в том, что добавление большего количества контактов заземления к разъему приблизит заземление к каждому сигналу и снизит индуктивность всего обратного пути. Другие вещи, которые можно сделать, - это переместить разъемы ввода-вывода как можно ближе друг к другу, никогда не направлять сигналы заземления от одного и того же источника на отдельные разъемы и обеспечивать более медленное время нарастания для драйверов.

Проблема паразитной емкости не только влияет на обратный путь тока земли, но ее совокупное воздействие от многих разъемов может искажать передаваемые сигналы. Поэтому очень желательны проводники с минимальной паразитной емкостью. Влияние паразитной емкости на разъемы показано на рисунке 1.34.

Рисунок 1.34. Влияние паразитной емкости на разъемы.

При передаче сигнала общая паразитная емкость земли на каждом ответвлении шины будет обеспечивать некоторые паразитные искажения.Эта кумулятивная емкость, представленная на рисунке 1.34, может быть результатом (1) межконтактной емкости разъема на печатной плате, (2) емкости трассировки от разъема к локальным драйверам и приемникам или ( 3) входная емкость местного приемника плюс выходная емкость драйверов.

Емкость трассы определяется как

(1,85) CpF / дюйм = tdZ0,

, где t d - это распространение трассы в пс / дюйм, а Z 0 - полное сопротивление трассы в Ом.Один из примеров правильного расположения выводов сигнала и заземления в разъеме показан на рисунке 1.35.

Рисунок 1.35. Правильное расположение выводов сигнала и заземления (темные) в разъеме.

Что такое ошибка контура заземления при измерении напряжения

Практические инструкции по эксплуатации

Резюме

Контуры заземления представляют проблемы при измерении сигналов низкого уровня, таких как измерения термопар. В этой статье объясняется, что вам нужно о них знать.

Описание

Истинный потенциал земли существует только на бумаге или в симуляциях.В реальном мире нет такого понятия, как истинное заземление, которое при испытаниях и измерениях приводит к ошибкам контура заземления. Контуры заземления создают проблемы при измерении сигналов низкого уровня, таких как измерения термопар. При измерении напряжений в цепях, в которых цифровой мультиметр и тестируемое устройство привязаны к общему заземлению, образуется контур заземления. Как показано на рисунке, любая разница напряжений между двумя опорными точками заземления (Vground) вызывает прохождение тока через измерительный провод гетеродина.Это вызывает ошибку напряжения (VL), которая приводит к неточностям измерения цифрового мультиметра.

При рассмотрении контуров заземления только с точки зрения постоянного тока, пока Ri имеет большое значение (имеется в виду воздух между двумя потенциалами), ошибка будет довольно незначительной при измерении мВ и выше. Цифровые мультиметры Keysight Truevolt, такие как 34460/61/65 / 70A, имеют Ri 10 Гом при влажности 80%. Влажность 80% является высокой нормой для лабораторных условий, поэтому в большинстве случаев фактическое значение Ri намного превышает 10 Гом. Ошибка, вызванная контурами заземления постоянного тока, может быть дополнительно уменьшена, если путь заземления сигналов низкого уровня будет как можно короче.

Более крупным источником шума и ошибок от контуров заземления является компонент переменного тока. Сопротивление цифрового мультиметра относительно земли ниже при использовании переменного тока из-за емкостной составляющей Ci, параллельной Ri. Емкостная составляющая возникает из-за обмоток трансформатора внутри цифрового мультиметра. Ссылаясь на расчет Z в нижней части рисунка, по мере увеличения частоты изоляция цифрового мультиметра по оси Z по отношению к земле начинает уменьшаться. Теперь в большинстве низкочастотных настроек шум контура заземления исходит от линии электропередачи, поэтому он составляет 60 или 50 Гц.Влияние шума контура заземления линии питания переменного тока можно уменьшить, установив время интегрирования измерения цифрового мультиметра на 1 или более циклов линии питания (для 60 Гц это 16,67 мс). Если ваша среда тестирования состоит из высокочастотных сигналов, высокоскоростных цифровых сигналов или компонентов с шумом, таких как реле или двигатель, лучше всего проводить любые чувствительные измерения напряжения на отдельном потенциале земли, если это возможно.

проходов лабораторных работ - круговые петли - пройти лабораторные работы

Введение

Ваш новый компонент подключен прямо из коробки, и когда вы включаете его в первый раз, это акустическая катастрофа; он гудит, гудит и вообще звучит ужасно.Взгляд на свое оборудование или дилера не поможет, а вращение ручки только усугубит шум; что теперь?

Из многолетнего опыта мы выяснили, что подавляющее большинство чрезмерных шумов в аудиоэлектронике напрямую связано с плохими методами заземления. Хотя мы рекомендуем, когда это возможно, сбалансированные межблочные соединения на ваших аудиокомпонентах, необходимо понимать, что симметричные межсоединения решают только проблемы наведенного шума. Контуры заземления - это совсем другая проблема, которая никак не связана с проблемами наведенного шума.

Немного теории

Чтобы успешно бороться с контурами заземления, вы должны сначала понять, почему они возникают. В основе каждого компонента вашей аудиосистемы лежит внутреннее заземление. Ключевыми моментами, которые необходимо понять, является то, что не существует такой вещи, как идеальное заземление, и что никакие две точки заземления в любой системе никогда не были бы в точности равными друг другу.

Если в системе существуют два заземления с разным потенциалом, существует вероятность возникновения шума, связанного с контуром заземления.Когда устройства связаны вместе соединительными кабелями, они обязательно связывают сигнальные заземления взаимосвязанных устройств друг с другом. Эта связь между двумя сигнальными землями является необходимым и желательным обстоятельством, проблема «замыкания заземления» возникает, когда это соединение происходит более чем в одном случае. Типичная причина заключается в том, что защитное заземление, обеспечиваемое шнуром питания или направляющими в стойке, находится в прямом контакте с заземлением возврата сигнала.

Эти ситуации создают замкнутый контур, где ток течет от земли одного блока к другому блоку и обратно к первому блоку через дополнительное заземление, обеспечиваемое распределительной сетью.Обычно импеданс этих нежелательных цепей довольно низок, порядка очень малых долей ома. Не ожидайте, что вы сможете измерить это сопротивление с помощью портативного мультиметра, у него, скорее всего, нет требуемого разрешения или чувствительности. Для точного измерения необходимо использовать устройство, известное как мост импеданса. К счастью, средство от шума, связанного с землей, редко требует такого уровня диагностической сложности.

В соответствии с почитаемым учением Георга Симона Ома, эти напряжения, хотя и довольно низкие, способны генерировать значительный ток.Именно тогда эти «петлевые» токи создают нежелательный шум, запечатлевая свою сигнатуру на сигналах низкого уровня, обычно в виде синфазного шума.

Чтобы свести к минимуму проблемы с контуром заземления, Pass Labs никогда не производит оборудование с непрерывным сигнальным заземлением и заземлением шасси. Разделив сигнальное заземление и защитное заземление, соединение блоков вместе никогда не должно вызывать проблем с контуром заземления; Однако не все производители придерживаются этого мнения.

Что теперь?

Как только вы поймете, что вызывает контуры заземления, они должны с некоторой настойчивостью и усилиями исчезнуть.В максимально возможной степени вам необходимо разделить заземления, возврат сигналов и экранирование кабелей низкого уровня.

Несимметричные кабели по-прежнему являются нормой потребительского аудио, несмотря на присущую им хрупкость. В системах с очень небольшим количеством компонентов соединения типа RCA работают достаточно хорошо, но по мере того, как системы (особенно A / V-системы) становятся более сложными, их успешная реализация становится проблематичной. Если вы используете несимметричные кабели, всегда используйте двухжильный экранированный провод.Использование более распространенного одиночного проводника внутри экрана требует объединения возврата сигнала и экранирования на один и тот же провод; таким образом нарушая предпочтительный протокол.

Экраны предназначены для защиты от посторонних шумов на входах компонентов; общий или возвратный сигнал является частью пути прохождения сигнала, это две противоположные задачи. Из-за этих отдельных задач ваши кабели должны быть направленными, а экраны должны быть только частью входной цепи. Заземление экрана не должно подключаться на исходном конце провода, только на конце входного компонента; маркируйте их и не забывайте! Это, конечно, будет означать, что на конце кабеля с входным компонентом сигнальные проводники экрана и заземления будут соединены вместе.

Это будет предпочтительное соединение для всех несимметричных соединений, где производитель позаботился о изоляции заземления шасси от сигнального заземления, к сожалению, это еще не универсальная практика в потребительском аудио.

Такая же логика должна применяться при изготовлении кабелей XLR. Начните с кабеля, у которого есть три провода в дополнение к отдельному экрану; Первый контакт разъема является заземлением, второй контакт - положительным входом, а третий контакт - инвертированным входом. Соединение корпуса на конце входного компонента XLR становится вашим единственным соединением экрана; в маркировке здесь нет необходимости, поскольку они являются кабелями с направленной поляризацией в силу конструкции.

Если один компонент имеет защитное заземление, изолированное от сигнала, а другой - нет, очень велики шансы, что контуры заземления не станут проблемой. Когда возникают проблемы с контуром заземления, это чаще всего является результатом двух взаимосвязанных компонентов, каждый из которых имеет заземление безопасности и сигнальное заземление, соединенное внутри компонента. В этих условиях от одной из площадок придется отказаться, или вам придется сделать их все более похожими… .. ваш выбор.

Хорошо, допустим, у вас есть соединительные кабели и компоненты, которые вам нравятся, и о переделке или ином повреждении продукта не может быть и речи, что теперь?

Логично было бы подумать, что вы можете устранить контуры заземления, отключив заземление шнура питания от всего вашего оборудования.Некоторые люди могут попытаться разорвать заземление, перерезав заземляющий контакт на шнуре питания, используя штепсельную вилку, отрезав заземляющий провод внутри оборудования, заклеив заземляющий разъем лентой и т. Д. Как логика предсказывает, это может повлиять на устранение шума. .

Не делайте этого. Удаление заземляющего соединения неправильно! Это противоречит правилам электробезопасности и потенциально очень опасно. Удаление защитного заземления может нарушить работу шумового фильтра или защиты от всплесков внутри оборудования.Если заземление оборвано, повреждение изоляции внутри оборудования может привести к подаче опасного напряжения на корпус оборудования вместо размыкания предохранителя. Работа без заземления не приведет к автоматическому поражению электрическим током, но сделает это гораздо более вероятным, если что-то пойдет не так в вашей системе.

Многие известные специалисты предлагали переполяризовать ваше оборудование, перевернув шнур питания, таким образом поменяв местами горячее и нейтральное силовые соединения. Не делайте этого. На практике это может немного уменьшить ваши проблемы с шумом, связанные с источником питания, но есть и потенциальная обратная сторона.Перевернув шнур питания, внутренний предохранитель и выключатель питания переместятся в нейтральную линию питания (прощай, защита). В случае аварии в результате страховые компании будут смеяться над вашими наследниками!

Если мы не можем разделить сигнальное заземление и защитное заземление, наш единственный другой вариант - сделать их как можно более похожими путем тщательной настройки сетевого питания и защитного заземления. Существует ряд методов распределения мощности, предназначенных для уменьшения или, по крайней мере, минимизации проблем с контуром заземления.Самый распространенный метод называется распределением по звездам. В звездообразном распределении точка выбирается как заземление с произвольным самым низким потенциалом напряжения. С этого момента, излучаемая во всех направлениях, мощность достигнет всех взаимосвязанных компонентов. Тогда все защитные заземления вернутся к основному защитному заземлению в этой общей точке. Эти заземляющие соединения звездообразной конфигурации должны быть выполнены из провода большого сечения, а все плечи звезды должны быть одинаковой длины и одного калибра.

Когда все заземляющие проводники к центральной точке соединения звездой имеют одинаковую длину, то концы звезды очень близки к одинаковому потенциалу земли.Предполагая безупречное выполнение этого заземления; сигнальная проводка между любым оборудованием, заземленным на звезду, будет иметь нулевой потенциал, что позволит избежать контуров заземления.

Самый экономичный способ сделать это - подключить все компоненты низкого уровня к качественному удлинителю, а не к многочисленным розеткам. Настенная розетка, выбранная для подключения удлинителя, должна быть ближайшей к сетевой панели для этой конкретной ответвленной цепи. Все, что вы делаете для уменьшения общего электрического сопротивления цепи источника питания, дает преимущество, заключающееся в том, что «земля» ближе к потенциалу земли.Снижение импеданса источника питания таким образом позволяет внутренним фильтрам EMI / RFI ваших компонентов работать должным образом.

Любые устройства, производящие шум, в одной ответвленной цепи, такие как вентиляторы или переносные люминесцентные лампы, должны располагаться еще ближе к сетевой панели. На многих удлинителях есть MOV и неоновая подсветка; Если вы ищете максимальную мощность без радиочастотных помех, не включайте эти устройства в свою развлекательную систему. Оба устройства могут вносить небольшой, но измеримый шум в линию питания.Является ли этот небольшой шум значительным, нет, но он, безусловно, является накопительным.

MOV

имеют место в вашей домашней электросистеме, для большей эффективности они должны располагаться как можно ближе к сетевой панели.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *