Закрыть

Резонанс переменного тока: Резонанс в цепи переменного тока

Содержание

Резонанс в цепи переменного тока

Давайте с вами вспомним, что вывести закон Ома для участка цепи переменного тока, содержащего резистор, катушку индуктивности, конденсатор и источник переменного напряжения нам помогла векторная диаграмма амплитуд напряжений на резисторе, конденсаторе и катушке.

Мы показали, что амплитуда приложенного напряжения должна быть равна геометрической сумме этих амплитуд. Угол между амплитудами приложенного напряжения и силы тока определяет разность фаз между силой тока и напряжением. Тангенс этого угла, как видно из рисунка, равен отношению разности амплитуд напряжений на катушке и конденсаторе к амплитуде напряжения на активном сопротивлении:

Используя закон Ома для участка цепи нетрудно показать, что этот же угол определяется отношением реактивного сопротивления к активному:

А средняя мощность, выделяемая в цепи на активном сопротивлении, будет определяться выражением, представленном на экране:

Здесь cos φ0 — это коэффициент мощности. Являясь безразмерной физической величиной, он характеризует потребителя переменного электрического тока с точки зрения наличия в нагрузке реактивной составляющей, и показывает, насколько сдвигается по фазе переменный ток, протекающий через нагрузку, относительно приложенного к ней напряжения.

Из последних двух формул следует, что если реактивное сопротивление цепи равно нулю, то уравнение для мощности примет привычный для нас вид:

В этом случае в цепи выделяется максимальная мощность — наступает явление резонанса.

Резонансом в электрическом колебательном контуре называется явление резкого возрастания амплитуды вынужденных колебаний силы тока или напряжения при совпадении частоты внешнего переменного напряжения с собственной частотой колебательного контура:

Рассмотрим это явление более подробно. Для начала представим себе, что мы раскачиваем маятник, действуя на него периодически изменяющейся силой. В этом случае маятник будет совершать колебания не самостоятельно, не свободно, а под действием периодической внешней силы. Такие колебания маятника, как мы помним, называются

вынужденными колебаниями.

В электрических колебательных контурах также могут происходить вынужденные электромагнитные колебания. Если в каком-либо колебательном контуре, состоящем из катушки индуктивности и конденсатора, всё время действует генератор переменного тока, то ЭДС генератора будет вызывать в этом контуре переменный электрический ток, частота которого будет равна частоте колебаний ЭДС генератора.

Частота этих вынужденных колебаний в общем случае не совпадает с частотой собственных колебании контура:

Когда собственная частота колебательного контура далека от частоты ЭДС, действующей в контуре, общее сопротивление контура велико и ток в нём незначителен. Однако если в такой цепи подобрать ёмкость конденсатора и индуктивность катушки так, чтобы их сопротивления оказались равными, то разность фаз между колебаниями силы тока и напряжения станет равным нулю, то есть изменения тока и напряжения будут происходить синфазно:

Таким образом, условием возникновения резонанса в колебательном контуре является равенство частоты внешнего подаваемого на контур напряжения частоте собственных колебаний контура:

Эту частоту называют резонансной.

При этом условии полное сопротивление контура становится наименьшим и равным активному сопротивлению, а амплитуда силы тока при данном напряжении принимает наибольшее значение. В этом случае амплитуда напряжения на активном сопротивлении равна амплитуде внешнего напряжения, приложенного к участку цепи (U0r = U0), а напряжения на катушке индуктивности и конденсаторе одинаковы по модулю и противоположны по фазе:

Обратите внимание на то, что амплитудные значения резонансных напряжений на катушке и конденсаторе равны между собой, и они могут значительно превышать амплитуду приложенного напряжения:

Это явление называется резонансом напряжений. При этом чем меньше активное сопротивление контура, тем сильнее ток в контуре и круче резонансная кривая. Такой случай принято называть острым резонансом.

Контур, обладающим острым резонансом, очень чувствителен к колебаниям резонансной частоты. Это широко используется в радио- и электротехнике для усиления колебаний напряжения какой-либо определённой частоты.

Так, например, радиоволны от различных передающих станций возбуждают в антенне радиоприёмника переменные токи различных частот, так как каждая передающая радиостанция работает на своей частоте. С антенной индуктивно связан колебательный контур, в катушке которого возникают вынужденные колебания силы тока и напряжения. Но только при резонансе из колебаний различных частот, возбуждаемых в антенне, контур выделяет только те, частота которых равна его собственной частоте. Настройка контура на нужную частоту обычно осуществляется путём изменения ёмкости конденсатора.

Теперь давайте рассмотрим участок цепи переменного тока, содержащий параллельно включённые конденсатор и катушку индуктивности.

Предположим, что активное сопротивление цепи настолько мало, что им можно пренебречь. Пусть к данной цепи приложено переменное напряжение, изменяющееся по закону синуса:

Тогда ток, проходящей в ветви с ёмкостным сопротивлением, будет опережать по фазе приложенное напряжение на π/2. А проходящей в ветви с индуктивным сопротивлением — отставать по фазе на π/2 от приложенного напряжения:

Таким образом, разность фаз токов в двух ветвях равна π, то есть колебания токов в ветвях противоположны по фазе. Амплитуда же тока во внешней цепи равна модулю разности амплитуд сил токов обеих ветвей:

Если частота колебаний в контуре будет равна резонансной частоте, то амплитудные значения сил токов в ветвях будут равны, и амплитуда силы тока во внешней цепи станет равной нулю.

Конечно же, если учесть наличие активного сопротивления, то разность фаз не будет равна π, как и не будет равно нулю амплитудное значение силы тока во внешней цепи. Но оно примет наименьшее возможное значение. При этом амплитуды сил токов в ветвях могут значительно превышать амплитуду тока во внешней цепи.

Явление резкого уменьшения амплитуды силы тока во внешней цепи, питающей параллельно включённые конденсатор и катушку индуктивности, при приближении частоты приложенного напряжения к резонансной частоте называется резонансом токов (или параллельным резонансом).

Это явление используется в резонансных усилителях, позволяющих выделять одно определённое колебание из сигнала сложной формы, а также в индукционных печах, чтобы сила тока в подводящих проводах была гораздо меньше силы тока в катушке.

Для закрепления нового материала давайте решим с вами такую задачу. Контур, состоящий из конденсатора ёмкостью 507 мкФ, катушки индуктивностью 20 мГн и резистора сопротивлением 100 Ом включили последовательно в сеть переменного тока с частотой 50 Гц и напряжением 220 В. Определите силу тока в цепи, сдвиг фаз между напряжением и силой тока, а также резонансную частоту контура.

Резонансные явления в электрических сетях

Идеальное активное сопротивление от частоты не зависит, индуктивное сопротивление линейно зависит от частоты, емкостное сопротивление зависит от частоты по гиперболическому закону:


Резонанс напряжений

Резонансом в электрических цепях называется режим участка электрической цепи, содержащей индуктивный и емкостной элементы, при котором разность фаз между напряжением и током равна нулю . Режим резонанса может быть получен при изменении частоты питающего напряжения или изменением параметров элементов L и С.
При последовательном соединении возникает резонанс напряжения.

Последовательное соединение R, L, C.

Знаменатель данного выражения есть модуль комплексного сопротивления, который зависит от частоты. При достижении некоторой частоты реактивная составляющая сопротивления исчезает, модуль сопротивления становится минимальным, ток в данной схеме возрастает до максимального значения, причем вектор тока совпадает с вектором напряжения по фазе:



Максимальная амплитуда силы тока достигается при условии минимума полного сопротивления, т. е. при



где
— резонансная частота напряжения, определяемая из условия

При последовательном соединении в цепь конденсатора и соленоида силы токов в каждом из участков цепи, как известно, равны. Поэтому, умножив левую и правую части последнего соотношения на силу тока Im, получим



В этом выражении слева — амплитуда напряжения на концах соленоида, а справа — амплитуда напряжения на обкладках конденсатора.
Мы видим, что . Отсюда получаем



Знак минус указывает на то, что колебания напряжения на участках с индуктивностью и емкостью происходят в противофазе.
Режим электрической цепи при последовательном соединении индуктивности и емкости, характеризующийся равенством напряжений на индуктивности и емкости, называют резонансом напряжений.

 

Волновое или характеристическое сопротивление последовательного контура



Отношение напряжения на индуктивности или емкости к напряжению на входе в режиме резонанса называется добротностью контура:



Добротность контура представляет собой коэффициент усиления по напряжению и в катушках индуктивности может достигать сотен единиц:



При напряжение на индуктивности (или емкости) может быть гораздо больше напряжения на входе, что широко используется в радиотехнике. В промышленных сетях резонанс напряжений является аварийным режимом, так как увеличение напряжения на конденсаторе может привести к его пробою, а рост тока — к нагреву проводов и изоляции.

Резонанс токов

При параллельном соединении конденсатора и соленоида (смотри рисунок), так же как и при последовательном, сила тока в цепи зависит от значений емкости и индуктивности. При изменении емкости и индуктивности при определенном их соотношении сила тока в неразветвленном участке цепи оказывается минимальной (практически близкой к нулю).
В этом случае:



Параллельное соединение реактивных элементов

тогда


При определенной частоте, называемой резонансной, реактивные составляющие проводимости могут сравняться по модулю и суммарная проводимость будет минимальной. Общее сопротивление при этом становится максимальным, общий ток минимальным, вектор тока совпадает с вектором напряжения. Такое явление называется резонансом токов.
Волновая проводимость

При ток в ветви с индуктивностью гораздо больше общего тока, поэтому такое явление называется резонансом токов и широко используется в силовых сетях промышленных предприятий для компенсации реактивной мощности.
Резонансную частоту тока найдем из условия равенства реактивных проводимостей ветвей.

После ряда преобразований получим:

Из формулы следует, что:

1) резонансная частота зависит от параметров не только реактивных сопротивлений, но и активных;
2) резонанс возможен, если и больше или меньше ρ, в противном случае частота будет мнимой величиной и резонанс невозможен;
3) если , то частота будет иметь неопределенное значение, что означает возможность существования резонанса на любой частоте при совпадении фаз напряжения питания и общего тока;
4) при резонансная частота напряжения равна резонансной частоте тока.

Энергетические процессы в цепи при резонансе токов аналогичны процессам, происходящим при резонансе напряжений.
Реактивная энергия циркулирует внутри цепи: в одну часть периода энергия магнитного поля индуктивности переходит в энергию электрического поля емкости, в следующую часть периода происходит обратный процесс.
При резонансе токов реактивная мощность равна нулю.
Большинство промышленных потребителей переменного тока носит активно-индуктивный характер и, следовательно, потребляет реактивную мощность. К таким потребителям относятся асинхронные двигатели, установки электрической сварки и т.д.
Для уменьшения реактивной мощности и повышения коэффициента мощности параллельно потребителю включают батарею конденсаторов, что приводит к уменьшению тока в проводах, соединяющих потребителя с источником энергии.

Явления резонанса в цепях переменного тока

 Электрическим резонансом называется явление совпадения частоты источника переменного тока с частотой собственных свободных колебаний электрической цепи. Электрические колебания возникают в цепи, которая включает в себя индуктивность и емкость.

Изначально емкость заряжается до начального напряжения Uн, после чего ее замыкают на индуктивность, в результате чего в цепи возникает постепенно увеличивающийся ток i. Сила тока возрастает постепенно, так как ее увеличению препятствует э. д. с. самоиндукции. При увеличении силы тока в магнитном поле индуктивности L накапливается энергия.

Ток достигает максимального значения, после чего уменьшается постепенно, так как его уменьшению препятствует э. д. с. самоиндукции. Она поддерживает ток, благодаря чему конденсатор перезаряжается в обратном направлении.

В случае, когда в колебательном контуре нет потерь, перезарядка емкости продолжается до тех пор, пока емкость не зарядится до первоначального напряжения Uн. Резонанс возникает в цепи, когда цепь подключена к внешнему источнику, а частота этого источника ? равна частоте ?0.

Существуют два основных вида резонанса: резонанс напряжений, который возникает при последовательном соединении реактивных элементов, и резонанс токов — при параллельном соединении.

Резонанс напряжений происходит в неразветвленной цепи переменного тока, которая содержит источник энергии, индуктивность L, емкость С и активное сопротивление R. Когда активное сопротивление цепи R мало, при резонансе сила тока быстро увеличивается, и при этом возрастают напряжения на емкости и индуктивности. Добротностью электрического контура называется величина Q = ? / R.

На практике в устройствах резонанс напряжений является не- желательным явлением, которое связано с возникновением перенапряжений.

Положительное действие резонанса проявляется в радиотехнике, проволочной телефонии, в автоматике и т. п. Резонанс токов возникает при параллельном соединении источника и колебательного контура. Данное явление происходит при условии, что bC = bL, когда I = Ug и cos? = 1. Токи в каждой из реактивных ветвей пропорциональны одному и тому же напряжению и поэтому при резонансе равны:

IC = UbC = IL = UbL.

В реальных цепях не существует катушек, которые обладают индуктивностью и не обладают активным сопротивлением, что относится и к емкости.


В последовательной цепи переменного тока возникает резонанс. Резонанс в электрической цепи

В цепях переменного тока при последовательном соединении активного элемента r, емкостного С и индуктивного L может возникнуть такое явление как резонанс напряжений. Это явление можно использовать с пользой (например, в радиотехнике), но также оно может и нанести серьезный вред (в электрических установках большой мощности резонанс напряжений может вызвать серьезные последствия).

Принципиальная схема и векторная диаграмма при резонансе напряжений показаны ниже:

При последовательном включении всех трех элементов данной электрической цепи будет справедливо следующее:

Также нужно помнить, что резонанс возможен только при φ = 0, что при последовательном соединении равносильно вот такому соотношению х = ωL – 1/(ωC) = 0, то есть должно выполняться условие ωL = 1/(ωC) или ω 2 LC = 1. Резонанса напряжений можно достичь тремя способами:

  • Подобрать индуктивность катушки;
  • Подобрать емкость конденсатора;
  • Подобрать угловую частоту ω 0 ;

Причем все эти значения частоты, емкости и индуктивности можно определить используя формулы:

Частота ω 0 носит название резонансной частоты. Если в цепи не изменяется ни напряжение, ни активное сопротивление r, то при резонансе напряжения ток в этой цепи будет максимален, и равен U/r. Это значит, что ток будет полностью не зависим от реактивного сопротивления цепи. В случае же, когда реактивные сопротивления X C = X L будут превосходить по своему значению активное сопротивление r, то на зажимах катушки и конденсатора начнет появляться напряжение, значительно превосходящее напряжение на зажимах цепи. Условие, при котором напряжение на зажимах цепи будет меньше напряжения реактивных элементов будет иметь вид:

Величина , имеющая размерность сопротивления и для удобства расчетов обозначена нами как ρ, называется волновым сопротивлением контура.

Кратность превышения напряжения на зажимах емкостного и индуктивного элемента по отношению к сети можно определить из выражения:

Величина Q определяет резонансные свойства контура и носит названия добротность контура. Также еще резонансные свойства могут характеризовать величиной 1/Q – затухание контура.

Мгновенная мощность для индуктивности и емкости будет равна p L = U L Isin2ωt и p С = -U С Isin2ωt. При резонансе напряжения, когда U L = U С, эти мощности будут равны в любой момент времени и противоположны по знаку. А это означает, что в данной цепи будет происходит обмен энергией между магнитным полем катушки и электрическим полем конденсатора, при этом обмена энергией между энергией полей и энергией источника электрической энергии (источника питания) и не происходит. Это вызвано тем, что p L + p С = dW м /dt + dW э /dt и W м + W э = const, то есть суммарная энергия полей в цепи постоянна. При работе такой системы энергия от конденсатора будет переходить в катушку в течении четверти периода, когда ток на катушке возрастает, а напряжение на конденсатора снижается. В течении следующей четверти периода картина противоположна – ток катушки будет снижаться, а напряжения конденсатора расти, то есть энергия от индуктивности будет переходить емкости. При этом источник электрической энергии, питающий данную цепь, будет покрывать только расход энергии, связанный с наличием в цепи активного сопротивления r.

Колебательный контур — электрическая цепь, в которой могут возникать колебания с частотой, определяемой параметрами цепи.

Простейший колебательный контур состоит из конденсатора и катушки индуктивности, соединенных параллельно или последовательно.

Конденсатор C – реактивный элемент. Обладает способностью накапливать и отдавать электрическую энергию.
— Катушка индуктивности L – реактивный элемент. Обладает способностью накапливать и отдавать магнитную энергию.

Свободные электрические колебания в параллельном контуре.

Основные свойства индуктивности:

Ток, протекающий в катушке индуктивности, создаёт магнитное поле с энергией .
— Изменение тока в катушке вызывает изменение магнитного потока в её витках, создавая в них ЭДС, препятствующую изменению тока и магнитного потока.

Период свободных колебаний контура LC можно описать следующим образом:

Если конденсатор ёмкостью C заряжен до напряжения U , потенциальная энергия его заряда составит.
Если параллельно заряженному конденсатору подключить катушку индуктивности L , в цепи пойдёт ток его разряда, создавая магнитное поле в катушке.

Магнитный поток, увеличиваясь от нуля, создаст ЭДС в направлении противоположном току в катушке, что будет препятствовать нарастанию тока в цепи, поэтому конденсатор разрядится не мгновенно, а через время t 1 , которое определяется индуктивностью катушки и ёмкостью конденсатора из расчёта t 1 = .
По истечении времени t 1 , когда конденсатор разрядится до нуля, ток в катушке и магнитная энергия будут максимальны.
Накопленная катушкой магнитная энергия в этот момент составит.
В идеальном рассмотрении, при полном отсутствии потерь в контуре, E C будет равна E L . Таким образом, электрическая энергия конденсатора перейдёт в магнитную энергию катушки.

Изменение (уменьшение) магнитного потока накопленной энергии катушки создаст в ней ЭДС, которая продолжит ток в том же направлении и начнётся процесс заряда конденсатора индукционным током. Уменьшаясь от максимума до нуля в течении времени t 2 = t 1 , он перезарядит конденсатор от нуля до максимального отрицательного значения (-U ).
Так магнитная энергия катушки перейдёт в электрическую энергию конденсатора.

Описанные интервалы t 1 и t 2 составят половину периода полного колебания в контуре.
Во второй половине процессы аналогичны, только конденсатор будет разряжаться от отрицательного значения, а ток и магнитный поток сменят направление. Магнитная энергия вновь будет накапливаться в катушке в течении времени t 3 , сменив полярность полюсов.

В течении заключительного этапа колебания (t 4), накопленная магнитная энергия катушки зарядит конденсатор до первоначального значения U (в случае отсутствия потерь) и процесс колебания повторится.

В реальности, при наличии потерь энергии на активном сопротивлении проводников, фазовых и магнитных потерь, колебания будут затухающими по амплитуде.
Время t 1 + t 2 + t 3 + t 4 составит период колебаний .
Частота свободных колебаний контура ƒ = 1 / T

Частота свободных колебаний является частотой резонанса контура, на которой реактивное сопротивление индуктивности X L =2πfL равно реактивному сопротивлению ёмкости X C =1/(2πfC) .

Расчёт частоты резонанса

LC -контура:

Предлагается простой онлайн-калькулятор для расчёта резонансной частоты колебательного контура.

Явление резонанса токов и напряжений наблюдается в цепях индуктивно-емкостного характера. Это явление нашло применение в радиоэлектронике, став основным способов настройки приемника на определенную волну. К сожалению, резонанс может нанести вред электрооборудованию и кабельным линиям. В физике резонансом является совпадение частот нескольких систем. Давайте рассмотрим, что такое резонанс напряжений и токов, какое значение он имеет и где используется в электротехнике.

Реактивные сопротивления индуктивности и емкости

Индуктивностью называется способность тела накапливать энергию в магнитном поле. Для нее характерно отставание тока от напряжения по фазе. Характерные индуктивные элементы — дросселя, катушки, трансформаторы, электродвигатели.

Емкостью называются элементы, которые накапливают энергию с помощью электрического поля. Для емкостных элементов характерно отставание по фазе напряжения от тока. Емкостные элементы: конденсаторы, варикапы.

Приведены их основные свойства, нюансы в пределах этой статьи во внимание не берутся.

Кроме перечисленных элементов другие также имеют определенную индуктивность и емкость, например в электрических кабелях распределенные по его длине.

Емкость и индуктивность в цепи переменного тока

Если в цепях постоянного тока емкость в общем смысле представляет собой разорванный участок цепи, а индуктивность — проводник, то в переменном конденсаторы и катушки представляют собой реактивный аналог резистора.

Реактивное сопротивление катушки индуктивности определяется по формуле:

Векторная диаграмма:

Реактивное сопротивление конденсатора:

Здесь w — угловая частота, f — частота в цепи синусоидального тока, L — индуктивность, C — емкость.

Векторная диаграмма:

Стоит отметить, что при расчете соединенных последовательно реактивных элементов используют формулу:

Обратите внимание, что емкостная составляющая принимается со знаком минус. Если в цепи присутствует еще и активная составляющая (резистор), то складывают по формуле теоремы Пифагора (исходя из векторной диаграммы):

От чего зависит реактивное сопротивление? Реактивные характеристики зависят от величины емкости или индуктивности, а также от частоты переменного тока.

Если посмотреть на формулу реактивной составляющей, то можно заметить, что при определенных значениях емкостной или индуктивной составляющей их разность будет равна нулю, тогда в цепи останется только активное сопротивление. Но это не все особенности такой ситуации.

Резонанс напряжений

Если последовательно с генератором соединить конденсатор и катушку индуктивности, то, при условии равенства их реактивных сопротивлений, возникнет резонанс напряжений. При этом активная часть Z должно быть как можно меньшей.

Стоит отметить, что индуктивность и емкость обладает только реактивными качествами лишь в идеализированных примерах. В реальных же цепях и элементах всегда присутствует активное сопротивление проводников, хоть оно и крайне мало.

При резонансе происходит обмен энергией между дросселем и конденсатором. В идеальных примерах при первоначальном подключении источника энергии (генератора) энергия накапливается в конденсаторе (или дросселе) и после его отключения происходят незатухающие колебания за счет этого обмена.

Напряжения на индуктивности и емкости примерно одинаковы, согласно :

Где X — это Xc емкостное или XL индуктивное сопротивление соответственно.

Цепь, состоящую из индуктивности и емкости, называют колебательным контуром. Его частота вычисляется по формуле:

Период колебаний определяется по формуле Томпсона:

Так как реактивное сопротивление зависит от частоты, то сопротивление индуктивности с ростом частоты увеличивается, а у ёмкости падает. Когда сопротивления равны, то общее сопротивление сильно снижается, что отражено на графике:

Основными характеристиками контура являются добротность (Q) и частота. Если рассмотреть контур в качестве четырехполюсника, то его коэффициент передачи после несложных вычислений сводится к добротности:

А напряжение на выводах цепи увеличивается пропорционально коэффициенту передачи (добротности) контура.

Uк=Uвх*Q

При резонансе напряжений, чем выше добротность, тем больше напряжение на элементах контура будет превышать напряжение подключенного генератора. Напряжение может повышаться в десятки и сотни раз. Это отображено на графике:

Потери мощности в контуре обусловлены только наличием активного сопротивления. Энергия из источника питания берется только для поддержания колебаний.

Коэффициент мощности будет равен:

Эта формула показывает, что потери происходят за счет активной мощности:

S=P/Cosф

Резонанс токов наблюдается в цепях, где индуктивность и емкость соединены параллельно.

Явление заключается в протекании токов большой величины между конденсатором и катушкой, при нулевом токе в неразветвленной части цепи. Это объясняется тем, что при достижении резонансной частоты общее сопротивление Z возрастает. Или простым языком звучит так – в точке резонанса достигается максимальное общее значение сопротивления Z, после чего одно из сопротивлений увеличивается, а другое снижается в зависимости от того растет или снижается частота. Это наглядно отображено на графике:

В общем, всё аналогично предыдущему явлению, условия возникновения резонанса токов следующие:

  1. Частота питания аналогична резонансной у контура.
  2. Проводимости у индуктивности и ёмкости по переменному току равны BL=Bc, B=1/X.

Применение на практике

Рассмотрим, какая польза и вред резонанса токов и напряжений. Наибольшую пользу явления резонанса принесли в радиопередающей аппаратуре. Простыми словами, а схеме приемника установлены катушка и конденсатор, подключенные к антенне. С помощью изменения индуктивности (например, перемещая сердечник) или величины емкости (например, воздушным переменным конденсатором) вы настраиваете резонансную частоту. В результате чего напряжение на катушке повышается и приемник ловит определенную радиоволну.

Вред эти явления могут на нести в электротехнике, например, на кабельных линиях. Кабель представляет собой распределенную по длине индуктивность и емкость, если на длинную линию подать напряжение в режиме холостого хода (когда на противоположном от источника питания конце кабеля нагрузка не подключена). Поэтому есть опасность того, что произойдет пробой изоляции, во избежание этого подключается нагрузочный балласт. Также аналогичная ситуация может привести к выходу из строя электронных компонентов, измерительных приборов и другого электрооборудования – это опасные последствия возникновения этого явления.

Заключение

Резонанс напряжений и токов — интересное явление, о котором нужно знать. Он наблюдается только в индуктивно-емкостных цепях.(1/2)

  1. Как устранить явление?

Увеличив активное сопротивление в цепи или изменив частоту.

Теперь вы знаете, что такое резонанс токов и напряжений, каковы условия его возникновения и варианты применения на практике. Для закрепления материала рекомендуем просмотреть полезное видео

Резонанс токов

Резонанс токов возникает в цепи с параллельным включением элементов (рис.5.1). Такая цепь содержит два сложных потенциальных узла, а все элементы находятся под одним и тем же напряжением

Для любого из узлов — 1 или 1’ справедлив первый закон Кирхгофа:

Применяя к (5.2) выражения (1.7) и (1.12) приведем его к виду

(5.3)

Подставим в (5.3) вместо u(t) его значение из (5.1) и решим его

Векторная диаграмма, построенная по (5.4) приведена на рис. 5.2. В качестве исходного в ней принят общий для всех элементов цепи вектор напряжения . С этим вектором совпадает по направлению вектор тока через резистор. Его величина равна

Вектор тока через индуктивность отстает от вектора напряжения, а вектор тока через емкость опережает его на 90 о. Проведем последовательное сложение векторов . Результатом сложения является вектор Он сдвинут по фазе относительно вектора на угол j . Разность векторов дает вектор реактивного тока . Его величина

. (5.5)

Векторы и образуют треугольник токов. Для этого треугольника справедливы выражения

. (5.7)

Треугольник токов наглядно показывает, что для достижения резонанса в цепи необходимо обеспечить равенства противофазных токов и . Тогда результирующий реактивный ток цепи и угол j будут равны нулю, а сопротивление цепи станет активным. Из выражения (5.5) видно что может быть равно нулю при соблюдении условия

Отсюда легко определить:

Частоту , на которой наступает резонанс (резонансную частоту) при заданных значениях элементов L и С

Значение одного из элементов L или С, если заданы резонансная частота и другой элемент

Определим значение тока всей цепи и токов, протекающих в ее ветвях в режиме резонанса.

Действующее значение тока всей цепи на частоте легко найти по (5.6)

Но это значение равно току, протекающему через активное сопротивление цепи т.е.

Ток, протекающий через элемент L определим по закону Ома

. (5.13)

Подставляя в (5.13) вместо U его значение из (5.11) получим

Аналогично определяем выражение для тока через элемент

Принимая во внимание (5.8) нетрудно сделать вывод о том, что токи протекающие через индуктивный и емкостной элементы равны по величине, но противоположны по фазе. Величина Q равная

(5.16)

может быть больше единицы, в специальных устройствах достигает несколько десятков и сотен единиц и называется добротностью.

Еще раз подчеркнем замечательную особенность цепи в режиме резонанса. Токи протекающие в ветвях реактивных элементов могут принимать значения в десятки и сотни раз больше общего тока цепи. Поэтому резонанс цепи называют резонансом токов. Очень важно и то, что они противофазны. Именно это указывает на то, что в цепи происходит колебательный процесс с частотой по передаче электрической энергии конденсатора в магнитную энергию индуктивности и наоборот. Энергия источника на этот процесс не затрачивается (при идеальных L и С). Она расходуется только на преодоление сопротивления резистора R. Поэтому цепь рис.5.1. называют параллельным колебательным контуром.

Чтобы завершить анализ цепи рассмотрим зависимость ее токов и напряжения от частоты (рис.5.4). Ток, протекающий через элемент R — i R


определяется законом Ома и не зависит от частоты. Ток через емкость i c согласно (5.15) прямопропорционален частоте, а ток через индуктивность i L -обратнопропорционален. На частоте они равны по величине, но противоположны по направлению. Общий ток цепи определяется суммой трех токов. Поэтому он имеет большое значение на частотах, дальних от резонансной, но принимает значение i R на резонансной частоте. Физически это означает что на резонансной частоте проводимость цепи минимальна (она равна проводимости только элемента R). Поэтому падение напряжения между узлами 1-1’ максимально на частоте и имеет вид резонансной огибающей. В силу этих качеств параллельный колебательный контур широко применяют в радио и радиотехнических устройствах для выделения сигналов на заданной частоте.

Резонанс напряжений

Резонанс напряжений возникает в цепи с последовательным включением элементов (рис.5.5).


Известно, что комплексное сопротивление токов цепи определяется выражением

.

По определению резонанс в цепи рис.5.5 наступает, когда выполнится условие

Отсюда видно, что резонанс в цепи возникает на частоте

Очевидно также, что

Видим, что полученные выражения полностью соответствуют (5.9) и (5.10). Это подтверждает единство физической сути различных видов резонанса.

Определим ток и напряжение всей цепи, а также падение напряжения на ее отдельных элементах в режиме резонанса.

Так как сопротивление всей цепи в режиме резонанса минимально и равно R то ток в ней максимален и равен

а падение напряжения определяется ЭДС источника — Е.

Падение напряжения на отдельных элементах легко найти по закону Ома. Так, падение напряжения на резисторе R равно

. (5.18)

Тривиальный математически результат интересен по физической сути. Все напряжение источника выделяется на одном элементе цепи.

Падение напряжения на индуктивности равно

. (5.19)

Величина

называется добротностью и может принимать значение десятков и сотен единиц. Значит, падение напряжения на индуктивности может в десятки и сотни раз превышать ЭДС источника.

Падение напряжения на емкости равно

Так как , то падение напряжения на емкости равно по величине падению напряжения на индуктивности, но согласно (5.8) они противоположны по знаку. Отношение напряжения на индуктивности или на емкости в режиме резонанса к току в этом режиме называют характеристическим сопротивлением , причем

. (5.22)

Резонанс является одним из самых распространенных в природе резонанса можно наблюдать в механических, электрических и даже тепловых системах. Без резонанса у нас не было бы радио, телевидения, музыки и даже качелей на детских площадках, не говоря уже об эффективнейших диагностических системах, применяемых в современной медицине. Одним из самых интересных и полезных видов резонанса в электрической цепи является резонанс напряжений.

Элементы резонансной цепи

Явление резонанса может возникнуть в так называемой RLC-цепи, содержащей следующие компоненты:

  • R — резисторы. Эти устройства, относящиеся к так называемым активным элементам электрической цепи, преобразуют электрическую энергию в тепловую. Другими словами, они удаляют энергию из контура и преобразуют ее в тепло.
  • L — индуктивность. Индуктивность в электрических цепях — аналог массы или инерции в механических системах. Этот компонент не очень заметен в электрической цепи, пока не попробуешь сделать в ней какие-либо изменения. В механике, например, таким изменением является изменение скорости. В электрической цепи — изменение тока. Если оно по какой-либо причине происходит, индуктивность противодействует такому изменению режима цепи.
  • С — обозначение для конденсаторов, которые представляют собой устройства, хранящие электрическую энергию подобно тому, как пружины сохраняют Индуктивность концентрирует и сохраняет магнитную энергию, в то время как конденсатор концентрирует заряд и тем самым хранит электрическую энергию.

Понятие резонансного контура

Ключевыми элементами резонансного контура являются индуктивность (L) и емкость (C). Резистор имеет тенденцию к гашению колебаний, поэтому он удаляет энергию из контура. При рассмотрении процессов, происходящих в колебательном контуре, мы его временно игнорируем, но необходимо помнить, что подобно силе трения в механических системах электрическое сопротивление в цепях невозможно устранить.

Резонанс напряжений и резонанс токов

В зависимости от способа соединения ключевых элементов резонансный контур может быть последовательным и параллельным. При подключении последовательного колебательного контура к источнику напряжения с частотой сигнала, совпадающей с собственной частотой, при определенных условиях в нем возникает резонанс напряжений. Резонанс в электрической цепи с параллельно соединенными реактивными элементами называется резонансом токов.

Собственная частота резонансного контура

Мы можем заставить систему колебаться с собственной частотой. Для этого сначала необходимо зарядить конденсатор, как показано на верхнем рисунке слева. Когда это будет выполнено, ключ переводится в положение, показанное на том же рисунке справа.

В момент времени «0» вся электрическая энергия сохраняется в конденсаторе, и ток в контуре равен нулю (рисунок внизу). Обратите внимание, что верхняя пластина конденсатора заряжена положительно, а нижняя — отрицательно. Мы не можем видеть колебания электронов в цепи, но мы можем измерить ток амперметром, а при помощи осциллоскопа отследить характер зависимости тока от времени. Отметим, что T на нашем графике — это время, необходимое для завершения одного колебания, носящего в электротехнике название «период колебания».

Ток течет по часовой стрелке (рисунок внизу). Энергия передается из конденсатора в На первый взгляд может показаться странным, что индуктивность содержит энергию, однако это похоже на кинетическую энергию, содержащуюся в движущейся массе.

Поток энергии возвращается обратно в конденсатор, но обратите внимание, что полярность конденсатора теперь изменилась. Другими словами, нижняя пластина теперь имеет положительный заряд, а верхняя пластина — отрицательный заряд (рисунок внизу).

Теперь система полностью обратилась, и энергия начинает поступать из конденсатора опять в индуктивность (рисунок внизу). В итоге энергия полностью возвращается к своей отправной точке и готова начать цикл заново.

Частота колебаний может быть аппроксимирована следующим образом:

где: F — частота, L — индуктивность, C — емкость.

Рассмотренный на этом примере процесс отражает физическую суть резонанса напряжений.

Исследование резонанса напряжений

В реальных схемах LC всегда присутствует небольшое сопротивление, которое с каждым циклом уменьшает прирост амплитуды тока. После нескольких циклов ток уменьшается до нуля. Этот эффект называется «затухание синусоидального сигнала». Скорость затухания тока до нулевого значения зависит от величины сопротивления в цепи. Тем не менее, сопротивление не изменяет частоту колебаний резонансного контура. Если сопротивление достаточно велико, синусоидальные колебания в контуре не возникнут вообще.

Очевидно, там, где существует собственная частота колебаний, есть возможность возбуждения резонансного процесса. Мы делаем это, включая в последовательную цепь источник питания (АС), как показано на рисунке слева. Термин «переменный» означает, что выходное напряжение источника колеблется с определенной частотой. Если частота источника питания совпадает с собственной частотой контура, возникает резонанс напряжений.

Условия возникновения

Сейчас мы рассмотрим условия возникновения резонанса напряжений. Как показано на последнем рисунке, мы вернули резистор в контур. При отсутствии резистора в контуре ток в резонансной цепи будет нарастать до некоторого максимального значения, определяемого параметрами элементов контура и мощностью источника питания. Увеличение сопротивления резистора в резонансной цепи повышает тенденцию к затуханию тока в контуре, но не влияет на частоту резонансных колебаний. Как правило, режим резонанса напряжений не наступает, если сопротивление цепи резонанса удовлетворяет условию R = 2(L/C) 0,5 .

Использование резонанса напряжений для передачи радиосигнала

Явление резонанса напряжений является не только любопытнейшим физическим феноменом. Оно играет исключительную роль в технологии беспроводных коммуникаций — радио, телевидении, сотовой телефонии. Передатчики, используемые для беспроводной передачи информации, в обязательном порядке содержат схемы, предназначенные для резонирования на определенной для каждого устройства частоте, называемой несущей частотой. При помощи передающей антенны, подключенной к передатчику, он излучает на несущей частоте.

Антенна на другом конце приемо-передающего тракта получает этот сигнал и подает его на приемный контур, предназначенный для резонирования на частоте несущей. Очевидно, что антенна принимает множество сигналов на различных частотах, не говоря уже о фоновом шуме. Благодаря наличию на входе приемного устройства, настроенного на несущую частоту резонансного контура, приемник выбирает единственно правильную частоту, отсеивая все ненужные.

После детектирования амплитудно-модулированного (AM) радиосигнала, выделенный из него низкочастотный сигнал (НЧ) усиливается и подается на звуковоспроизводящее устройство. Это простейшая форма радиопередачи очень чувствительна к шумам и помехам.

Для повышения качества принимаемой информации разработаны и успешно используются другие, более совершенные способы передачи радиосигнала, которые также базируются на использовании настроенных резонансных систем.

Или FM-радио решает многие из проблем радиопередачи с амплитудно-модулированным передающим сигналом, однако это достигается ценой существенного усложнения системы передачи. В FM-радио системные звуки в электронном тракте превращаются в небольшие изменения несущей частоты. Часть оборудования, которое выполняет это преобразование, называется «модулятор» и используется с передатчиком.

Соответственно, к приемнику должен быть добавлен демодулятор для преобразования сигнала обратно в форму, которая может быть воспроизведена через громкоговоритель.

Другие примеры использования резонанса напряжения

Резонанс напряжений как основополагающий принцип заложен также в схемотехнике многочисленных фильтров, широко применяемых в электротехнике для устранения вредных и ненужных сигналов, сглаживания пульсаций и генерирования синусоидальных сигналов.

физический смысл и применение, формулы и способы расчета

Физическое явление параллельного резонанса широко применяется в радиоэлектронике. Для построения колебательных контуров, состоящих из активного и реактивного сопротивлений, следует собрать цепь из сопротивления, емкости, а также индуктивности. Для этого необходимо разобраться в назначении резонанса, нахождении сопротивления радиокомпонентов, его основном применении в радиотехнике, а также условии его возникновения.

Общие сведения

Электрическим сопротивлением проводника является свойство проводить электрический ток. Для построения и расчета колебательного контура необходимо знать способы нахождения активного и реактивного сопротивлений. Сопротивление для цепей, питающихся от переменного тока (ЦПТ), бывает следующих видов: активное, реактивное и полное.

Активным сопротивлением ® является обыкновенный резистор. Реактивное состоит из следующих типов нагрузки: индуктивное и емкостное. Индуктивное (Xl) — сопротивление катушки индуктивности в цепи переменного тока, а емкостное (Xc) определяется наличием емкости в цепи (конденсатора).

При сложении активного и реактивного сопротивлений получается полное сопротивление участка электрической цепи, которое обозначается литерой Z.

Активное сопротивление

Активным сопротивлением в ЦПТ называется наличие любой нереактивной нагрузки. Его можно рассчитать следующими способами: при помощи измерения величины сопротивления и расчетным методом. Для измерения R применяется прибор, который называется омметром. Омметр входит в состав комбинированных приборов измерения электрических величин, которые называются мультиметрами. Он подключается параллельно нагрузке, причем для проведения измерений следует выключить электрическую цепь, поскольку наличие тока приведет прибор к выходу из строя.

Существует еще один способ, который является расчетным, однако он требует знаний в области физики. При вычислении величины R следует произвести измерения силы тока и напряжения, а точнее, их амплитудных значений (Uм и Iм соответственно). Это возможно сделать при помощи соответствующих приборов.

Для измерения величины напряжения применяется вольтметр, а силу тока можно измерить при помощи амперметра. Кроме того, эти приборы измеряют только действующие значения напряжения (Uд) и силы тока (Iд). Для расчета амплитудных значений следует воспользоваться следующими формулами:

  1. Uм = Uд * sqrt (2).
  2. Iм = Iд * sqrt (2).

​Для расчета R, которое можно найти, используя закон Ома для участка цепи (Iм = Uм / R): R = Uм / Iм. Воспользовавшись соотношениями зависимостей амплитудных значений от действующих, возможно рассчитать R: R = Uд * sqrt (2) / Iд * sqrt (2) = Uд / Iд. На практике применяют способ измерения сопротивления омметром.

Другие виды нагрузок

При наличии в ЦПТ катушки индуктивности возникает Xl, которую необходимо только рассчитывать. Индуктивное сопротивление рассчитывается по формуле, для которой необходимы циклическая частота (w) и индуктивность катушки (L): Xl = w * L.

Циклическая частота рассчитывается по следующей формуле, для которой необходимо только знать частоту переменного тока (f) и число ПИ (3,1416): w = 2 * 3,1416 * f. Индуктивность катушки рассчитывается, исходя из значений диаметра катушки (D в мм), числа витков (n) и длины намотки (l): L = (sqr (D/10) * sqr (n)) / (4,5 * D + 10 * l). Если подставить в формулу расчета индуктивного сопротивления все соотношения, то получается: Xl = 2 * 3,1416 * f * (sqr (D/10) * sqr (n)) / (4,5 * D + 10 * l).

Если в ЦПТ присутствует конденсатор с емкостью C, то добавляется еще и емкостное сопротивление — Xl, которое рассчитывается по следующей формуле: Xc = 1 / (w * C) = 1 / (2 * 3,1416 * f * C). Полное сопротивление в ЦПТ обозначается литерой Z и рассчитывается по формуле: Z = sqrt [sqr® +sqr (Xс — Xl)]. Если подставить в формулу полного сопротивления соотношения, по которым находятся R, Xl и Xc, то получается следующая формула: Z = sqrt [sqr (Uд / Iд) +sqr ((1 / (2 * 3,1416 * f * C)) — (2 * 3,1416 * f * (sqr (D/10) * sqr (n)) / (4,5 * D + 10 * l))]. Для упрощения вычисления можно рассчитать отдельно значения R, Xc и Xl.

Понятие о резонансе

Резонанс в цепи переменного тока происходит при образовании резонансной частоты, при которой некоторые сопротивления компенсируют друг друга. Основными признаками резонанса являются:

  1. Совпадения по фазе U и I в цепи.
  2. Значение активного и полного сопротивлений совпадают: Z = R.
  3. Сила тока является максимальной.
  4. Падение величины U на R равно U, которое приложено к контуру LC.
  5. Выполняется равенство падений U на индуктивности и емкости, а также противоположность по фазе и больше приложенного напряжения: Ul > U, Ul = I * Xl = I * Xc и U = I * R.

В последнем случае коэффициент усиления по напряжению рассчитываются следующим способом: Ku = Ul / U = sqrt (L/C) / R = p / R. Этот коэффициент называется добротностью контура и обозначается литерой Q. Волновое сопротивление контура обозначается p, которое вычисляется по формуле: p = sqrt (L/C).

Резонанс в ЦПТ бывает двух видов: последовательный и параллельный. Для последовательного резонанса условием является минимальное сопротивление и нулевая фаза. В основном он применяется в схемах с реактивными составляющими L и C. При параллельном типе резонанса происходит равенство емкостных и индуктивных сопротивлений, которые компенсируют друг друга. Этот тип соединения должен постоянно быть равен расчетной величине. Он получил широкое применение, благодаря резкому минимуму импеданса. Импеданс — полное сопротивление в цепи переменного тока, который обозначается Z.

Контур является схемой, в которой подключены параллельно или последовательно следующие элементы: резистор, катушка индуктивности и конденсатор.

Эта схема образует осциллятор для тока с гармонической составляющей. Наличие сопротивления в схеме приводит к затуханию и уменьшает резонансную пиковую частоту.

Во всей силовой радиоэлектронике применяются колебательные контуры. Примером его является силовой трансформатор. Кроме того, контур используется для настройки телевизоров, согласования антенн. Возможно применение в качестве полосового и режекторного фильтров, которые применяются в датчиках для распределения низких и высоких частот. Эффект резонанса применяется и в медицине при микротоковой терапии, и при проведении биорезонансной диагностики.

Случаи для тока и напряжения

В радиоэлектронике применяется резонанс напряжений и токов. Они отличаются друг от друга и применяются в определенных случаях. Резонанс напряжений возникает при последовательном соединении в RLC-цепи (схема 1):

Схема 1 — Последовательное соединение элементов.

Основным условием возникновения резонанса является равенство частот источника питания и колебательного контура. Кроме того, Xc = Xl, они являются противоположными величинами (по знаку) и равны 0. Напряжения Uc и Ul противоположны по фазам и компенсируют друг друга, следовательно, Z = R. В результате этого происходит увеличение тока, так как при уменьшении сопротивления по закону Ома происходит увеличение I. Вырастает не только I, но и значения U на элементах схемы. При резонансе значения напряжений на конденсаторе и катушке индуктивности могут быть больше относительно напряжения источника питания.

При увеличении частоты значение Xl увеличивается, а Xc — уменьшается. При равенстве частот резонансной и источника питания значение Z будет уменьшаться. Резонансная частота находится по формуле: w = sqrt (1 / (L * C)). Резонанс в ЦПТ зависит от следующих величин: частоты источника питания — f, параметров L и C. Обмен электрической энергией осуществляется между катушкой и конденсатором через источник питания.

Резонанс токов в цепи переменного тока возникает при параллельном включении активных и реактивных нагрузок. На схеме 2 изображен контур с параллельным соединением:

Схема 2 — Параллельное соединение в RLC-контуре.

В этом случае резонанс возникает при равенстве частот источника питания и резонансной, а также равенства проводимостей конденсатора (Bc) и катушки (Bl). Проводимость — величина, обратная сопротивлению. При увеличении частоты источника питания происходит рост полного сопротивления, при котором ток уменьшается. В результате этого, ток уменьшается и равняется активной составляющей. Для определения резонансной частоты следует воспользоваться алгоритмом нахождения этой величины:

  1. Удельные проводимости для резистора, катушки индуктивности и конденсатора: G = 1 / R, Bl = 1 / (w * L) и Bc = w * C соответственно.
  2. 1 / (w * L) = w * C.
  3. Резонансная частота вычисляется по формуле: w = sqrt (1 / (L * C)).

Явление резонанса может привести к выходу из строя элементов схемы, приборов или устройств. Для того чтобы избежать этого, необходимо производить точные расчеты колебательных контуров.

Расчет параллельного контура

Необходимо сделать параллельный контур, частота резонанса которого равна 1,5 МГц. Для его изготовления нужно осуществить расчет, исходя из которого возможно будет его изготовить. Рассчитывать контур следует точно, поскольку любая неточность может привести к негативным последствиям. Основной задачей является расчет нужных индуктивности катушки и емкости конденсатора. Расчет осуществляется по следующему алгоритму:

  1. Вычислить необходимую индуктивность в мкГн при заданной емкости и частоте: L = sqr (159,12 / f) / C.
  2. Рассчитать количество витков (n) и диаметр каркаса (d в мм) катушки: n = 32 * sqrt (L / d).

Пусть С = 2000 пФ, тогда L = sqr (159,12 / 2) / 2000 = 5,6 мкГн. Количество витков для катушки с d = 3 мм: n = 32 * sqr (5,6 / 3) = 112.

Этот метод является приближенным, поскольку не учитывается межвитковое пространство катушки. Радиолюбители часто применяют уже готовые катушки, имеющие длину 15 мм с диаметром d = 3 мм. Вычислить можно, используя другую формулу: n = 8,5 * sqrt (L) = 8,5 * 2,3664 = 21.

Таким образом, явление резонанса применяется при построении различной радиоаппаратуры и требует выполнения верных расчетов, поскольку даже при незначительных ошибках могут выйти из строя дорогостоящие детали.

Резонанс напряжений в последовательном колебательном контуре

  

   В радиотехнике широкое применение имеют электрические цепи, составленные из катушки индуктивности и конденсатора. Такие цепи в радиотехнике называются колебательными контурами. Источник переменного тока к колебательному контуру может быть присоединен двумя способами: последовательно (рисунок 1а) и параллельно (рисунок 1б).

Рисунок 1. Схемотическое обозначение колебательного контура. а) последовательный колебательный контур; б) параллельный колебательный контур.

   Рассмотрим поведение колебательного контура в цепи переменного тока при последовательном соединении контура и источника тока (рис 1а).

Мы знаем, что такая цепь оказывает переменному току реактивное сопротивление, равное:

   где RL— активное сопротивление катушки индуктивности в ом;

   ωL,-индуктивное сопротивление катушки индуктивности в ом;

   1/ωC-емкостное сопротивление конденсатора в ом.

   Активное сопротивление катушки RL практически очень мало изменяется при изменении частоты (если пренебречь поверхностным эффектом). Индуктивное и емкостное сопротивления в очень сильной степени зависят от частоты, а именно: индуктивное сопротивление ωL увеличивается прямо пропорционально частоте тока, а емкостное сопротивление 1/ωC уменьшается при повышении частоты тока, т. е. оно связано с частотой тока обратно пропорциональной зависимостью.

   Отсюда непосредственно следует, что реактивное сопротивление последовательного колебательного контура также зависит от частоты, и колебательный контур будет оказывать токам разных частот неодинаковое сопротивление.

   Если мы будем измерять реактивное сопротивление колебательного контура при различных частотах, то обнаружим, что в области низких частот сопротивление последовательного контура очень велико; при увеличении частоты оно уменьшается до некоторого предела, а затем начинает снова возрастать.

   Объясняется это тем, что в области низких частот ток испытывает большое сопротивление со стороны конденсатора, при увеличении же частоты начинает действовать индуктивное сопротивление, компенсирующее действие емкостного сопротивления.

   При некоторой частоте индуктивное сопротивление становится равным емкостному, т. е.

   Они будут взаимно компенсировать друг друга и общее реактивное сопротивление контура станет равным нулю:

   При этом реактивное сопротивление последовательного колебательного контура будет равно только его активному сопротивлению, так как

   При дальнейшем повышении частоты ток будет испытывать все большее и большее сопротивление со стороны индуктивности катушки, при одновременном уменьшении компенсирующего действия емкостного сопротивления. Поэтому реактивное сопротивление контура начнет снова возрастать.

  

   На рисунке 2а приведена кривая, показывающая изменение реактивного сопротивления последовательного колебательного контура при изменении частоты тока.

Рисунок 2. Резонанс напряжений. а) зависимость изменения полного сопротивления от частоты; б) зависимость реактивного сопротивления от активного сопротивления контура; в) кривые резонанаса.

   Частота тока, при которой сопротивление колебательного контура делается наименьшим, называется частотой резонанса или резонансной частотой колебательного контура.

При резонансной частоте имеет место равенство:

пользуясь которым, нетрудно определить частоту резонанса:

                                   (1)                             

   Единицами в этих формулах служат герцы, генри и фарады.

   Из формулы (1) видно, что чем меньше величины емкости и самоиндукции колебательного контура, тем больше будет его резонансная частота.

   Величина активного сопротивления RL не влияет на резонансную частоту, однако от нее зависит характер изменения Z. На рисунке 2б приведен ряд графиков изменения реактивного сопротивления колебательного контура при одних и тех же величинах L и С, но при разных RL. Из этого рисунка видно, что чем больше активное сопротивление последовательного колебательного контура, тем тупее становится кривая изменения реактивного сопротивления.

   Теперь рассмотрим, как будет изменяться сила тока в колебательном контуре, если мы будем изменять частоту тока. При этом мы будем считать, что напряжение, развиваемое источником переменного тока, остается все время одним и тем же.

   Так как источник тока включен последовательно с L и С контура, то сила тока, протекающего через катушку и конденсатор, будет тем больше, чем меньше реактивное сопротивление колебательного контура в целом, так как

   Отсюда непосредственно следует, что при резонансе сила тока в колебательном контуре будет наибольшей. Величина тока при резонансе будет зависеть от напряжения источника переменного тока и от активного сопротивления контура:

   На рисунке 2г изображен ряд графиков изменения силы тока в последовательном колебательном контуре при изменении частоты тока так называемых кривых резонанса. Из этого рисунка видно, что чем больше активное сопротивление контура, тем тупее кривая резонанса.

   При резонансе сила тока может достигать огромных значений при сравнительно малой внешней ЭДС. Поэтому падения напряжения на индуктивном и емкостном сопротивлениях контура, т. е. на катушке и на конденсаторе, могут достигать очень больших величии и далеко превосходить величину внешнего напряжения.

   Последнее утверждение на первый взгляд может показаться несколько странным, однако нужно помнить, что фазы напряжений на емкостном и индуктивном сопротивлениях сдвинуты друг относительно друга на 180°, т. е. мгновенные значения напряжений на катушке и конденсаторе направлены всегда в противоположные стороны. Вследствие этого большие напряжения, существующие при резонансе внутри контура на его катушке и конденсаторе, ничем не обнаруживают себя вне контура, взаимно компенсируя друг друга.

  Разобранный нами случай последовательного резонанса называется резонансом напряжений, так как в этом случае в момент резонанса имеет место резкое увеличение напряжения на L и С колебательного контура.

 

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

Добавить комментарий

Резонанс токов и его последствия для цепей переменного тока

Помимо резонанса напряжения, который может возникнуть в цепи переменного напряжения при последовательном подключении R, L, C элементов, в этих же цепях может возникать и резонанс токов, но уже при параллельном подключении R, L, C элементов. Рассмотрим резонанс токов.

Принципиальная схема и векторная диаграмма при возникновении резонанса тока показана ниже:

Условия для резонанса тока такие же, как для резонанса напряжения, а именно φ = 0, поскольку соединение параллельное, то Y = g – jb = ye, где:

Из условия φ = 0 вытекает, что b = bL – bC = 0 или же (1/ωL) – ωC = 0; ω2LC = 1. Отсюда можно сделать вывод, достижение резонанса тока можно реализовать тремя способами, а именно:

  • Подобрать необходимое значение индуктивности;
  • Подобрать необходимое значение емкости;
  • Подобрать необходимое значение частоты питающей сети;

Исходя из этого, будут справедливы соотношения:

Частота ω0 – резонансная частота.

При возникновении резонанса тока в цепи ее реактивная составляющая становится равной нулю. Из – за этого полная проводимость цепи снижается до минимального значения. Поэтому при постоянном напряжении на зажимах данной схемы ток общей ветви i становится минимален, в отличии от резонанса напряжения, когда ток максимален. При этом суммарный ток данной цепи будет равен векторной сумме всех трех токов, два из которых (а именно IL и IC) находятся в противофазе. Именно из – за того, что IL и IC находятся в противофазе в L-C контуре начинает протекать ток, который при резонансе может значительно превышать суммарный i. Условие, при котором ток в реактивных элементах будет больше сетевого, выглядит так:

Величина , для удобства расчета обозначена γ и имеет размерность проводимости. Данная величина называется волновой проводимостью контура.

Кратность тока в цепи с реактивными элементами и суммарным во всей цепи при резонансе может быть выражено:

Где величина Q – добротность контура, а обратная добротности величина d = 1/Q – затухание контура.

Энергетический процесс при резонансе тока аналогичен процессу при резонансе напряжения. Теперь имеем pL = — pC, то есть pL+ pC = 0. Соответственно энергия будет переходить от конденсатора к индуктивности и наоборот, без участия внешнего источника напряжения. Внешний источник энергии перекрывает только потери, возникающие в элементе g.

Резонанс

в цепи переменного тока — Университетская физика, том 2

Цели обучения

К концу раздела вы сможете:

  • Определите пиковую резонансную угловую частоту переменного тока для цепи RLC
  • Объясните ширину кривой зависимости средней мощности от угловой частоты и ее значение, используя такие термины, как полоса пропускания и коэффициент качества

В последовательной цепи RLC (рисунок), амплитуда тока, из (рисунок),

Если мы можем изменять частоту генератора переменного тока, сохраняя при этом постоянную амплитуду его выходного напряжения, то ток изменится соответствующим образом.График зависимости показан на (Рисунок).

На резонансной частоте цепи RLC амплитуда тока находится на максимальном значении.

В «Колебаниях» мы встретили похожий график, на котором амплитуда затухающего гармонического осциллятора была построена в зависимости от угловой частоты синусоидальной движущей силы (см. «Принудительные колебания»). Это сходство — больше, чем просто совпадение, как было показано ранее применением правила петли Кирхгофа к схеме (рисунок).Это дает

или

, где мы заменили dq (t) / dt на и (t). Сравнение (Рисунок) и, из «Колебаний», «Затухающие колебания» для затухающего гармонического движения ясно демонстрирует, что управляемая последовательная цепь RLC является электрическим аналогом управляемого затухающего гармонического генератора.

Резонансная частота цепи RLC — это частота, на которой амплитуда тока является максимальной, и цепь будет колебаться, если не будет управляться источником напряжения.При осмотре это соответствует угловой частоте, при которой импеданс Z на (Рисунок) является минимальным, или когда

и

Это резонансная угловая частота контура. Подставляя в (Рисунок), (Рисунок) и (Рисунок), мы находим, что при резонансе

Следовательно, в резонансе цепь RLC является чисто резистивной, с приложенной ЭДС и током в фазе.

Что происходит с мощностью при резонансе? (Рисунок) показывает, как средняя мощность, передаваемая от генератора переменного тока комбинации RLC , изменяется в зависимости от частоты.Кроме того, достигает максимума, когда значение Z , которое зависит от частоты, является минимальным, то есть когда Таким образом, при резонансе средняя выходная мощность источника в последовательной цепи RLC является максимальной. Из (Рисунок) это максимум

(рисунок) — типичный график зависимости максимальной выходной мощности. Ширина полосы резонансного пика определяется как диапазон угловых частот, в котором средняя мощность превышает половину максимального значения. Резкость пика описывается безразмерной величиной, известной как добротность Q схема.По определению

где — резонансная угловая частота. Высокое значение Q указывает на резкий пик резонанса. Мы можем дать Q по параметрам схемы как

Как и ток, средняя мощность, передаваемая от генератора переменного тока к цепи RLC , достигает пика на резонансной частоте.

Резонансные цепи обычно используются для пропуска или отклонения выбранных частотных диапазонов. Это делается путем регулировки значения одного из элементов и, следовательно, «настройки» цепи на определенную резонансную частоту.Например, в радиоприемнике приемник настраивается на желаемую станцию ​​путем регулировки резонансной частоты его схемы в соответствии с частотой станции. Если схема настройки имеет высокое значение Q , она будет иметь небольшую полосу пропускания, поэтому сигналы от других станций на частотах, даже немного отличающихся от резонансной частоты, сталкиваются с высоким импедансом и не проходят через схему. Сотовые телефоны работают аналогичным образом, передавая сигналы частотой около 1 ГГц, которые настраиваются цепью индуктивности и конденсатора.Одним из наиболее распространенных применений конденсаторов является их использование в цепях синхронизации переменного тока, основанное на достижении резонансной частоты. Металлоискатель также использует сдвиг резонансной частоты при обнаружении металлов ((Рисунок)).

Когда металлоискатель приближается к куску металла, самоиндукция одной из его катушек изменяется. Это вызывает сдвиг резонансной частоты цепи, содержащей катушку. Этот сдвиг фиксируется схемой и передается дайверу через наушники.(кредит: модификация работы Эрика Липпмана, ВМС США)

Резонанс в цепи серии RLC (a) Какова резонансная частота цепи (рисунок)? (b) Если генератор переменного тока настроен на эту частоту без изменения амплитуды выходного напряжения, какова амплитуда тока?

Стратегия

Резонансная частота для цепи RLC рассчитывается по (рисунок), которая получается из баланса между реактивными сопротивлениями конденсатора и катушки индуктивности. {- 3} \ phantom {\ rule {0.{2} \ phantom {\ rule {0.2em} {0ex}} \ text {Hz} \ text {.} \ Hfill \ end {array} *** Сообщение об ошибке: В преамбуле выравнивания вставлен пропущенный #. начальный текст: $ \ begin {array} {} Отсутствует $ вставлен. начальный текст: $ \ begin {array} {} \\ \\ \ hfill {f} _ Отсутствует $ вставлен. начальный текст: $ \ begin {array} {} \\ \\ \ hfill {f} _ {0} & Вкладка «Дополнительное выравнивание» изменена на \ cr. начальный текст: $ \ begin {array} {} \\ \\ \ hfill {f} _ {0} & Отсутствует $ вставлен. начальный текст: … ay} {} \\ \\ \ hfill {f} _ {0} & = \ frac {1} {2 \ pi} Extra}, или забытый $.начальный текст: … ay} {} \\ \\ \ hfill {f} _ {0} & = \ frac {1} {2 \ pi} Ошибка пакета inputenc: символ Юникода × (U + 00D7) начальный текст: … \ phantom {\ rule {0.2em} {0ex}} \ text {F} \ right)} Ошибка пакета inputenc: символ Юникода × (U + 00D7) начальный текст: … \ phantom {\ rule {0.2em} {0ex}} \ text {F} \ right)} Отсутствует} вставлено. начальный текст: … le {0.2em} {0ex}} \ text {F} \ right)}} \ hfill \\ &

  • В резонансе сопротивление цепи чисто резистивное, а амплитуда тока составляет
  • Значение Если бы цепь не была настроена на резонансную частоту, нам бы потребовалось полное сопротивление всей цепи для расчета тока.

    Проверьте свое понимание Что происходит с резонансной частотой последовательной цепи RLC , когда следующие величины увеличиваются в 4 раза: (а) емкость, (б) самоиндукция и (в) сопротивление?

    а. вдвое; б. вдвое; c. тот же

    Проверьте свое понимание Резонансная угловая частота цепи серии RLC равна. Источник переменного тока, работающий на этой частоте, передает в цепь среднюю мощность в.Сопротивление цепи: Напишите выражение для ЭДС источника.

    Сводка

    • На резонансной частоте индуктивное реактивное сопротивление равно емкостному реактивному сопротивлению.
    • График зависимости средней мощности от угловой частоты для цепи RLC имеет пик, расположенный на резонансной частоте; резкость или ширина пика называется полосой пропускания.
    • Полоса пропускания связана с безразмерной величиной, называемой коэффициентом качества.Высокое значение добротности — это острый или узкий пик.

    Проблемы

    (a) Рассчитайте резонансную угловую частоту последовательной цепи RLC , для которой, и (b) Если R изменится на, что произойдет с резонансной угловой частотой?

    Резонансная частота последовательной цепи RLC равна. Если самоиндукция в цепи составляет 5,0 мГн, какова ее емкость?

    (a) Какова резонансная частота цепи серии RLC с, и? (б) Какое сопротивление цепи при резонансе?

    Для последовательной цепи RLC ,, и (a) Если к цепи подключен источник переменного тока переменной частоты, на какой частоте максимальная мощность рассеивается в резисторе? (б) Каков коэффициент качества схемы?

    Источник переменного тока с амплитудой напряжения 100 В и переменной частотой f управляет последовательной цепью RLC с, и (a) График зависимости тока через резистор от частоты f .(b) Используйте график, чтобы определить резонансную частоту контура.

    (a) Какова резонансная частота последовательно соединенных резистора, конденсатора и катушки индуктивности, если, и? (b) Если эта комбинация подключена к источнику 100 В, работающему на резонансной частоте, какова выходная мощность источника? (c) Что такое Q схемы? (d) Какова ширина полосы пропускания?

    а. 50 Гц; б. 50 Вт; c. 6,32; d. 50 рад / с

    Предположим, катушка имеет собственную индуктивность 20.0 H и сопротивление. Какая (а) емкость и (б) сопротивление должны быть соединены последовательно с катушкой, чтобы создать цепь с резонансной частотой 100 Гц и Q = 10?

    Генератор переменного тока подключен к устройству, внутренние схемы которого неизвестны. Мы знаем только ток и напряжение вне устройства, как показано ниже. Что вы можете сделать на основании предоставленной информации об электрической природе устройства и его потребляемой мощности?

    Реактивное сопротивление конденсатора больше, чем реактивное сопротивление катушки индуктивности, потому что ток опережает напряжение.Потребляемая мощность 30 Вт.

    Глоссарий

    полоса пропускания
    диапазон угловых частот, в которых средняя мощность больше половины максимального значения средней мощности
    добротность
    безразмерная величина, описывающая резкость пика полосы пропускания; высокая добротность — острый или узкий резонансный пик
    резонансная частота
    частота, при которой амплитуда тока максимальна, и цепь будет колебаться, если не будет управляться источником напряжения

    15.5 Резонанс в цепи переменного тока — Университетская физика, том 2

    учебных целей

    К концу раздела вы сможете:

    • Определите пиковую резонансную угловую частоту переменного тока для цепи RLC
    • Объясните ширину кривой зависимости средней мощности от угловой частоты и ее значение, используя такие термины, как полоса пропускания и коэффициент качества

    В последовательной цепи RLC , показанной на рисунке 15.11, амплитуда тока определяется уравнением 15.{2}}}. [/ Латекс]

    Если мы можем изменять частоту генератора переменного тока, сохраняя при этом постоянную амплитуду его выходного напряжения, то ток изменится соответствующим образом. График зависимости [латекса] {I} _ {0} [/ latex] от [латекса] \ text {ω} [/ latex] показан на рисунке 15.17.

    Рисунок 15.17 На резонансной частоте цепи RLC, [latex] {\ text {ω}} _ {0} = \ sqrt {1 \ text {/} LC}, [/ latex] амплитуда тока находится на максимальном значении .

    В «Колебаниях» мы встретили похожий график, на котором амплитуда затухающего гармонического осциллятора была построена в зависимости от угловой частоты синусоидальной движущей силы (см. «Принудительные колебания»).{2}} + R \ frac {dq} {dt} + \ frac {1} {C} q = {V} _ {0} \ phantom {\ rule {0.2em} {0ex}} \ text {sin} \ phantom {\ rule {0.2em} {0ex}} \ text {ω} t, [/ latex]

    , где мы заменили dq (t) / dt на i (t). Сравнение уравнения 15.16 и, из «Колебаний», «Затухающие колебания» для затухающего гармонического движения ясно демонстрирует, что последовательная цепь ведомого RLC является электрическим аналогом ведомого затухающего гармонического генератора.

    Резонансная частота [латекс] {f} _ {0} [/ latex] цепи RLC — это частота, при которой амплитуда тока является максимальной, и цепь будет колебаться, если не будет управляться напряжением. источник.При осмотре это соответствует угловой частоте [латекс] {\ text {ω}} _ {0} = 2 \ pi {f} _ {0} [/ latex], при которой импеданс Z в уравнении 15.15 равен минимум, или когда

    [латекс] {\ text {ω}} _ {0} L = \ frac {1} {{\ text {ω}} _ {0} C} [/ латекс]

    и

    [латекс] {\ text {ω}} _ {0} = \ sqrt {\ frac {1} {LC}}. [/ Latex]

    Это резонансная угловая частота контура. Подставляя [латекс] {\ text {ω}} _ {0} [/ latex] в уравнение 15.9, уравнение 15.10 и уравнение 15.11, мы находим, что при резонансе

    [латекс] \ varphi = {\ text {tan}} ^ {- 1} \ left (0 \ right) = 0 \ text {,} \ text {} {I} _ {0} = {V} _ { 0} \ text {/} R, \ text {} \ phantom {\ rule {0.2em} {0ex}} \ text {и} \ phantom {\ rule {0.2em} {0ex}} \ text {} Z = R. [/ Latex]

    Следовательно, в резонансе цепь RLC является чисто резистивной, с приложенной ЭДС и током в фазе.

    Что происходит с мощностью при резонансе? Уравнение 15.14 говорит нам, как средняя мощность, передаваемая от генератора переменного тока комбинации RLC , изменяется в зависимости от частоты. Кроме того, [latex] {P} _ {\ text {ave}} [/ latex] достигает максимума, когда Z , который зависит от частоты, является минимумом, то есть когда [latex] {X} _ {L} = {X} _ {C} \ phantom {\ rule {0.{2} \ text {/} R. [/ Latex]

    Рисунок 15.18 представляет собой типичный график зависимости [латекса] {P} _ {\ text {ave}} [/ latex] от [latex] \ text {ω} [/ latex] в области максимальной выходной мощности. Полоса пропускания [латекс] \ text {Δ} \ text {ω} [/ latex] резонансного пика определяется как диапазон угловых частот [латекс] \ text {ω} [/ latex], в котором средняя мощность [latex] {P} _ {\ text {ave}} [/ latex] больше половины максимального значения [latex] {P} _ {\ text {ave}}. [/ latex] Резкость пик описывается безразмерной величиной, известной как коэффициент качества Q схемы.По определению

    [латекс] Q = \ frac {{\ text {ω}} _ {0}} {\ text {Δ} \ text {ω}}, [/ latex]

    где [латекс] {\ text {ω}} _ {0} [/ latex] — резонансная угловая частота. Высокое значение Q указывает на резкий пик резонанса. Мы можем дать Q в терминах параметров схемы как

    [латекс] Q = \ frac {{\ text {ω}} _ {0} L} {R}. [/ Латекс]

    Рисунок 15.18 Подобно току, средняя мощность, передаваемая от генератора переменного тока в цепь RLC, достигает пика на резонансной частоте.

    Резонансные цепи обычно используются для пропуска или отклонения выбранных частотных диапазонов. Это делается путем регулировки значения одного из элементов и, следовательно, «настройки» цепи на определенную резонансную частоту. Например, в радиоприемнике приемник настраивается на желаемую станцию ​​путем регулировки резонансной частоты его схемы в соответствии с частотой станции. Если схема настройки имеет высокое значение Q , она будет иметь небольшую полосу пропускания, поэтому сигналы от других станций на частотах, даже немного отличающихся от резонансной частоты, имеют высокий импеданс и не проходят через схему.Сотовые телефоны работают аналогичным образом, передавая сигналы частотой около 1 ГГц, которые настраиваются цепью индуктивности и конденсатора. Одним из наиболее распространенных применений конденсаторов является их использование в цепях синхронизации переменного тока, основанное на достижении резонансной частоты. Металлоискатель также использует сдвиг резонансной частоты при обнаружении металлов (рис. 15.19).

    Рисунок 15.19 Когда металлоискатель приближается к куску металла, самоиндукция одной из его катушек изменяется. Это вызывает сдвиг резонансной частоты цепи, содержащей катушку.Этот сдвиг фиксируется схемой и передается дайверу через наушники. (кредит: модификация работы Эрика Липпманна, ВМС США)

    Пример

    Резонанс в цепи серии
    RLC

    (а) Какова резонансная частота цепи из Примера 15.1? (b) Если генератор переменного тока настроен на эту частоту без изменения амплитуды выходного напряжения, какова амплитуда тока?

    Стратегия

    Резонансная частота для цепи RLC вычисляется по уравнению 15.17, что является результатом баланса реактивных сопротивлений конденсатора и катушки индуктивности. Поскольку цепь находится в резонансе, сопротивление равно сопротивлению резистора. Затем максимальный ток рассчитывается делением напряжения на сопротивление.

    Решение
    Показать ответ
    1. Резонансная частота находится из уравнения 15.17:

    [латекс] \ begin {array} {} \\ \\ \ hfill {f} _ {0} & = \ frac {1} {2 \ pi} \ sqrt {\ frac {1} {LC}} = \ frac {1} {2 \ pi} \ phantom {\ rule {0.{2} \ phantom {\ rule {0.2em} {0ex}} \ text {Hz} \ text {.} \ Hfill \ end {array} [/ latex]

    Значение

    Если бы цепь не была настроена на резонансную частоту, нам потребовалось бы полное сопротивление всей цепи для расчета тока.

    Пример

    Передача мощности в цепи серии
    RLC при резонансе

    (a) Какова резонансная угловая частота цепи RLC с [латексом] R = 0.200 \ phantom {\ rule {0.2em} {0ex}} \ text {Ω} \ text {,} [/ latex] [латекс] L = 4.{-6} \ phantom {\ rule {0.2em} {0ex}} \ text {F?} [/ Latex] (b) Если на эту частоту установлен источник переменного тока постоянной амплитуды 4,00 В, какова средняя мощность перенесена в схему? (c) Определите Q и полосу пропускания этой цепи.

    Стратегия

    Резонансная угловая частота рассчитывается по уравнению 15.17. Средняя мощность рассчитывается исходя из действующего напряжения и сопротивления в цепи. Добротность рассчитывается по уравнению 15.9 и зная резонансную частоту.{4} \ phantom {\ rule {0.2em} {0ex}} \ text {rad / s}} {224} = 50.0 \ phantom {\ rule {0.2em} {0ex}} \ text {rad / s} \ текст {.} [/ latex]

    Значение

    Если требуется более узкая полоса пропускания, могут помочь более низкое сопротивление или более высокая индуктивность. Однако более низкое сопротивление увеличивает мощность, передаваемую в схему, что может быть нежелательно, в зависимости от максимальной мощности, которая может быть передана.

    Проверьте свое понимание

    В схеме, показанной на рисунке 15.11, [латекс] L = 2.{-4} \ phantom {\ rule {0.2em} {0ex}} \ text {F,} [/ latex] и [latex] R = 40 \ phantom {\ rule {0.2em} {0ex}} \ text { Ω} \ text {.} [/ Latex] (а) Что такое резонансная частота? (б) Какое сопротивление цепи при резонансе? (c) Если амплитуда напряжения составляет 10 В, что такое i ( t ) в резонансе? (d) Частота генератора переменного тока теперь изменена на 200 Гц. Рассчитайте разность фаз между током и ЭДС генератора.

    Показать решение

    а. 160 Гц; б.{3} т [/ латекс]; d. 0,023 рад

    Проверьте свое понимание

    Что происходит с резонансной частотой последовательной цепи RLC , когда следующие величины увеличиваются в 4 раза: (а) емкость, (б) самоиндукция и (в) сопротивление?

    Показать решение

    а. вдвое; б. вдвое; c. тот же

    Проверьте свое понимание

    Резонансная угловая частота последовательной цепи RLC составляет [латекс] 4.{2} т \ правый) [/ латекс]

    Сводка

    • На резонансной частоте индуктивное реактивное сопротивление равно емкостному реактивному сопротивлению.
    • График зависимости средней мощности от угловой частоты для цепи RLC имеет пик, расположенный на резонансной частоте; резкость или ширина пика называется полосой пропускания.
    • Полоса пропускания связана с безразмерной величиной, называемой коэффициентом качества. Высокое значение добротности — это острый или узкий пик.

    Проблемы

    (a) Рассчитайте резонансную угловую частоту цепи серии RLC , для которой [латекс] R = 20 \ phantom {\ rule {0.{-6} \ phantom {\ rule {0.2em} {0ex}} \ text {F} [/ latex]

    (a) Какова резонансная частота цепи серии RLC с [латексом] R = 20 \ phantom {\ rule {0.2em} {0ex}} \ text {Ω} [/ latex], [latex] L = 2.0 \ phantom {\ rule {0.2em} {0ex}} \ text {mH} [/ latex] и [latex] C = 4.0 \ mu \ text {F} [/ latex]? (б) Какое сопротивление цепи при резонансе?

    Для цепи серии RLC , [latex] R = 100 \ phantom {\ rule {0.2em} {0ex}} \ text {Ω} [/ latex], [latex] L = 150 \ phantom {\ rule { 0.2em} {0ex}} \ text {mH} [/ latex] и [latex] C = 0.25 \ mu \ text {F} \ text {.} [/ Latex] (a) Если к цепи подключен источник переменного тока переменной частоты, на какой частоте максимальная мощность рассеивается в резисторе? (б) Каков коэффициент качества схемы?

    Показать решение

    Источник переменного тока с амплитудой напряжения 100 В и переменной частотой f управляет последовательной цепью RLC с [латексом] R = 10 \ phantom {\ rule {0.2em} {0ex}} \ text {Ω} [/ latex ], [латекс] L = 2.0 \ phantom {\ rule {0.2em} {0ex}} \ text {mH} [/ latex] и [латекс] C = 25 \ mu \ text {F} \ text {.} [/ latex] (a) Постройте график зависимости тока через резистор от частоты f . (b) Используйте график, чтобы определить резонансную частоту контура.

    (a) Какова резонансная частота последовательно соединенных резистора, конденсатора и катушки индуктивности, если [latex] R = 100 \ phantom {\ rule {0.2em} {0ex}} \ text {Ω,} [/ latex] [латекс] L = 2.0 \ phantom {\ rule {0.2em} {0ex}} \ text {H} [/ latex] и [латекс] C = 5.0 \ mu \ text {F} [/ latex]? (b) Если эта комбинация подключена к источнику 100 В, работающему на резонансной частоте, какова выходная мощность источника? (c) Что такое Q схемы? (d) Какова ширина полосы пропускания?

    Показать решение

    а.50 Гц; б. 50 Вт; c. 6,32; d. 50 рад / с

    Предположим, что катушка имеет самоиндукцию 20,0 Гн и сопротивление [латекс] 200 \ phantom {\ rule {0.2em} {0ex}} \ text {Ω} [/ latex]. Какая (а) емкость и (б) сопротивление должны быть соединены последовательно с катушкой, чтобы создать цепь с резонансной частотой 100 Гц и Q равной 10?

    Генератор переменного тока подключен к устройству, внутренние схемы которого неизвестны. Мы знаем только ток и напряжение вне устройства, как показано ниже.Что вы можете сделать на основании предоставленной информации об электрической природе устройства и его потребляемой мощности?

    Показать решение

    Реактивное сопротивление конденсатора больше, чем реактивное сопротивление катушки индуктивности, потому что ток опережает напряжение. Потребляемая мощность 30 Вт.

    Глоссарий

    полоса пропускания
    диапазон угловых частот, в которых средняя мощность больше половины максимального значения средней мощности
    добротность
    безразмерная величина, описывающая резкость пика полосы пропускания; высокая добротность — острый или узкий резонансный пик
    резонансная частота
    частота, при которой амплитуда тока максимальна, и цепь будет колебаться, если не будет управляться источником напряжения
    Лицензии и авторство

    Резонанс в цепи переменного тока. Автор : OpenStax College. Расположен по адресу : https://openstax.org/books/university-physics-volume-2/pages/15-5-resonance-in-an-ac-circuit. Лицензия : CC BY: Attribution . Условия лицензии : Загрузите бесплатно с https://openstax.org/books/university-physics-volume-2/pages/1-introduction

    Цепи переменного тока серии

    RLC | Физика

    учебных целей

    К концу этого раздела вы сможете:

    • Рассчитайте полное сопротивление, фазовый угол, резонансную частоту, мощность, коэффициент мощности, напряжение и / или ток в последовательной цепи RLC.
    • Нарисуйте принципиальную схему последовательной цепи RLC.
    • Объясните значение резонансной частоты.

    Когда один в цепи переменного тока, все катушки индуктивности, конденсаторы и резисторы препятствуют току. Как они себя ведут, когда все три встречаются вместе? Интересно, что их индивидуальные сопротивления в Ом не складываются просто так. Поскольку катушки индуктивности и конденсаторы ведут себя противоположным образом, они частично полностью нейтрализуют влияние друг друга. На рисунке 1 показана последовательная цепь RLC с источником переменного напряжения, поведение которой является предметом данного раздела.Суть анализа цепи RLC заключается в частотной зависимости X L и X C и их влиянии на фазу напряжения в зависимости от тока (установлено в предыдущий раздел). Это приводит к частотной зависимости схемы с важными «резонансными» характеристиками, которые лежат в основе многих приложений, таких как радиотюнеры.

    Рисунок 1. Последовательная цепь RLC с источником переменного напряжения.

    Комбинированный эффект сопротивления R , индуктивного реактивного сопротивления X L и емкостного реактивного сопротивления X C определяется как импеданс , аналог сопротивления переменного тока в цепи постоянного тока. Ток, напряжение и импеданс в цепи RLC связаны версией закона Ома для переменного тока:

    [латекс] {I} _ {0} = \ frac {{V} _ {0}} {Z} \ text {или} {I} _ {\ text {rms}} = \ frac {{V} _ {\ text {rms}}} {Z} \\ [/ latex].

    Здесь I 0 — пиковый ток, V 0 — пиковое напряжение источника и Z — полное сопротивление цепи. Единицы измерения импеданса — омы, и его влияние на схему такое, как и следовало ожидать: чем больше импеданс, тем меньше ток. Чтобы получить выражение для Z в терминах R , X L и X C , мы теперь рассмотрим, как напряжения на различных компонентах связаны с источником. Напряжение.Эти напряжения обозначены как В, , , , R, , , , В, , , , L, , , и В, , , , C, , на рисунке 1. Для сохранения заряда ток должен быть одинаковым в каждой части цепи. всегда, так что мы можем сказать, что токи в R , L и C равны и синфазны. Но мы знаем из предыдущего раздела, что напряжение на катушке индуктивности В L опережает ток на одну четверть цикла, напряжение на конденсаторе В C следует за током на единицу. -четвертая часть цикла, и напряжение на резисторе В, , , , R, , , точно совпадает по фазе с током.На рисунке 2 показаны эти отношения на одном графике, а также показано общее напряжение в цепи В = В R + В L + В C , где все четыре напряжения — мгновенные значения. Согласно правилу петли Кирхгофа, полное напряжение вокруг цепи В, также является напряжением источника. Из рисунка 2 видно, что в то время как V R находится в фазе с током, V L опережает 90º, а V C следует на 90º. {2}} \\ [/ latex],

    , который является сопротивлением цепи переменного тока серии RLC .Для схем без резистора принять R = 0; для тех, у кого нет индуктора, возьмите X L = 0; а для тех, у кого нет конденсатора, возьмите X C = 0.

    Рис. 2. На этом графике показаны отношения напряжений в цепи RLC к току. Напряжения на элементах схемы складываются, чтобы равняться напряжению источника, которое, как видно, не совпадает по фазе с током.

    Пример 1.Расчет импеданса и тока

    Последовательная цепь RLC имеет резистор 40,0 Ом, индуктивность 3,00 мГн и конденсатор 5,00 мкФ. (a) Найдите полное сопротивление цепи при 60,0 Гц и 10,0 кГц, отметив, что эти частоты и значения для L и C такие же, как в Примере 1 и Примере 2 из раздела Реактивное, индуктивное и емкостное. (b) Если источник напряжения имеет В среднеквадратичное значение = 120 В, что будет I среднеквадратичное значение на каждой частоте?

    Стратегия

    Для каждой частоты мы используем [latex] Z = \ sqrt {{R} ^ {2} + \ left ({X} _ {L} — {X} _ {C} \ right) ^ {2}} \ \ [/ latex], чтобы найти импеданс, а затем закон Ома, чтобы найти ток. { 2}} \\ & = & \ sqrt {\ left (40.{2}} \\ & = & 190 \ text {} \ Omega \ text {at} 10.0 \ text {kHz} \ end {array} \\ [/ latex]

    Обсуждение для (а)

    В обоих случаях результат почти такой же, как и наибольшее значение, а импеданс определенно не является суммой отдельных значений. Ясно, что X L доминирует на высокой частоте, а X C доминирует на низкой частоте.

    Решение для (b)

    Текущее значение I среднеквадратичное значение можно найти, используя версию закона Ома для переменного тока в уравнении I среднеквадратичное значение = В среднеквадратичное значение / Z :

    [латекс] {I} _ {\ text {rms}} = \ frac {{V} _ {\ text {rms}}} {Z} = \ frac {120 \ text {V}} {531 \ text { } \ Omega} = 0.226 \ text {A} \\ [/ latex] при 60,0 Гц

    Наконец, на частоте 10,0 кГц мы находим

    [латекс] {I} _ {\ text {rms}} = \ frac {{V} _ {\ text {rms}}} {Z} = \ frac {120 \ text {V}} {190 \ text { } \ Omega} = 0,633 \ text {A} \\ [/ latex] при 10,0 кГц

    Обсуждение для (а)

    Ток при 60,0 Гц является таким же (до трех цифр), который был найден для одного только конденсатора в Примере 2 из раздела «Реактивное сопротивление, индуктивность и емкость». Конденсатор преобладает на низкой частоте. Ток на частоте 10,0 кГц лишь незначительно отличается от того, который был обнаружен для одной катушки индуктивности в Примере 1 из разделов «Реактивное сопротивление, индуктивность и емкость».{2}}} \\ [/ latex]

    Реактивные сопротивления изменяются в зависимости от частоты: X L большое на высоких частотах и ​​ X C большое на низких частотах, как мы видели в трех предыдущих примерах. На некоторой промежуточной частоте f 0 реактивные сопротивления будут равны и отменены, давая Z = R — это минимальное значение для импеданса и максимальное значение для I среднеквадратичное значение результатов .Мы можем получить выражение для f 0 , взяв

    X L = X C .

    Замена определений X L и X C ,

    [латекс] 2 \ pi f_ {0} L = \ frac {1} {2 \ pi f_ {0} C} \\ [/ latex].

    Решение этого выражения для f 0 дает

    [латекс] {f} _ {0} = \ frac {1} {2 \ pi \ sqrt {LC}} \\ [/ latex],

    , где f 0 — резонансная частота последовательной цепи RLC .Это также собственная частота , на которой цепь будет колебаться, если не будет управляться источником напряжения. При f 0 влияние катушки индуктивности и конденсатора компенсируется, так что Z = R и I среднеквадратичное значение является максимальным.

    Резонанс в цепях переменного тока аналогичен механическому резонансу, где резонанс определяется как вынужденное колебание — в данном случае вызываемое источником напряжения — на собственной частоте системы.Приемник в радиоприемнике представляет собой схему RLC , которая лучше всего колеблется на ее f 0 . Переменный конденсатор часто используется для регулировки f 0 , чтобы получить желаемую частоту и отклонить другие. Фиг.3 представляет собой график зависимости тока от частоты, иллюстрирующий резонансный пик в I среднеквадратичное значение при f 0 . Две кривые относятся к двум разным схемам, которые различаются только величиной сопротивления в них.Пик ниже и шире для цепи с более высоким сопротивлением. Таким образом, цепь с более высоким сопротивлением не так сильно резонирует и, например, не будет такой избирательной в радиоприемнике.

    Рис. 3. График зависимости тока от частоты для двух последовательных цепей RLC, различающихся только величиной сопротивления. Оба имеют резонанс при f 0 , но для более высокого сопротивления он ниже и шире. Источник управляющего переменного напряжения имеет фиксированную амплитуду В 0 .

    Пример 2. Расчет резонансной частоты и тока

    Для той же последовательной цепи RLC , имеющей резистор 40,0 Ом, индуктивность 3,00 мГн и конденсатор 5,00 мкФ: (a) Найдите резонансную частоту. (b) Рассчитайте I среднеквадратичное значение при резонансе, если В среднеквадратичное значение равно 120 В.

    Стратегия

    Резонансная частота находится с помощью выражения в [latex] {f} _ {0} = \ frac {1} {2 \ pi \ sqrt {LC}} \\ [/ latex].{-6} \ text {F} \ right)}} = 1,30 \ text {кГц} \ end {array} \\ [/ latex]

    Обсуждение для (а)

    Мы видим, что резонансная частота находится между 60,0 Гц и 10,0 кГц, двумя частотами, выбранными в предыдущих примерах. Этого следовало ожидать, поскольку конденсатор преобладает на низкой частоте, а катушка индуктивности — на высокой. Их эффекты такие же на этой промежуточной частоте.

    Решение для (b)

    Ток определяется законом Ома.В резонансе два реактивных сопротивления равны и нейтрализуются, так что полное сопротивление равно только сопротивлению. Таким образом,

    [латекс] {I} _ {\ text {rms}} = \ frac {{V} _ {\ text {rms}}} {Z} = \ frac {120 \ text {V}} {40.0 \ text { } \ Omega} = 3,00 \ text {A} \\ [/ latex].

    Обсуждение для (б)

    В резонансе ток больше, чем на более высоких и низких частотах, рассмотренных для той же цепи в предыдущем примере.

    Питание в цепях переменного тока серии

    RLC

    Если ток изменяется в зависимости от частоты в цепи RLC , то мощность, подаваемая на него, также зависит от частоты.Но средняя мощность — это не просто ток, умноженный на напряжение, как в чисто резистивных цепях. Как видно на рисунке 2, напряжение и ток в цепи RLC не совпадают по фазе. Существует фазовый угол ϕ между напряжением источника В и током I , который можно найти из

    [латекс] \ cos \ varphi = \ frac {R} {Z} \\ [/ latex]

    Например, на резонансной частоте или в чисто резистивной цепи Z = R , так что [latex] \ text {cos} \ varphi = 1 \\ [/ latex].Это означает, что ϕ = 0º и что напряжение и ток синфазны, как и ожидалось для резисторов. На других частотах средняя мощность меньше, чем на резонансе. Причина в том, что напряжение и ток не совпадают по фазе, а также потому, что I действующее значение ниже. Тот факт, что напряжение и ток источника не совпадают по фазе, влияет на мощность, подаваемую в цепь. Можно показать, что средняя мощность составляет

    [латекс] {P} _ {\ text {ave}} = {I} _ {\ text {rms}} {V} _ {\ text {rms}} \ cos \ varphi \\ [/ latex],

    Таким образом, cos ϕ называется коэффициентом мощности , который может находиться в диапазоне от 0 до 1.Например, при разработке эффективного двигателя желательны коэффициенты мощности, близкие к 1. На резонансной частоте cos ϕ = 1.

    Пример 3. Расчет коэффициента мощности и мощности

    Для той же последовательной цепи RLC , имеющей резистор 40,0 Ом, индуктивность 3,00 мГн, конденсатор 5,00 мкФ и источник напряжения с В действующее значение 120 В: (a) Рассчитайте коэффициент мощности и фазу угол для f = 60,0 Гц. (б) Какая средняя мощность при 50.0 Гц? (c) Найдите среднюю мощность на резонансной частоте цепи.

    Стратегия и решение для (а)

    Коэффициент мощности при 60,0 Гц находится из

    .

    [латекс] \ cos \ varphi = \ frac {R} {Z} \\ [/ latex].

    Мы знаем, что Z = 531 Ом из Пример 1: Расчет импеданса и тока , так что

    [латекс] \ cos \ varphi = \ frac {40.0 \ text {} \ Omega} {531 \ text {} \ Omega} = 0,0753 \ text {at} 60.0 \ text {Hz} \\ [/ latex].

    Это небольшое значение указывает на то, что напряжение и ток значительно не совпадают по фазе.{-1} 0,0753 = \ text {85,7º} \ text {at} 60,0 \ text {Hz} \\ [/ latex].

    Обсуждение для (а)

    Фазовый угол близок к 90 °, что согласуется с тем фактом, что конденсатор доминирует в цепи на этой низкой частоте (чистая цепь RC имеет напряжение и ток, сдвинутые по фазе на 90 °).

    Стратегия и решение для (b)

    Средняя мощность при 60,0 Гц —

    P ср. = I среднеквадратичное значение V среднеквадратичное значение cos ϕ .

    I среднеквадратичное значение оказалось равным 0,226 А в Пример 1: Расчет импеданса и тока . Ввод известных значений дает

    P средн. = (0,226 A) (120 В) (0,0753) = 2,04 Вт при 60,0 Гц.

    Стратегия и решение для (c)

    На резонансной частоте мы знаем, что cos ϕ = 1, и I среднеквадратичное значение оказалось равным 6,00 A в Пример 3: Расчет резонансной частоты и тока .Таким образом, P средн. = (3,00 A) (120 В) (1) = 360 Вт при резонансе (1,30 кГц)

    Обсуждение

    Как ток, так и коэффициент мощности больше в резонансе, производя значительно большую мощность, чем на высоких и низких частотах.

    Мощность, подаваемая в цепь переменного тока серии RLC , рассеивается только за счет сопротивления. Катушка индуктивности и конденсатор имеют входную и выходную энергию, но не рассеивают ее из цепи. Скорее они передают энергию туда и обратно друг другу, а резистор рассеивает именно то, что источник напряжения вводит в цепь.Это предполагает отсутствие значительного электромагнитного излучения от катушки индуктивности и конденсатора, например радиоволн. Такое излучение может происходить и даже быть желательным, как мы увидим в следующей главе об электромагнитном излучении, но оно также может быть подавлено, как в случае в этой главе. Схема аналогична колесу автомобиля, движущегося по рифленой дороге, как показано на рисунке 4. Ровные неровности дороги аналогичны источнику напряжения, приводящему колесо в движение вверх и вниз. Амортизатор аналогичен демпфирующему сопротивлению и ограничивающему амплитуду колебаний.Энергия внутри системы перемещается между кинетической (аналогично максимальному току и энергии, запасенной в индукторе) и потенциальной энергией, запасенной в автомобильной пружине (аналогично отсутствию тока и энергии, запасенной в электрическом поле конденсатора). Амплитуда движения колес максимальна, если неровности дороги встречаются на резонансной частоте.

    Рис. 4. Вынужденное, но демпфированное движение колеса на автомобильной пружине аналогично цепи переменного тока серии RLC .Амортизатор гасит движение и рассеивает энергию, аналогично сопротивлению в цепи RLC . Масса и пружина определяют резонансную частоту.

    Чистый контур LC с незначительным сопротивлением колеблется на f 0 , той же резонансной частоте, что и контур RLC . Он может служить эталоном частоты или схемой часов — например, в цифровых наручных часах. При очень маленьком сопротивлении требуется лишь очень небольшая подводимая энергия для поддержания колебаний.Схема аналогична автомобилю без амортизаторов. Как только он начинает колебаться, он некоторое время продолжает работать на своей собственной частоте. На рисунке 5 показана аналогия между цепью LC и грузом на пружине.

    Рис. 5. LC-контур аналогичен массе, колеблющейся на пружине без трения и без движущей силы. Энергия движется вперед и назад между катушкой индуктивности и конденсатором, точно так же, как она движется от кинетической к потенциальной в системе масса-пружина.

    Исследования PhET: комплект для конструирования цепей (AC + DC), виртуальная лаборатория

    Создавайте цепи с конденсаторами, катушками индуктивности, резисторами и источниками переменного или постоянного напряжения и проверяйте их с помощью лабораторных инструментов, таких как вольтметры и амперметры.

    Щелкните, чтобы загрузить симуляцию. Запускать на Java.

    Сводка раздела

    • Аналогом сопротивления переменного тока является сопротивление Z , комбинированное действие резисторов, катушек индуктивности и конденсаторов, определяемое версией закона Ома для переменного тока:

      [латекс] {I} _ {0} = \ frac {{V} _ {0}} {Z} \ text {или} {I} _ {\ text {rms}} = \ frac {{V} _ {\ text {rms}}} {Z} \\ [/ latex],

      , где I o — пиковый ток, а В o — пиковое напряжение источника.{2}} \\ [/ латекс].

    • Резонансная частота f 0 , при которой X L = X C , составляет

      [латекс] {f} _ {0} = \ frac {1} {2 \ pi \ sqrt {LC}} \\ [/ latex]

    • В цепи переменного тока существует фазовый угол ϕ между напряжением источника В и током I , который можно найти из

      [латекс] \ text {cos} \ varphi = \ frac {R} {Z} \\ [/ latex],

    • ϕ = 0º для чисто резистивной цепи или цепи RLC в резонансе.
    • Средняя мощность, подаваемая в цепь RLC , зависит от фазового угла и определяется выражением

      [латекс] {P} _ {\ text {ave}} = {I} _ {\ text {rms}} {V} _ {\ text {rms}} \ cos \ varphi \\ [/ latex],

      cos ϕ называется коэффициентом мощности, который находится в диапазоне от 0 до 1.

    Концептуальные вопросы

    1. Зависит ли резонансная частота цепи переменного тока от пикового напряжения источника переменного тока? Объясните, почему да или почему нет.

    2. Предположим, у вас есть двигатель с коэффициентом мощности значительно меньше 1.Объясните, почему было бы лучше улучшить коэффициент мощности как метод улучшения выходной мощности двигателя, чем увеличивать входное напряжение.

    Задачи и упражнения

    1. Цепь RL состоит из резистора 40,0 Ом и катушки индуктивности 3,00 мГн. (a) Найдите его полное сопротивление Z при 60,0 Гц и 10,0 кГц. (b) Сравните эти значения Z со значениями, найденными в Пример 1: Расчет импеданса и тока , в котором также был конденсатор.

    2. Схема RC состоит из резистора 40,0 Ом и конденсатора 5,00 мкФ. (а) Найдите его полное сопротивление при 60,0 Гц и 10,0 кГц. (b) Сравните эти значения Z со значениями, найденными в Пример 1: Расчет импеданса и тока , в котором также была катушка индуктивности.

    3. Цепь LC состоит из индуктора 3,00 мГн и конденсатора 5,00 мкФ. (а) Найдите его полное сопротивление при 60,0 Гц и 10,0 кГц. (b) Сравните эти значения Z со значениями, найденными в Пример 1: Расчет импеданса и тока , в котором также был резистор.

    4. Какова резонансная частота индуктора 0,500 мГн, подключенного к конденсатору 40,0 мкФ?

    5. Для приема AM-радио вам нужна цепь RLC , которая может резонировать на любой частоте от 500 до 1650 кГц. Это достигается с помощью фиксированной катушки индуктивности 1,00 мкГн, подключенной к конденсатору переменной емкости. Какой диапазон емкости нужен?

    6. Предположим, у вас есть запас индукторов от 1,00 нГн до 10,0Гн и конденсаторов от 1.От 00 пФ до 0,100 F. Каков диапазон резонансных частот, который может быть достигнут при сочетании одной катушки индуктивности и одного конденсатора?

    7. Какая емкость необходима для получения резонансной частоты 1,00 ГГц при использовании катушки индуктивности 8,00 нГн?

    8. Какая индуктивность необходима для получения резонансной частоты 60,0 Гц при использовании конденсатора 2,00 мкФ?

    9. Самая низкая частота в диапазоне FM-радио — 88,0 МГц. (а) Какая индуктивность необходима для создания этой резонансной частоты, если она подключена к 2.Конденсатор 50 пФ? (b) Конденсатор регулируемый, что позволяет регулировать резонансную частоту до 108 МГц. Какой должна быть емкость на этой частоте?

    10. Последовательная цепь RLC имеет резистор 2,50 Ом, индуктивность 100 мкГн и конденсатор 80,0 мкФ. (A) Найдите полное сопротивление цепи при 120 Гц. (b) Найдите полное сопротивление цепи на частоте 5,00 кГц. (c) Если источник напряжения имеет В среднеквадратичное значение = 5,60 В, что будет I среднеквадратичное значение на каждой частоте? (г) Какова резонансная частота контура? (e) Что такое I RMS в резонансе?

    11.Последовательная цепь RLC имеет резистор 1,00 кОм, индуктивность 150 мкГн и конденсатор 25,0 нФ. (а) Найдите полное сопротивление цепи при 500 Гц. (b) Найдите полное сопротивление цепи на частоте 7,50 кГц. (c) Если источник напряжения имеет В среднеквадратичное значение = 408 В, что будет I среднеквадратичное значение на каждой частоте? (г) Какова резонансная частота контура? (e) Что такое I RMS в резонансе?

    12. Последовательная цепь RLC имеет 2.Резистор 50 Ом, катушка индуктивности 100 мкГн и конденсатор 80,0 мкФ. (a) Найдите коэффициент мощности при f = 120 Гц. (б) Каков фазовый угол при 120 Гц? (c) Какая средняя мощность при 120 Гц? (d) Найдите среднюю мощность на резонансной частоте цепи.

    13. Последовательная цепь RLC имеет резистор 1,00 кОм, индуктивность 150 мкГн и конденсатор 25,0 нФ. (a) Найдите коэффициент мощности при f = 7,50 Гц. б) Каков фазовый угол на этой частоте? (c) Какая средняя мощность на этой частоте? (d) Найдите среднюю мощность на резонансной частоте цепи.

    14. Последовательная цепь RLC имеет резистор 200 Ом и катушку индуктивности 25,0 мГн. {2}} \\ [/ latex]

    резонансная частота:
    частота, при которой полное сопротивление в цепи минимально, а также частота, с которой цепь будет колебаться, если не будет управляться источником напряжения; рассчитывается по [latex] {f} _ {0} = \ frac {1} {2 \ pi \ sqrt {\ text {LC}}} \\ [/ latex]
    фазовый угол:
    обозначается как ϕ , величина, на которую напряжение и ток не совпадают по фазе друг с другом в цепи
    Коэффициент мощности:
    — величина, на которую мощность, передаваемая в цепи, меньше теоретического максимума цепи из-за того, что напряжение и ток не совпадают по фазе; рассчитывается по cos ϕ

    Избранные решения проблем и упражнения

    1.(a) 40,02 Ом при 60,0 Гц, 193 Ом при 10,0 кГц (b) При 60 Гц, с конденсатором, Z = 531 Ом, что в 13 раз больше, чем без конденсатора. Конденсатор имеет большое значение на низких частотах. На 10 кГц, с конденсатором Z = 190 Ом, примерно так же, как без конденсатора. Конденсатор оказывает меньшее влияние на высоких частотах.

    3. (a) 529 Ом при 60,0 Гц, 185 Ом при 10,0 кГц (b) Эти значения близки к значениям, полученным в Пример 1: Расчет импеданса и тока , поскольку на низкой частоте преобладает конденсатор, а на высокой — индуктор доминирует.Таким образом, в обоих случаях резистор вносит небольшой вклад в общий импеданс.

    5. От 9,30 нФ до 101 нФ

    7. 3,17 пФ

    9. (а) 1,31 мкГн (б) 1,66 пФ

    11. (a) 12,8 кОм (b) 1,31 кОм (c) 31,9 мА при 500 Гц, 312 мА при 7,50 кГц (d) 82,2 кГц (e) 0,408 A

    13. (а) 0,159 (б) 80,9 ° (в) 26,4 Вт (г) 166 Вт

    15. 16.0 Вт

    Пропускная способность резонансных цепей | GBC Electronics Technician

    Важным свойством резонансного контура является его полоса пропускания.Полоса пропускания определяется как размер частотного диапазона, который пропускается или отклоняется настроенной схемой. Чтобы лучше понять пропускную способность, давайте рассмотрим радио. Когда вы включаете радио и пытаетесь выбрать радиостанцию, вы используете характеристики полосы пропускания схемы настройки в радио для выбора вашей конкретной станции. Другое название схемы настройки — резонансная схема . Резонансный контур имеет определенную частоту и полосу пропускания, и мы используем их в радиоприемнике.

    Резонанс может быть получен как в последовательных, так и в параллельных цепях, содержащих три электрические характеристики, а именно: сопротивление, индуктивность и емкость. Резонансный контур ниже состоит из резистора, катушки индуктивности и конденсатора, включенных последовательно с измерителем тока и источником напряжения. Источник напряжения, представленный символом переменного тока, также имеет переменную частоту. Чаще всего мы используем одно конкретное напряжение переменного тока: 120 вольт 60 Гц, но в этом случае мы очень заинтересованы в том, чтобы частота была переменной, поэтому это было бы какое-то значение, отличное от 60 Гц.

    Ток в цепи можно измерить с помощью измерителя или, мы могли бы вычислить ток, используя форму закона Ома, которая является — ток (I) равен приложенному напряжению (E) , разделенному на полное сопротивление или полное противодействие в цепи (Z) , т.е. Ток = Напряжение / Импеданс, I = E / Z . Последовательно-резонансный контур обеспечивает низкое сопротивление протеканию тока определенной частоты.Схема называется резонансной, когда частота приложенного напряжения регулируется для получения максимального тока, в то время как величина напряжения остается постоянной. Частота этого напряжения и тока называется резонансной частотой и определяется как частота, на которой данная система или объект будет реагировать с максимальной амплитудой.

    Импеданс

    В последовательной сети RLC сопротивление определяется уравнением:

    Это учитывает сопротивление резистора ( сопротивление R ), сопротивление индуктора ( индуктивное сопротивление или X L ) и сопротивление конденсатора ( емкостное реактивное сопротивление или X C ).Как показано на графике ниже, полное сопротивление цепи переменного тока зависит от частоты. Индуктивное реактивное сопротивление прямо пропорционально частоте, если частота, прикладываемая к цепи, увеличится, произойдет увеличение X L . С другой стороны, емкостное реактивное сопротивление обратно пропорционально частоте, поэтому с увеличением частоты значение X C уменьшается. Связь между частотой и реактивным сопротивлением выражается уравнениями:

    На более низкой частоте наибольшее сопротивление составляет X C или емкостное реактивное сопротивление, а на более высоких частотах сопротивление в основном составляет X L или индуктивное реактивное сопротивление.На резонансной частоте (f r ) индуктивное и емкостное реактивные сопротивления компенсируют друг друга, оставляя только сопротивление, препятствующее прохождению тока. Когда схема имеет равные значения индуктивного и емкостного сопротивления, она имеет тенденцию отклонять сигналы, частоты которых удалены от резонансной частоты. Другими словами, он будет отклонять сигналы, которые находятся либо выше, либо ниже частоты, вызывающей резонанс. Поэтому в резонансных цепях одни сигналы выбираются для прохождения, в то время как другие отклоняются или блокируются, и этот сигнал называется полосой частот.

    Пропускная способность

    Кривая отклика для тока в зависимости от частоты ниже показывает, что ток максимален или 100% на резонансной частоте (f r ) . Полоса пропускания (BW) резонансного контура определяется как общее количество циклов ниже и выше резонансной частоты, для которых ток равен или превышает 70,7% от его резонансного значения . Две частоты на кривой равны 0.707 единиц максимального тока называются полосой или частотами половинной мощности. Эти частоты обозначены на кривой как f1 и f2 и часто называются критическими частотами или частотами отсечки резонансного контура.

    Резонансная частота может быть определена из критических частот по следующему уравнению:

    или

    Полоса пропускания может быть выражена математически как:

    Другая формула, используемая для расчета полосы пропускания: , где коэффициент добротности является мерой качества резонансной цепи, представленной буквой Q .Коэффициент добротности рассчитывается по формуле:


    Вернемся к примеру с радио. Когда мы настраиваемся на радиостанцию, мы настраиваем резонансную частоту цепи в соответствии с частотой несущего сигнала от радиостанции. В то же время мы согласовываем полосу пропускания с музыкой и звуком, которые передаются по несущему сигналу радиостанции.

    Мы надеемся, что это было полезно для вас, как для технического специалиста, или для студента, приступившего к работе.Если у вас есть какие-либо вопросы о программах по электронике или электромеханику, вы можете связаться с одним из наших консультантов по программе по бесплатному телефону 1-888-553-5333 или по электронной почте [email protected]

    Произошла ошибка при настройке пользовательского файла cookie

    Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


    Настройка вашего браузера для приема файлов cookie

    Существует множество причин, по которым cookie не может быть установлен правильно.Ниже приведены наиболее частые причины:

    • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
    • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, используйте кнопку «Назад» и примите файлы cookie.
    • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
    • Дата на вашем компьютере в прошлом.Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
    • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться у системного администратора.

    Почему этому сайту требуются файлы cookie?

    Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу.Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


    Что сохраняется в файле cookie?

    Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

    Как правило, в файлах cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта.Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

    Резонанс и импеданс переменного тока — Mesomer-ising

    Импеданс

    В цепи переменного тока существуют силы сопротивления, препятствующие прохождению электрического тока. Это отличается от сопротивления, потому что испытываемые резистивные силы в любой точке цепи переменного тока также зависят от конденсаторов и катушек индуктивности.2} \), как \ (X_T \ rightarrow 0 \), \ (Z \ rightarrow R \). Таким образом, когда реактивное сопротивление емкостной и индуктивной нагрузок сбалансировано, достигается минимальное сопротивление. Для данной цепи частота, с которой это происходит, называется резонансной частотой.

    Конденсаторы

    Конденсатор, являющийся устройством, которое «накапливает» заряд, будет заряжаться или разряжаться при разнице напряжений между его пластинами и источником питания (ток будет течь в пластину или из нее). Таким образом, когда напряжение изменяется наиболее быстро, происходит быстрое изменение разности напряжений, поэтому может течь большой ток.Когда напряжение не меняется, ток не будет протекать, поскольку нет разницы в напряжении между пластиной конденсатора и источником питания.

    Значит, напряжение отстает от тока. Конденсаторы реагируют на изменение напряжения, потребляя ток, который определяется частотой источника питания. Этот ток пропорционален скорости изменения напряжения источника питания, поэтому чем выше скорость изменения, тем больше ток на входе / выходе конденсатора. Следовательно, реактивное сопротивление конденсатора обратно пропорционально частоте источника питания:

    $$ \ begin {выровнено} X_c & = \ frac {1} {2 \ pi f C} \\ & = \ frac {1} {\ omega C} \ end {выровнен} $$

    Катушки индуктивности

    Катушки индуктивности накапливают энергию, но делают это в своих магнитных полях, а не в пластинах, как конденсатор.Когда ток течет через катушку, создается магнитное поле, изменение тока означает изменение магнитного поля. Это представляет проблему для индукторов, поскольку изменение тока вызывает изменение магнитного поля, а поскольку индуктор находится в изменяющемся магнитном поле, внутри катушки индуцируется напряжение. Это напряжение противодействует изменению магнитного поля и поэтому называется обратной ЭДС.

    Поскольку обратная ЭДС пропорциональна скорости изменения тока через катушку индуктивности и определяется как:

    $$ \ epsilon = -L \ frac {dI} {dt} $$

    А с помощью законов Кирхгофа мы знаем, что \ (V_s + V_r = 0 \) (чистое напряжение в цепи равно нулю, это расширение сохранения энергии, если сетевое напряжение может быть положительным, тогда цепь может обеспечивать бесконечную энергию), поэтому, следовательно, \ (V -L \ frac {dI} {dt} \) и \ (V = L \ frac {dI} {dt} \)

    Итак, обратная ЭДС равна нулю, так как напряжение питания равно нулю, а коллапсирующее магнитное поле индуктора обеспечивает ток.{\ circ} \) математически (а также вывести формулу для индуктивного реактивного сопротивления). 2} \\ & = X_T \ конец {выровнено} \\ $$ И поскольку единственная реактивная нагрузка, на которую мы смотрим, — это индуктор: $$ Z = X_L $$ Итак, переставив: $$ \ begin {выровнено} V & = IZ \\ & = IX_L \ конец {выровнено} \\ I = \ frac {V} {X_L} \\ I = \ frac {V_o} {L \ omega} \ sin (\ omega t — \ frac {\ pi} {2}) \\ \ текст {} \\ \ begin {выровнено} L \ omega & = \ frac {V_o} {I} \ sin (\ omega t — \ frac {\ pi} {2}) \\ & = X_L \\ & = 2 \ pi f L \ end {выровнен} $$

    Конденсаторы и индукторы

    Когда и конденсаторы, и катушки индуктивности включены в цепь, фазовый сдвиг тока будет комбинацией эффектов обоих компонентов.

    Результирующий фазовый сдвиг тока определяется тета. Таким образом, когда реактивное сопротивление конденсатора и баланса индуктивности и Z приближается к R, фазовый сдвиг тока приближается к 0.

    Резонанс в цепях RLC

    Резонанс — это тенденция системы к колебаниям с большей амплитудой на одних частотах, чем на других. Частоты, при которых амплитуда отклика является относительным максимумом, известны как резонансные частоты системы. Чтобы изучить резонанс в цепи RLC, как показано ниже, мы можем увидеть, как цепь ведет себя в зависимости от частоты источника управляющего напряжения.2}} $,

    , где I действующее значение и V среднеквадратичное значение — среднеквадратичное значение тока и напряжения, соответственно. Реактивные сопротивления изменяются в зависимости от частоты $ \ nu $, при этом X L большое на высоких частотах и ​​X C большое на низких частотах, определяемое как:

    $ X_L = 2 \ pi \ nu L, X_C = \ frac {1} {2 \ pi \ nu C} $.

    При некоторой промежуточной частоте $ \ nu_0 $ реактивные сопротивления будут равны и отменены, давая Z = R — это минимальное значение для импеданса, а максимальное значение для I действующее значение .Мы можем получить выражение для $ \ nu_0 $, взяв X L = X C . Подстановка определений X L и X C дает:

    $ \ nu_0 = \ frac {1} {2 \ pi \ sqrt {LC}} $.

    $ \ nu_0 $ — резонансная частота последовательного контура RLC. Это также собственная частота, на которой цепь будет колебаться, если не будет управляться источником напряжения. При $ \ nu_0 $ влияние катушки индуктивности и конденсатора компенсируется, так что Z = R, а I среднеквадратичное значение является максимальным.Резонанс в цепях переменного тока аналогичен механическому резонансу, где резонанс определяется как вынужденные колебания (в данном случае вызванные источником напряжения) на собственной частоте системы.

    Приемник в радиостанции представляет собой схему RLC, которая лучше всего генерирует колебания на своем $ \ nu_0 $. Переменный конденсатор часто используется для регулировки резонансной частоты, чтобы получить желаемую частоту и отклонить другие. представляет собой график зависимости тока от частоты, иллюстрирующий резонансный пик в I rms при $ \ nu_0 = f_0 $.Две кривые относятся к двум разным схемам, которые различаются только величиной сопротивления в них. Пик ниже и шире для цепи с более высоким сопротивлением. Таким образом, цепи с более высоким сопротивлением не резонируют так сильно, и, например, в радиоприемнике они не будут такими избирательными.

    Зависимость тока от частоты

    График зависимости тока от частоты для двух цепей серии RLC, различающихся только величиной сопротивления. Оба имеют резонанс при f0, но для более высокого сопротивления он ниже и шире.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *