Производство и сборка щитов учета электроэнергии (ЩУ) в Москве
- Главная
- Продукция
- Электрощитовое оборудование 0,4 кВ
- Производство и сборка ЩУ (щит учета)
Подробнее
Задать вопрос
ЩУ – Щит учета
Щит учёта (ЩУ) устанавливается в офисах, многоквартирных домах, административных зданиях. Компоновка электрощитового оборудования зависит от особенностей объекта и персональных предпочтений заказчика. Для комфортного снятия показаний со счётчиков учёта электроэнергии лицевая панель может выполняться из прозрачного оргстекла. Дверца обычно запирающаяся, при необходимости пломбируется во избежание несанкционированного доступа.
Стоимость производства ЩУ зависит от конкретной модели. Конструкция ЩУ может предусматривать съёмную панель для электросчётчика, DIN-рейку для модульного оборудования. Раздельная компоновка щита упрощает обслуживание электрощитового оборудования. Помимо этого, раздельная панель даёт возможность опломбировать счётчик, без ограничения других групповых устройств.
Технические характеристики ЩУ
Номинальное напряжение главных цепей | 220, 380 В (переменного тока) |
Номинальное напряжение изоляции главных цепей | до 1000 В |
Максимальное значение номинального тока ввода | до 250 А |
Максимальное значение ударного тока короткого замыкания главных цепей | до 20 кА |
Максимальное значение ожидаемого тока короткого замыкания | до 10 кА |
Номинальная частота переменного тока | 50 Гц |
Тип системы заземления | TN-S, TN-C, TN-C-S |
Размеры (для единичной оболочки): |
высота с цоколем – до 1200 мм ширина – до 1200 мм глубина – до 400 мм |
Тип несущей конструкции | каркас из сварной металлоконструкции или корпуса из огнеупорного прочного термопласта |
Тип наружных покрытий | для каркаса из сварной металлоконструкции: полиэфирная мелко-структурированная (мелкая шагрень) порошковая эмаль (по умолчанию — RAL 7035) |
Тип установки |
Условия работы ЩУ
Высота над уровнем моря | до 2000 м |
Температурный диапазон (стандартный) | от -5°С до +40°С |
Относительная влажность (при 25°С) | до 85% |
Тип внешней среды | невзрывоопасная, содержание коррозионно активных агентов соответствует атмосфере типа II или III по ГОСТ 15150 |
Безопасность и надежность | |
Степень защиты внешней оболочки шкафа (стандартные исполнения) | IP31, IP54 |
Стойкость к воздействию механических факторов | M1 |
Стандартные климатические исполнения | УХЛ3, УХЛ4, УХЛ4. 1 или Т3 |
Сейсмостойкость | до 6 баллов (при высоте установки до 20м.) |
Срок службы НКУ | 30 лет |
Стандартная компоновка ЩУ
Комплектация ЩУ может отличаться в зависимости от особенностей объекта. В стандартном варианте исполнения оборудование выглядит следующим образом:
- Корпус – металл или пластик;
- Монтажная плата;
- Приборы контроля и учёта электроэнергии;
- Испытательная переходная коробка – если счётчики подключаются через измерительные трансформаторы;
- Коммутационное оборудование;
- Защитное стекло;
- Механический замковый элемент.
Все модели электрощитового оборудования отличаются повышенной надёжностью, имеют сравнительно высокий уровень защиты от пыли и влаги. Возможна индивидуальная компоновка ЩУ с учётом функциональных особенностей помещения, где будет эксплуатироваться оборудования.
Заказать щит учета (ЩУ)
Получить стоимость ЩУ можно следующими способами:
отправьте заявку с заполненным опросным листом, или однолинейной схемой нам на почту: [email protected]
Свяжитесь с нами по телефону: +7 (495) 225-99-15
109428, г. Москва, Рязанский проспект, д. 10с18, оф. 6.3А.
143985, Московская область, г. Балашиха, микрорайон Саввино, Промышленная улица, д. 49А.
Отправьте заявку и мы с вами свяжемся
Оставить заявку Заказать звонок
Этапы изготовления щитов учета
В нашей компании сборка щита учёта электроэнергии предусматривает три базовых этапа:
- Проектирование. Получаем техническое задание, рассчитываем количество и тип аппаратуры, диапазон измерений, класс напряжения. В зависимости от особенностей объекта определяется вариант установки: настенная или встраиваемая.
- Изготовление корпуса. На выбор заказчику предлагаем пластиковый или металлический вариант. Во втором случае все металлические элементы проходят антикоррозийную обработку, подвергаются порошковому окрашиванию для защиты от влажной среды. Габариты корпуса подбираются с учётом максимального удобства при монтаже, подключении и обслуживании контрольно-измерительных приборов и другой аппаратуры.
- Компоновка. Щит оснащается всем необходимым в соответствии с согласованным проектом. Подготавливается проектно-техническая документация, где указаны характеристики оборудования, рассмотрена схема подключения.
Компания ELSIN предлагает производство ЩУ в Москве по выгодным ценам под ключ. Мы команда профессионалов, способных решать задачи любого уровня сложности в максимально сжатые сроки. У нас можно заказать щиты электроучёта для помещений любого функционального назначения. Оказываем услуги по установке, сервисному обслуживанию и ремонту электрощитового оборудования.
Общие требования к местам установки приборов учета:
1. Приборы учета подлежат установке на границах балансовой принадлежности объектов электроэнергетики (энергопринимающих устройств) смежных субъектов розничного рынка:
— потребителей,
— производителей электрической энергии (мощности) на розничных рынках,
— сетевых организаций,
имеющих общую границу балансовой принадлежности.
При отсутствии технической возможности установки прибора учета на границе балансовой принадлежности объектов электроэнергетики (энергопринимающих устройств) смежных субъектов розничного рынка прибор учета подлежит установке в месте, максимально приближенном к границе балансовой принадлежности, в котором имеется техническая возможность его установки.
При этом по соглашению между смежными субъектами розничного рынка прибор учета, подлежащий использованию для определения объемов потребления (производства, передачи) электрической энергии одного субъекта, может быть установлен в границах объектов электроэнергетики (энергопринимающих устройств) другого смежного субъекта.
В случае если прибор учета, в том числе коллективный (общедомовой) прибор учета в многоквартирном доме, расположен не на границе балансовой принадлежности объектов электроэнергетики (энергопринимающих устройств) смежных субъектов розничного рынка, то объем потребления (производства, передачи) электрической энергии, определенный на основании показаний такого прибора учета, в целях осуществления расчетов по договору подлежит корректировке на величину потерь электрической энергии, возникающих на участке сети от границы балансовой принадлежности объектов электроэнергетики (энергопринимающих устройств) до места установки прибора учета. При этом расчет величины потерь осуществляется сетевой организацией в соответствии с актом уполномоченного федерального органа, регламентирующим расчет нормативов технологических потерь электрической энергии при ее передаче по электрическим сетям.
(Основание п. 144 ПП РФ №442 от 04.05.2012).
2. Места установки, схемы подключения и метрологические характеристики приборов учета должны соответствовать требованиям, установленным законодательством Российской Федерации об обеспечении единства измерений и о техническом регулировании.
(Основание п. 147 ПП РФ №442 от 04.05.2012).
3. Приборы учета должны устанавливаться в шкафах, камерах комплектных распределительных устройствах (КРУ, КРУН), на панелях, щитах, в нишах, на стенах, имеющих жесткую конструкцию.
Допускается крепление приборов учета на деревянных, пластмассовых или металлических щитках.
Высота от пола до коробки зажимов приборов учета должна быть в пределах 0,8-1,7 м. Допускается высота менее 0,8 м, но не менее 0,4 м.
(Основание ПУЭ п.1.5.29).
4. Для безопасной установки и замены приборов учета в сетях напряжением до 380 В должна предусматриваться возможность отключения прибора учета установленными до него на расстоянии не более 10 м коммутационным аппаратом или предохранителями. Снятие напряжения должно предусматриваться со всех фаз, присоединяемых к прибору учета. Трансформаторы тока, используемые для присоединения приборов учета на напряжении до 380 В, должны устанавливаться после коммутационных аппаратов по направлению потока мощности.
(Основание ПУЭ п.1.5.36).
5. Для безопасной замены прибора учета, непосредственно включаемого в сеть, перед каждым прибором учета должен предусматриваться коммутационный аппарат для снятия напряжения со всех фаз, присоединенных к нему.
Отключающие аппараты для снятия напряжения с расчетных приборов учета, расположенных в квартирах, должны размещаться за пределами квартиры
(Основание ПУЭ п.7.1.64).
6. После прибора учета, включенного непосредственно в сеть, должен быть установлен аппарат защиты. Если после прибора учета отходит несколько линий, снабженных аппаратами защиты, установка общего аппарата защиты не требуется.
(Основание ПУЭ п.7.1.65).
7. Рекомендуется оснащение жилых зданий системами дистанционного съема показаний приборов учета.
(Основание ПУЭ п.7.1.66).
8. Расчетные приборы учета в общественных зданиях, в которых размещено несколько потребителей электроэнергии, должны предусматриваться для каждого потребителя, обособленного в административно-хозяйственном отношении (ателье, магазины, мастерские, склады, жилищно-эксплуатационные конторы и т. п.). (Основание ПУЭ п.7.1.60).
9. В общественных зданиях расчетные приборы учета электроэнергии должны устанавливаться на ВРУ (ГРЩ) в точках балансового разграничения с энергоснабжающей организацией. При наличии встроенных или пристроенных трансформаторных подстанций, мощность которых полностью используется потребителями данного здания, расчетные приборы учета должны устанавливаться на выводах низшего напряжения силовых трансформаторов на совмещенных щитах низкого напряжения, являющихся одновременно ВРУ здания.
ВРУ и приборы учета разных абонентов, размещенных в одном здании, допускается устанавливать в одном общем помещении. По согласованию с энергоснабжающей организацией расчетные приборы учета могут устанавливаться у одного из потребителей, от ВРУ которого питаются прочие потребители, размещенные в данном здании. При этом на вводах питающих линий в помещениях этих прочих потребителей следует устанавливать контрольные приборы учета для расчета с основным абонентом.
(Основание ПУЭ п.7.1.61).
10. Расчетные приборы учета для общедомовой нагрузки жилых зданий (освещение лестничных клеток, контор домоуправлений, дворовое освещение и т.п.) рекомендуется устанавливать в шкафах ВРУ или на панелях ГРЩ.
(Основание ПУЭ п.7.1.62).
11. В жилых зданиях следует устанавливать один одно- или трехфазный расчетный прибор учета (при трехфазном вводе) на каждую квартиру
(Основание ПУЭ п.7.1.59).
12. Расчетные квартирные приборы учета рекомендуется размещать совместно с аппаратами защиты (автоматическими выключателями, предохранителями).
При установке квартирных щитков в прихожих квартир приборы учета, как правило, должны устанавливаться на этих щитках, допускается установка счетчиков на этажных щитках.
(Основание ПУЭ п.7.1.63).
Требования к местам установки приборов учёта производителей электрической энергии на розничном рынке:
1. Субъект розничных рынков, владеющий на праве собственности или на ином законном основании объектом по производству электрической энергии (мощности) и энергопринимающими устройствами, соединенными принадлежащими этому субъекту на праве собственности или на ином законном основании объектами электросетевого хозяйства, по которым осуществляется передача всего или части объема электрической энергии, потребляемой указанными энергопринимающими устройствами такого субъекта, в целях участия на розничных рынках в отношениях по продаже электрической энергии (мощности), произведенной на принадлежащих ему объектах по производству электрической энергии (мощности), обязан обеспечить раздельный почасовой учет производства и собственного потребления электрической энергии в соответствии с требованиями настоящего документа.
(Основание п. 63 ПП РФ №442).
2. Приборы учета объемов производства электрической энергии производителями электрической энергии (мощности) на розничных рынках должны устанавливаться в местах присоединения объектов по производству электрической энергии (мощности) к энергопринимающим устройствам и (или) иным объектам электроэнергетики производителя электрической энергии (мощности) на розничном рынке, а также на границе балансовой принадлежности производителя электрической энергии (мощности) на розничном рынке и смежных субъектов (потребителей, сетевых организаций).
(Основание п. 141 ПП РФ №442).
Master Electricians Australia — Официальный сайт
Горячая линия по техническим вопросам, вопросам безопасности и консультирования работодателей 1300 889 198- Новости
- Мероприятия/вебинары
Изменения в положениях о закрытии ежегодного отпуска
Корнуоллс: решение о пиковой задолженности стало победой для подрядчиков
Стандарты
обеспечивают безопасность австралийцев, новое радикальное предложение угрожает
Почему подрядчики — это не просто работники, а доверенные советники
Посмотреть все новости
Четверг, 12 октября 2023 г.
Четвертая сессия тестирования и проверки: Лонсестон
Подробнее
Четверг, 12 октября 2023 г.
Третья сессия тестирования и проверки: Лонсестон
Подробнее
Четверг, 12 октября 2023 г.
Вторая сессия тестирования и проверки: Лонсестон
Подробнее
Четверг, 12 октября 2023 г.
Первая сессия тестирования и проверки: Лонсестон
Подробнее
Посмотреть все события
Войти в Ресурсы для участников и ME Safety здесь
Логин участника Вход в систему безопасности ME
Вход для участников
Ресурсы MEA I Портал для участников MEA I ME Safety
Станьте мастером-электриком
Привилегии участника | Цены | Присоединяйтесь сейчас
Консультации
Консультации для работодателей | Технические | Безопасность
Магистерская программа
Сборка. Расти. Владелец.
Отраслевое признание
Признание, поддержка и поощрение вашего делового пути
Безопасность
Программа безопасности ME
Обучение
Обучение мастеров-электриков
Пропаганда и представление основных интересов отрасли
0007
Мероприятия
Мы проводим ряд мероприятий по всей стране. Найдите мероприятие рядом с вами!
Управление учениками
Как для работодателей, так и для учеников. Позвольте Master Electricians помочь вам
Bushfire Assistance
Зарегистрируйтесь здесь, если вы являетесь подрядчиком по электроснабжению, который может помочь, или если вы являетесь потребителем, нуждающимся в помощи
Присоединяйся сейчас
Основы измерения электрической мощности
Основы измерения электрической мощностиПонимание производства электроэнергии, потери мощности и различных типов измеряемой мощности может быть пугающим. Ниже приведен обзор основных измерений электрической и механической мощности.
Электрический ток, напряжение и сопротивлениеЛюбое обсуждение электричества неизбежно приводит к электрическому току, напряжению и сопротивлению. Эти концепции показаны ниже на рисунке 1. Электрический ток представляет собой поток самого электричества и измеряется в единицах, называемых амперами (А). Напряжение — это сила, которая заставляет электричество течь, и измеряется в единицах, называемых вольтами (V или U). Сопротивление выражает сложность, с которой протекает электричество, и измеряется в единицах, называемых омами (Ом).
На рисунке ниже эти отношения показаны в виде электрических цепей. В электрической цепи электрический ток проходит через различные типы нагрузки, включая сопротивление, индуктивность и емкость, от положительной полярности источников питания, таких как батареи, а затем возвращается к отрицательной полярности источника питания. Термин «нагрузка» обычно используется для обозначения чего-то, что получает электричество от источника питания и работает (обеспечивает свет, в случае лампочки).
Рисунок 1 – Основные компоненты электрической цепи Мощность
Электрическая энергия может быть преобразована в другие формы энергии и использована. Например, его можно преобразовать в тепло в электронагревателе, в крутящий момент в двигателе или в свет в люминесцентной или ртутной лампе. В подобных примерах работа, совершаемая электричеством за определенный период времени (или затрачиваемая электрическая энергия), называется электрической мощностью. Единицей электрической мощности является ватт (Вт). 1 ватт эквивалентен работе в 1 джоуль, выполненной за 1 секунду.
В электрических системах напряжение — это сила, необходимая для перемещения электронов. Ток — это скорость потока заряда в секунду через материал, к которому приложено определенное напряжение. Взяв напряжение и умножив его на соответствующий ток, можно определить мощность.
Мощность постоянного тока (постоянного тока)Постоянный ток или постоянный ток относится к системам питания, в которых используется одна полярность напряжения и тока, однако амплитуда может изменяться (циклически или случайным образом).
Рисунок 2. Базовая схема, показывающая напряжение и ток с источником постоянного напряжения электрический ток, напряжение и сопротивление. Закон Ома гласит, что электрический ток течет пропорционально напряжению. Ниже показана формула для выражения отношения между током (I) и напряжением (U).
По этой формуле ток (I) уменьшается с увеличением значения R и, наоборот, ток (I) увеличивается с уменьшением значения R. R здесь представляет собой сопротивление (или электрическое сопротивление). Другими словами, мы видим, что по мере увеличения или уменьшения сопротивления (R) ток течет с меньшей или большей легкостью. Эту формулу можно переписать, как показано ниже. Если известны два значения тока, напряжения и сопротивления, можно получить оставшееся значение.
Мощность постоянного тока (DC) P (Вт) определяется путем умножения приложенного напряжения (U) на ток I (А), как показано выше. В приведенном ниже примере количество электроэнергии, определяемое предыдущим уравнением, извлекается из источника питания и потребляется сопротивлением R (в омах) каждую секунду. По закону Ома мы можем переписать формулу следующим образом:
Электрические цепи постоянного тока поддерживают постоянный ток и напряжение без циклических изменений. Таким образом, очень просто получить мощность постоянного тока (P) с результирующей формой волны, показанной ниже.
Питание переменного тока (AC)Обычно в Японии используется напряжение 100 В переменного тока. Эти 100 В представляют собой напряжение, выраженное как среднеквадратичное значение (среднеквадратичное значение).
100 В от настенных розеток наблюдаются в виде чистых синусоидальных волн, как показано на рисунке ниже. Мы можем видеть, что полярность меняется циклами, и что напряжения постоянно колеблются. Формы сигналов напряжения переменного тока имеют чистые синусоидальные волны, такие как график на рис. 3, а также множество других волн, таких как искаженные волны, такие как обычные формы, такие как треугольная и прямоугольная волна. Чтобы установить размер этих волн переменного тока и напряжения, нам нужны значения, которые используют тот же стандарт. Поэтому используется среднеквадратичное значение (rms), которое было установлено на основе постоянного тока и напряжения.
Рисунок 3. Изменение полярности переменного напряжения в синусоидальных, треугольных и прямоугольных волнах Среднеквадратичное значение (среднеквадратичное значение)
Среднеквадратичное значение чаще всего используется при выражении значений переменного тока и напряжения, и измеряется в Arms и Urms. В приведенном выше примере 100 В — это напряжение, выраженное как среднеквадратичное значение (среднеквадратичное значение).
Простое среднее значение синусоиды равно нулю, поэтому требуется другое уравнение. Вот почему используется среднеквадратичное значение (rms), которое было установлено на основе постоянного тока и напряжения. Он основан на количестве работы, выполняемой определенным количеством постоянного тока и напряжения, и выражает, используя те же значения, что и для постоянного тока и напряжения, величину переменного тока и напряжения, которые выполняют ту же работу.
Если теплотворная способность при подаче напряжения постоянного тока на резистор такая же, как теплотворная способность при подаче переменного тока другой формы волны, то среднеквадратичное значение напряжения переменного тока такое же, как и для напряжения постоянного тока.
Например, теплотворная способность при подаче постоянного напряжения 100 В на резистор 10 Ом такая же, как теплотворная способность при подаче на тот же резистор переменного тока 100 В. Понятие среднеквадратичного значения то же самое для электрического тока.
Рис. 4. Равная теплотворная способность сигналов постоянного и переменного тока
Теплотворная способность относится к количеству выполненной работы, поэтому следующая формула рассчитывает мощность как теплотворную способность.
В качестве примера на следующей диаграмме показаны колебания мощности в зависимости от времени при подаче постоянного тока 1 A и переменного тока 1 ампер на резистор 10 Ом.
Рис. 5. Зависимость мощности от времени при постоянном и переменном токе
Поскольку значение тока при постоянном токе не колеблется, значение мощности остается постоянным и составляет 10 Вт. Однако, поскольку значение тока постоянно колеблется при переменном токе, значение мощности колеблется со временем. То, что эти два типа мощности (теплотворная способность) равны, равнозначно утверждению, что средние значения Pdc и P1 – Pn равны. Это выражается в виде формулы ниже.
Здесь резистор (R) постоянный, поэтому им можно пренебречь. Следующее выражает результирующую связь между постоянным током и переменным током.
Максимально уменьшая интервал между I1 и In в этой формуле, в конечном итоге Irms дает квадратный корень из площади части, заключенной в сигнал, деленный на время. Это выражается в виде формулы ниже.
Важно знать, что постоянный ток силой 1 А выполняет такую же работу, как и переменный среднеквадратичный ток силой 1 ампер. При постоянном и устойчивом постоянном токе вы можете получить значение мощности, просто умножив ток на напряжение.
Однако переменный ток не так прост, как постоянный, из-за разности фаз между током и напряжением. Ниже приведены три типа переменного тока. Как правило, мощность и потребляемая мощность относятся к активной мощности.
Мощность в системах переменного токаКак и в случае постоянного тока, значение мощности (мгновенное значение мощности) в определенный момент времени для переменного тока можно получить путем умножения напряжения и тока для этого момента времени.
При переменном токе, поскольку и ток, и напряжение циклически колеблются, значения мощности также постоянно колеблются. Это показано на следующей диаграмме.
В качестве энергии в секунду мощность может быть получена из среднего значения мгновенной энергии, т. е. площади части, заключенной в форму волны, по времени. Формула выглядит следующим образом:
Например, если к резистору приложен ток 1 ампер и напряжение 100 ампер, как показано ниже, мощность становится равной 100 Вт при расчете по приведенной выше формуле.
При подаче тока и напряжения на резистор результирующие формы сигналов показаны на рис. 6 ниже.
Рис. 6. Отсутствие разности фаз при чисто резистивной нагрузке
Говорят, что ток и напряжение находятся «в фазе» по полярности и времени, когда кривые тока и напряжения проходят через нуль. Ток и напряжение всегда совпадают по фазе, когда нагрузка состоит только из сопротивления.
Когда в нагрузке помимо сопротивления есть катушка, возникает фазовый сдвиг между сигналами напряжения и тока. Это отставание называется разностью фаз и показано на рис. 7.9.0007
Рисунок 7. Разность фаз, характерная для индуктивной и емкостной нагрузки
Разность фаз обычно выражается как Φ (фи), а единицей измерения являются радианы, но часто указывается в градусах. В приведенном ниже примере точка A начинается с точки P и совершает один оборот по окружности O. Расстояние между точкой A и прямой линией, проходящей через центр O и точку P (красная линия) в качестве оси Y и ∠AOP (φ), так как ось X приводит к синусоидальной волне ниже.
Рис. 8. Синусоидальная волна показана с фазой
На Рис. 9 показаны кривые тока и напряжения, сдвинутые по фазе на 60°. При рассмотрении положения на окружности напряжения (u) и тока (i) в соответствии с приведенным выше примером ∠uoi постоянна в каждый момент времени. Угол этого ∠uoi указывает размер разности фаз между напряжением (u) и током (i).
Рис. 9. Синусоиды напряжения и тока с разностью фаз
Три типа нагрузки цепи переменного тока показаны на рис. 10. Как показано ниже, разность фаз между током и напряжением возникает в зависимости от типа нагрузки.
Рис. 10. Фазное и векторное представление цепей переменного тока с резистивной, индуктивной или емкостной нагрузкой
С фазами ток может отставать по отношению к напряжению или опережать его. Ток отстает на 90⁰, когда нагрузка состоит только из индуктивности, и опережает на 90⁰, когда только емкость. Когда существуют все три типа, разность фаз колеблется в соответствии с соотношением размеров каждого компонента. Далее, давайте посмотрим на мощность, когда есть разность фаз между током и напряжением.
Мощность переменного тока с разностью фазПри наличии разности фаз между током и напряжением происходит мгновенное изменение энергии, как показано на рисунке 11.
Когда ток или напряжение равны 0, мгновенная мощность становится равной 0. полярность напряжения меняется в промежутках между ними, мгновенная мощность становится отрицательной. Мощность представляет собой среднее значение мгновенной энергии, поэтому мощность становится меньше, чем когда ток и напряжение совпадают по фазе (пунктирная линия).
Рисунок 11. Мгновенная энергия, когда напряжение и ток имеют разность фаз. Треугольник мощности, показанный на рис. 12, помогает проиллюстрировать энергопотребление в индуктивной или емкостной цепи. Треугольник мощности представляет собой прямоугольный треугольник, показывающий соотношение четырех основных элементов: активной мощности, реактивной мощности, полной мощности и коэффициента мощности.
Рис. 12. Треугольник мощности показывает соотношение активной и реактивной мощности.
Активная мощность
Активная мощность (P) — это реальная мощность, которую устройство потребляет и выполняет реальную работу в электрической цепи. Активная мощность рассчитывается ниже в ваттах (Вт).
Реактивная мощностьРеактивная мощность (Q) — это мощность, которая не потребляется устройством и передается туда и обратно между источником питания и нагрузкой. Иногда называемая безваттной мощностью, реактивная мощность забирает мощность из цепи из-за фазового сдвига, создаваемого емкостными и/или индуктивными компонентами. Этот фазовый сдвиг уменьшает количество активной мощности для выполнения работы и усложняет расчет мощности. Реактивная мощность рассчитывается ниже и выражается в реактивных вольт-амперах (ВАр). В цепи постоянного тока нет реактивной мощности.
Полная мощностьПолная мощность (S) представляет собой гипотенузу треугольника мощности, состоящего из сложения векторов активной мощности (P) и реактивной мощности (Q). Расчет полной мощности представляет собой произведение среднеквадратичного значения напряжения на среднеквадратичное значение тока в вольт-амперах (ВА).
Коэффициент мощностиПри определении коэффициента мощности для синусоидальных волн коэффициент мощности равен косинусу угла между напряжением и током (Cos Φ). Он определяется как коэффициент мощности «смещения» и верен только для синусоидальных волн. Для всех других форм сигналов (не синусоидальных волн) коэффициент мощности определяется как мощность в ваттах, деленная на полную мощность в амперах напряжения. Это называется «истинным» коэффициентом мощности и может использоваться для всех форм сигналов, как синусоидальных, так и несинусоидальных, с использованием квалификатора λ (лямбда).
Коэффициент мощности (λ) увеличивается или уменьшается в зависимости от величины разности фаз (φ). Рисунок 13 иллюстрирует это явление. Рис. 13. Коэффициент мощности с различной разностью фаз разность фаз увеличивается; коэффициент мощности равен 0,5 (активная мощность составляет 1/2 полной мощности) при разности фаз 60⁰ и 0 при разнице фаз 90⁰. Коэффициент мощности 0 означает, что ток течет к нагрузке, но она не совершает никакой работы.
Векторное отображение переменного тока
Смещение по времени между напряжением и током называется разностью фаз, а Φ — фазовым углом. Смещение по времени в основном вызвано нагрузкой, на которую подается питание. В общем, разность фаз равна нулю, когда нагрузка является чисто резистивной. Ток отстает от напряжения, когда нагрузка индуктивная. Ток опережает напряжение, когда нагрузка емкостная.
Рис. 14. Сдвиг фаз между напряжением и током при чисто индуктивной или емкостной нагрузке
Векторный дисплей используется для четкой передачи зависимости величины и фазы между напряжением и током. Положительный фазовый угол представлен углом против часовой стрелки относительно вертикальной оси.
Рис. 15. Векторная диаграмма отображает зависимость величины и фазы между напряжением и током
Системы питания переменного тока
Электропитание переменного тока может быть однофазным или многофазным. Однофазное электричество используется для питания обычных бытовых и офисных электроприборов, но для распределения электроэнергии и подачи электроэнергии непосредственно на оборудование большей мощности почти повсеместно используются трехфазные системы переменного тока.
Схемы однофазной проводкиСуществуют две распространенные конфигурации проводки для однофазных цепей. Наиболее распространена однофазная двухпроводная схема. Другая — однофазная трехпроводная схема, обычно встречающаяся в бытовых приборах.
Однофазная 2-проводная система (1P2W)Обеспечивает подачу однофазного переменного тока с использованием двух проводников. Самая простая система, она используется при подключении источников питания ко многим электрическим устройствам, таким как бытовая электроника. При подключении ваттметра к однофазной двухпроводной системе перед подключением необходимо учитывать несколько моментов.
Рисунок 16 – Различные схемы подключения однофазной двухпроводной системы
Влияние паразитной емкости
При измерении однофазного устройства влияние паразитной емкости на точность измерения можно свести к минимуму, подключив клемму токового входа прибора к стороне, ближайшей к потенциалу земли источника питания.
Рис. 17. Схема подключения для минимизации паразитной емкости
Влияние измеренных амплитуд напряжения и тока
Когда измеренный ток относительно велик, подключите клемму измерения напряжения между клеммой измерения тока и нагрузкой. Когда измеренный ток относительно мал, подключите клемму измерения тока между клеммой измерения напряжения и нагрузкой.
Рис. 18. Схема подключения при относительно большом измеренном токе
Двухфазная трехпроводная система (1P3W)
Обеспечивает однофазное питание переменного тока с использованием трех проводников. Однофазная трехпроводная система является наиболее распространенной системой распределения электроэнергии. Электричество, поставляемое большинству домохозяйств, подается с помощью этой системы. Следующее требует двух ваттметров для измерения двух напряжений (U1, U2) и двух токов (I1, I2).
Рисунок 19. Двухфазная трехпроводная система
Схемы подключения трехфазной сети
В отличие от однофазных систем, по проводникам трехфазного источника питания течет переменный ток одинаковой частоты. и амплитуда напряжения относительно общего эталона, но с разницей фаз в одну треть периода. Трехфазные системы имеют преимущества перед однофазными, которые делают их пригодными для передачи энергии и в таких приложениях, как асинхронные двигатели.
Характеристики трехфазных систем- Ток и напряжение на каждой фазе имеют разность фаз 120° в сбалансированной системе.
- Линейное напряжение — это напряжение, измеренное между любыми двумя линиями в трехфазной цепи.
- Фазное напряжение — это напряжение, измеренное на нагрузке в фазе
- Линейный ток — это ток в любой одной линии между трехфазным источником и нагрузкой.
- Фазный ток – это ток через любой компонент, состоящий из трехфазного источника или нагрузки.
- При соединении треугольником линейное напряжение совпадает с фазным. Для синусоидальных волн линейный ток в √3 раза превышает фазный ток.
- При соединении звездой линейное напряжение в √3 раза превышает фазное напряжение, а токи одинаковы.
- Трехфазные источники питания могут передавать в три раза больше энергии, используя всего в 1,5 раза больше проводов, чем однофазные источники питания (т. е. три вместо двух). Таким образом, отношение емкости к материалу проводника удваивается.
- Трехфазные системы также могут создавать вращающееся магнитное поле с заданным направлением и постоянной величиной, что упрощает конструкцию электродвигателей.
До сих пор в обсуждении источник питания и нагрузка были соединены двумя проводниками. Это известно как однофазная двухпроводная система. При питании переменным током существует однофазное и трехфазное питание со следующими доступными системами электропитания. Трехфазное питание можно использовать в трехпроводной или четырехпроводной конфигурации в режиме звезды или треугольника.
На диаграммах на рис. 20 показаны источник и нагрузка в конфигурации «треугольник» или «звезда» (звезда).
Рисунок 20. Трехфазные конфигурации треугольник и звезда (WYE)
Теорема Блонделя
необходимы для наиболее точного измерения. Теорема утверждает, что мощность, подводимая к системе из N проводников, равна алгебраической сумме мощностей, измеренных N ваттметрами. Кроме того, если общая точка расположена на одном из проводников, то счетчик этого проводника может быть удален и требуется только N-1 счетчиков.
Трехфазное соединение звездой (3P4W)Измерение относительно простое, если объектом измерения является трехфазная 4-проводная система. Как показано на схеме ниже, трехфазная четырехпроводная схема предполагает подключение ваттметров к каждой фазе на основе нейтрального проводника. Получите мощность для каждой фазы, измеряя напряжение (фазное напряжение) и ток (фазный ток) для каждой фазы с помощью разных ваттметров. В сумме это даст значение трехфазной мощности переменного тока. Для измерения трехфазной четырехпроводной мощности требуются три ваттметра.
Рис. 21. Трехфазное соединение звездой (3P4W)
Полная мощность, активная мощность и реактивная мощность для трехфазной мощности представляют собой сумму каждой фазы.
Трехфазный ваттметр Delta Two (3P3W)Измерение в трехфазной 3-проводной системе немного сложнее, поскольку нейтральный проводник использовался в качестве основы для трехфазной 4-проводной системы. система отсутствует и фазное напряжение не может быть измерено. Измерение в трехфазной трехпроводной системе включает получение значения трехфазной мощности переменного тока с использованием метода, называемого методом двух ваттметров.
Применяя теорему Блонделя и используя метод двух ваттметров, мы можем получить значения трехфазной мощности переменного тока. Схема подключения для метода двух ваттметров и векторная карта приведены ниже.
Вывод теоремы Блонделя приведен ниже.
Вышеприведенный расчет показывает, что мы можем получить значения трехфазной мощности переменного тока из двухлинейных значений мощности и двухфазных значений тока. Поскольку этот метод требует контроля только двух токов и двух напряжений вместо трех, упрощается установка и конфигурация проводки. Он также может точно измерять мощность в сбалансированной или несбалансированной системе. Его гибкость и недорогая установка делают его подходящим для производственных испытаний, в которых требуется измерение только мощности или нескольких других параметров.
Другими словами, для трехфазного измерения мощности мощность может быть получена путем измерения мощности для каждой фазы и расчета общей мощности. Для метода двух ваттметров уравнение показано ниже.
Трехфазное соединение треугольником (3V3A)Существует еще один метод измерения в трехфазной трехпроводной системе: трехфазное трехфазное измерение (3V3A). Как и метод двух ваттметров, этот метод измеряет ток фазы T и линейное напряжение между R и S. Ниже представлена схема подключения.
Рис. 22. Трехфазное соединение треугольником (3V3A)
Поскольку трехфазный трехтоковый метод (3V3A) измеряет ток фазы T, он позволяет увидеть баланс токов между фазами, что было невозможно при использовании метод двух ваттметров. Для инженерных и научно-исследовательских и опытно-конструкторских работ лучше всего подходит трехфазный
трехпроводной с трехваттметровым методом, так как он дает дополнительную информацию, которую можно использовать для балансировки нагрузки и определения истинного коэффициента мощности. В этом методе используются все три напряжения и все три тока. Измеряются все три напряжения (от R до T, от S до T, от R до S).
Векторное отображение измерений трехфазного переменного токаМы будем использовать трехфазную систему Y «звезда», чтобы проиллюстрировать концепцию трехфазного векторного отображения. В звездной системе напряжения и токи каждой фазы смещены на 120°. Нейтральная точка Y-системы находится в центре, где теоретически сумма всех напряжений и токов равна нулю.
При проведении измерений в звездной системе, где присутствует физический нейтральный провод; напряжения будут измеряться относительно этой нейтральной точки, это называется «фазным напряжением». При проведении измерений в звездной системе, где отсутствует физический нейтральный провод; напряжения будут измеряться относительно друг друга, это называется «линейное напряжение» или «соединение треугольником». Схема соединения треугольником образует равносторонний треугольник с интервалом между напряжениями 60 градусов, в отличие от соединения звезды, где напряжение изменяется на 120 градусов. Величина линейного напряжения измеряется выше, чем фазное напряжение в √3 раза. Токи в звездной системе всегда измеряются последовательно относительно нейтральной точки, при этом угловое измерение относительно векторов напряжения обозначается Φ. Рисунок 23 иллюстрирует взаимосвязь между измерением напряжения по схеме треугольника и по схеме звезда с помощью векторной диаграммы.
Рисунок 23 – Векторная диаграмма трехфазных дельта- и звездных измерений.
Измерение трехфазного коэффициента мощности
Общий коэффициент мощности для трехфазной цепи определяется путем суммирования общей мощности в ваттах, деленной на общее значение ВА.
При использовании метода двух ваттметров сумма общей мощности (W1 + W2) делится на количество ВА. Однако, если нагрузка несбалансированная (фазные токи разные), это может привести к ошибке при расчете коэффициента мощности, поскольку при расчете используются только два измерения ВА. Два VA усредняются, потому что предполагается, что они равны; однако, если это не так, получается ошибочный результат. Поэтому лучше всего использовать метод трех ваттметров для несбалансированных нагрузок, поскольку он обеспечит правильный расчет коэффициента мощности как для сбалансированных, так и для несбалансированных нагрузок.
При использовании метода трех ваттметров все три измерения ВА используются при расчете приведенного выше коэффициента мощности.
ГармоникиГармоники относятся ко всем синусоидальным волнам, частота которых является целым кратным основной волны (обычно синусоидальный сигнал линии электропередачи 50 Гц или 60 Гц или от 0 до 2 кГц для вращающихся машин). Гармоники — это искажение формы волны нормального электрического тока, обычно передаваемое нелинейными нагрузками. В отличие от линейных нагрузок, где потребляемый ток пропорционален входному напряжению и соответствует форме волны, нелинейные нагрузки, такие как двигатели с регулируемой скоростью, потребляют ток короткими прерывистыми импульсами. Когда основная волна и последующие гармонические компоненты объединяются, формы сигналов искажаются, и возникает интерференция.
Рис. 24. Искаженные формы сигналов состоят из нескольких гармонических составляющих
Гармоники необходимо контролировать, поскольку они могут вызывать ненормальный шум, вибрацию, нагрев или неправильную работу устройств и сокращать срок их службы. Для контроля гармоник существуют национальные и международные стандарты, такие как IEC61000-3. Поэтому инженерам необходимо обнаруживать гармоники и оценивать их влияние на компоненты, системы и подсистемы в приложении. Размер и разность фаз следует измерять не только для основной частоты, но и для каждой более высокочастотной составляющей. Высокоточные анализаторы мощности могут измерять гармоники выше 500-го порядка.
Для вращающихся машин основные амплитуды являются единственными компонентами, которые эффективно способствуют вращению оси. Все остальные гармонические компоненты приводят к потерям в виде тепла и вибрации.
Измерение гармоникИспользуя режим измерения гармоник, можно измерить размер и разность фаз для каждой основной частоты, а также гармоники для каждой степени, включенной в ток, напряжение и мощность. В случае основной частоты (первичной составляющей) 50 Гц, например, третья составляющая составляет 150 Гц, пятая составляющая — 250 Гц и т.