Закрыть

Схема делителя напряжения: на резисторах, как рассчитать, схемы, примеры

Содержание

Делитель напряжения — Основы электроники

Делитель напряжения это цепь или схема соединения резисторов, применяемая для получения разных напряжений от одного источника питания.

Рассмотрим цепь из двух последовательно соединенных резисторов с разными сопротивлениями (рис. 1).

Рисунок 1. Последовательная цепь есть простейший делитель напряжения.

Согласно закону Ома если приложить к такой цепи напряжение, то падение напряжения на этих резисторах будет тоже разным.

UR1=I*R1;

UR2=I*R2.

Схема, изображенная на рисунке 1, и есть простейший делитель напряжения на резисторах. Обычно делитель напряжения изображают, как это показано на рисунке 2.

Рисунок 2. Классическая схема делителя напряжения.

Для примера разберем простейший делитель напряжения, изображенный на рисунке 2. В нем R1 = 2 кОм, R2 = 1 кОм и на­пряжение источника питания, оно же и есть входное напряжения делителя Uвх = 30 вольт. Напряжение в точке А равно полному напряжению источника, т. е. 30 вольт. Напряжение Uвых, то есть в точке В равно напряжению на R2.Определим напряжение Uвых.

Общий ток в цепи равен:

(1)

Для нашего примера I=30 В/ (1 кОм + 2 кОм) = 0,01 А = 10 мА.

Напряжение на R2 будет равно:

(2)

Для нашего примера UR2 = 0,01 А*1000 Ом = 10 В.

Выходное напряжение можно вычислить вторым способом, подставив в выражение (2) значение тока (1), тогда получим:

(3)

UR2 = 30 В*1 кОм/(1 кОм + 2 кОм) = 10 В.

Второй способ применим для любого делителя напряжения, состоящего из двух и более резисторов, включенных последовательно. Напряжение в любой точке схемы можно вычислить с помощью калькулятора за один прием, минуя вычисление тока.

Делитель напряжения из двух последовательно включенных резисторов с равными сопротивлениями

Если делитель напряжения состоит из двух одинаковых резисторов, то приложенное напряжение делится на них пополам.

Uвых = Uвх/2

Делитель напряжения из трех последовательно включенных резисторов с равными сопротивлениями

На рисунке 3 изображен делитель напряжения, состоящий из трех одинаковых резисторов сопротивлением в 1 кОм каждый. Вычислим напряжение в точках А и В относительно точки Е.

Рисунок 3. Делитель напряжения из трех резисторов.

Общее сопротивление R= R1+R2+R3 = 1 кОм + 1 кОм + 1 кОм = 3 кОм

Напряжение в точке А относительно точки Е будет равно:

Тгда Ua-e =30 В/(1 кОм + 1 кОм + 1 кОм)*1 кОм = 10 В.

Напряжение в точке В относительно точки Е будет равно:

Тгда Ub-e =30 В/(1 кОм + 1 кОм + 1 кОм)*(1 кОм + 1 кОм) = 20 В.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

Добавить комментарий

Схемы делителей напряжения

Добавлено 13 января 2021 в 05:06

Давайте проанализируем простую последовательную схему и определим падение напряжения на отдельных резисторах:

Рисунок 1 – Схема последовательной цепиРисунок 2 – Табличный метод. Шаг 1

По заданным значениям отдельных сопротивлений мы можем определить общее сопротивление цепи, зная, что последовательные сопротивления суммируются.

Рисунок 3 – Табличный метод. Шаг 2

Теперь мы можем использовать закон Ома (I = E/R) для определения общего тока, который, как мы знаем, будет таким же, как ток каждого резистора, поскольку токи во всех частях последовательной цепи одинаковы.

Рисунок 4 – Табличный метод. Шаг 3

Теперь, зная, что ток в цепи равен 2 мА, мы можем использовать закон Ома (E = IR) для расчета напряжения на каждом резисторе:

Рисунок 5 – Табличный метод. Шаг 4

Должно быть очевидно, что падение напряжения на каждом резисторе пропорционально его сопротивлению, учитывая, что ток одинаков на всех резисторах. Обратите внимание, что напряжение на R2 вдвое больше, чем на R1, так же как сопротивление R2 в два раза больше, чем у R1.

Если бы мы изменили общее напряжение, то обнаружили бы, что эта пропорциональность падений напряжения остается постоянной.

Рисунок 6 – Пропорциональность падений напряжения остается постоянной

Несмотря на то, что напряжение источника изменилось, напряжение на R2 по-прежнему ровно вдвое больше, чем на R1. Пропорциональность падений напряжения (соотношение между ними) строго зависит от значений сопротивлений.

При более внимательном наблюдении становится очевидным, что падение напряжения на каждом резисторе также является фиксированной долей напряжения питания. Например, напряжение на R1 составляло 10 вольт при питании от батареи 45 вольт. Когда напряжение аккумулятора было увеличено до 180 вольт (в 4 раза больше), падение напряжения на R1 также увеличилось в 4 раза (с 10 до 40 вольт). Однако соотношение между падением напряжения R1 и общим напряжением не изменилось:

\[\frac{E_{R1}}{E_{общ}} = \frac{10 \ В}{45 \ В} = \frac{40 \ В}{180 \ В} = 0,22222\]

Точно так же ни один из других коэффициентов падения напряжения не изменился с увеличением напряжения питания:

\[\frac{E_{R2}}{E_{общ}} = \frac{20 \ В}{45 \ В} = \frac{80 \ В}{180 \ В} = 0,44444\]

\[\frac{E_{R3}}{E_{общ}} = \frac{15 \ В}{45 \ В} = \frac{60 \ В}{180 \ В} = 0,33333\]

Формула делителя напряжения

По этой причине последовательную цепь часто называют делителем напряжения из-за ее способности пропорционально делить общее напряжение на дробные части с постоянными коэффициентами. Применив немного алгебры, мы можем вывести формулу для определения падения напряжения на последовательном резисторе, не учитывая ничего, кроме общего напряжения, сопротивления отдельного резистора и общего сопротивления.

Падение напряжения на любом резисторе:

\[E_n = I_n R_n\]

Сила тока в последовательной цепи:

\[I_{общ} = \frac{E_{общ}}{R_{общ}}\]

Подставляем Eобщ/Rобщ вместо In в первую формулу…

Падение напряжения на любом резисторе в последовательнй цепи:

\[E_n = \frac{E_{общ}}{R_{общ}} R_n\]

или

\[\large E_n = \frac{R_n}{R_{общ}} E_{общ}\]

В схеме делителя напряжения отношение отдельного сопротивления к общему сопротивлению равно отношению отдельного падения напряжения к общему напряжению питания. Эта формула известна как формула делителя напряжения, и это сокращенный метод определения падения напряжения в последовательной цепи без проведения расчетов тока по закону Ома.

Пример использования формулы делителя напряжения

Используя эту формулу, мы можем повторно проанализировать падение напряжения в примере схемы за меньшее количество шагов:

Рисунок 7 – Схема последовательной цепи

\[E_{R1} = 45 \ В \ \frac{5 \ кОм}{22,5 \ кОм} = 10 В\]

\[E_{R2} = 45 \ В \ \frac{10 \ кОм}{22,5 \ кОм} = 20 В\]

\[E_{R3} = 45 \ В \ \frac{7,5 \ кОм}{22,5 \ кОм} = 15 В\]

Компоненты, делящие напряжение

Делители напряжения находят широкое применение в измерительных схемах, где как часть схемы измерения напряжения для «деления» напряжения на точные пропорции используются определенные комбинации последовательных резисторов.

Рисунок 8 – Делитель напряжения

Потенциометры как компоненты, делящие напряжение

Одним из устройств, часто используемых в качестве элемента деления напряжения, является потенциометр, который представляет собой резистор с подвижным элементом, перемещаемым ручкой или рычагом. Подвижный элемент, обычно называемый ползунком, вступает в контакт с резистивной полосой материала в любой, выбранной вручную точке:

Рисунок 9 – Потенциометр

Контакт ползунка – это обращенная влево стрелка, нарисованная в середине вертикального обозначения резистора. При перемещении вверх он контактирует с резистивной полосой ближе к клемме 1 и дальше от клеммы 2, уменьшая сопротивление от него до клеммы 1 и повышая сопротивление от него до клеммы 2. При перемещении вниз происходит противоположный эффект. Сопротивление, измеренное между клеммами 1 и 2, постоянно для любого положения ползунка.

Рисунок 10 – Принцип действия потенциометра

Поворотные и линейные потенциометры

Ниже показано внутреннее устройство двух типов потенциометров: поворотного и линейного.

Линейные потенциометры

Рисунок 11 – Конструкция линейного потенциометра

Некоторые линейные потенциометры приводятся в действие прямолинейным движением рычага или ползунковой кнопки. Другие, подобные изображенному на рисунке выше, приводятся в действие поворотным винтом для точной регулировки. Потенциометры последнего типа иногда называют «подстроечниками» потому, что они хорошо работают в приложениях, требующих «подстройки» переменного сопротивления до некоторого точного значения.

Следует отметить, что не все линейные потенциометры имеют такое же назначение выводов, как показано на этом рисунке. У некоторых вывод ползунка находится посередине между двумя крайними выводами.

Поворотный потенциометр

На изображении ниже показана конструкция поворотного потенциометра.

Рисунок 12 – Поворотный потенциометр

На фотографии ниже показан реальный поворотный потенциометр с открытыми для удобства просмотра ползунком и резистивным элементом. Вал, который перемещает ползунок, повернут почти до конца по часовой стрелке, поэтому ползунок почти касается левого конечного вывода резистивного элемента:

Рисунок 13 – Поворотный потенциометр с открытыми ползунком и резистивным элементом

Вот тот же потенциометр с валом ползунка, перемещенным почти до упора против часовой стрелки, поэтому ползунок теперь находится рядом с другим крайним концом хода:

Рисунок 14 – Потенциометр с валом ползунка, повернутым до упора против часовой стрелки

Влияние регулировки потенциометра на схему

Если между внешними выводами (по всей длине резистивного элемента) приложено постоянное напряжение, положение ползунка будет отводить часть приложенного напряжения, измеряемого между контактом ползунка и любым из двух других выводов. Значение коэффициента деления полностью зависит от физического положения ползунка:

Рисунок 15 – Потенциометр как переменный делитель напряжения

Важность потенциометров

Как и в случае с фиксированным делителем напряжения, коэффициент деления напряжения потенциометра строго зависит от сопротивления, а не от величины приложенного напряжения. Другими словами, если ручка потенциометра или рычаг перемещается в положение 50 процентов (точное центральное положение), падение напряжения между ползунком и любым крайним выводом будет составлять ровно 1/2 от приложенного напряжения, независимо от того, что с этим напряжением происходит, или каково полное сопротивление потенциометра. Другими словами, потенциометр работает как регулируемый делитель напряжения, где коэффициент деления напряжения устанавливается положением ползунка.

Это применение потенциометра является очень полезным средством получения изменяемого напряжения от источника фиксированного напряжения, такого как аккумулятор. Если для схемы, которую вы собираете, требуется определенная величина напряжения, которая меньше, чем значение напряжения доступной батареи, вы можете подключить внешние выводы потенциометра к этой батарее и «выбрать» для использования в вашей цепи любое необходимое напряжение между ползунком и одним из внешних выводов потенциометра:

Рисунок 16 – Применение потенциометра

При таком использовании название «потенциометр» имеет смысл: он «измеряет» (контролирует) приложенный к нему потенциал (напряжение), создавая изменяемый коэффициент деления напряжения. Такое использование трехполюсного потенциометра в качестве переменного делителя напряжения очень популярно в схемотехнике.

Примеры небольших потенциометров

Ниже показано несколько небольших потенциометров, которые обычно используются в бытовом электронном оборудовании, а также любителями и студентами при построении схем:

Рисунок 17 – Примеры небольших потенциометров

Меньшие устройства слева и справа предназначены для подключения к беспаечной макетной плате или для пайки в печатную плату. Устройства посередине предназначены для установки на плоской панели с проводами, припаянными к каждому из трех выводов.

Ниже показано еще три потенциометра, более специализированных, чем только что показанный набор:

Рисунок 18 – Примеры потенциометров размером побольше

Большое устройство «Helipot» – это лабораторный потенциометр, предназначенный для быстрого и легкого подключения к цепи. Устройство в нижнем левом углу фотографии представляет собой потенциометр того же типа, только без корпуса и поворотного счетного диска. Оба этих потенциометра представляют собой прецизионные устройства, в которых используются многооборотные спиралевидные резистивные ленты и ползунковые механизмы для точной регулировки. Устройство в правом нижнем углу представляет собой потенциометр для монтажа на панели, предназначенный для работы в тяжелых промышленных условиях.

Резюме

  • Последовательные цепи делят общее напряжение питания на отдельные падения напряжения, коэффициенты деления строго зависят от сопротивлений: ERn = Eобщ(Rn/Rобщ)
  • Потенциометр – это элемент переменного сопротивления с тремя точками подключения, часто используемый в качестве регулируемого делителя напряжения.

Оригинал статьи:

  • Voltage Divider Circuits

Теги

Делитель напряженияДля начинающихЗакон ОмаОбучениеПоследовательная цепьПотенциометрСхемотехника

Оглавление

Вперед

ОШИБКА — 404 — НЕ НАЙДЕНА

  • Главная
  • Четыре-но-четыре

Наши серверные гномы не смогли найти страницу, которую вы ищете.

Похоже, вы неправильно набрали URL-адрес в адресной строке или перешли по старой закладке.

Возможно, некоторые из них могут вас заинтересовать?

Высокотемпературная клейкая лента — (1 см, 33 м)

Нет в наличии ПРТ-10687

1

Избранное Любимый 4

Список желаний

SparkFun OpenLog

В наличии DEV-13712

16,95 $

22

Избранное Любимый 88

Список желаний

SparkFun ESP8266 Thing Starter Kit

Нет в наличии КОМПЛЕКТ-15258

Избранное Любимый 8

Список желаний

Макет к кабелю JST-ZHR — 4-контактный, шаг 1,5 мм

В наличии CAB-18080

Избранное Любимый 0

Список желаний

Enginursday: Обновление ESP32 через BLE

2 июля 2020 г.

Я разрабатывал веб-интерфейс для обновления ESP32 с помощью BLE. Ознакомьтесь с учебным пособием!

Избранное Любимый 1

Проект таксофона 970-HA-JOKES

12 июля 2022 г.

Вам не хватает кнопок? Монеты? Сомнительные общедоступные поверхности?

Избранное Любимый 1

Хакеры в резиденции — ElectricBone

25 июня 2014 г.

Драм-машины и клавишные были стандартом для создания цифровой музыки, но как вам создавать электронную музыку, если вы обучены игре на тромбоне? Один из наших хакеров в резиденции, Карлос Мелло, взял на себя задачу найти решение именно этого вопроса.

Избранное Любимый 4

ОШИБКА — 404 — НЕ НАЙДЕНА

  • Главная
  • Мне очень жаль, но.. .

Наши серверные гномы не смогли найти страницу, которую вы ищете.

Похоже, вы неправильно набрали URL-адрес в адресной строке или перешли по старой закладке.

Возможно, некоторые из них могут вас заинтересовать?

6-проводная перемычка Molex в сборе

В наличии ПРТ-09922

$2,10 0,95 доллара США

Избранное Любимый 6

Список желаний

Черная ручка — 15×19 мм

В наличии COM-09998

Избранное Любимый 25

Список желаний

Емкостный сенсорный выключатель SparkFun — AT42QT1010

В наличии SEN-12041

10

Избранное Любимый 22

Список желаний

Двигатель постоянного тока MIKROE 14 Click

Нет в наличии РОБ-19509

14,95 $

Избранное Любимый 0

Список желаний

Натан в FAB16 Монреаль

15 июня 2021 г.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *