Зависимость мощности от силы тока, формула мощности, физический смысл
Первое упоминание об электричестве встречается в опытах древнегреческого философа Фалеса. Именно он первым обнаружил, что предметы при трении притягиваются. Одноименный термин был введен в начале 17-го века английским физиком Гилбертом, после опытов, проведенных с магнитами. Отцом же науки об электричестве считается французский ученый Кулон – именно после открытия закона, получившего его имя, электротехника начала свою победную поступь, которая продолжается до сих пор. Этот закон утверждает, что два точечных заряда в безвоздушной среде взаимодействуют с силой, прямо пропорциональной их модулям и обратно – расстоянию между ними, возведенному в квадрат.
Выясним, что же представляет собой понятие электричество?
Если коротко, то это – направленное движение потока заряженных частиц. Тела, через которые они проходят, называются проводниками. Каждый проводник имеет определенное сопротивление электрическому току, которое раз
И, перед тем, как перейти к основным законам, несколько слов о заряженных частицах: они бывают, условно говоря, положительными и отрицательными. Одноименные заряды отталкиваются, а разноименные – притягиваются.
А теперь, перейдем к главному.
Основа-основ науки об электричестве – закон Ома.
Эксперимент, который провел этот немецкий физик, привел его к следующему убеждению: сила тока I, проходящего через металлический проводник, пропорциональна напряжению на его концах, или I = U/R
Здесь напряжением называется разность, образно говоря, «давлений», созданных двумя точками электрической цепи. Измеряют его в вольтах. Электрический ток представляет собой число электронов, которые пропускает участок электрической цепи и измеряется в амперах. Сопротивлением считается свойство цепи помешать этому движению. В честь упомянутого физика, его измеряют в омах. Иначе говоря, проводник, через который проходит ток в 1 ампер при напряжении в 1 вольт, обладает сопротивлением в 1 ом.
Вся остальная электротехника «пляшет» от этого.
О мощности электрического тока
В физике мощностью считают скорость выполнения работы. Неважно, какой. Чем эта операция проводится быстрее, тем большей считается мощность того, кто ее исполняет, будь то человек, механическое устройство или что-то еще.
Так же и в случае с электрическим током: ее мощность представляет собой отношение работы, произведенной движущимися электрическими зарядами к промежутку времени, которое для этого понадобилось.
Проще говоря, для того, чтобы получить электрическую мощность в 1 ватт, когда источник тока имеет напряжение 1 вольт, необходимо пропустить через проводник ток в 1 ампер. Другими словами, мощность (P) можно посчитать, перемножив друг на друга электрическое напряжение и ток:
P = U*I.
Запомнив эту нехитрую формулу, на практике можно рассчитать мощность. Например, если известны значения тока и сопротивления, а о напряжении сведений нет, можем воспользоваться законом Ома, подставив в формулу вместо него I*R. Получится, что мощность равна квадрату электрического тока, помноженному на сопротивление.
Этот закон точно так же придет на помощь, если известны величины напряжения и сопротивления. В этом случае подставив вместо значения тока I = U/R, получим значение мощности, равное квадрату напряжения, поделенному на сопротивление.
Вот так – ничего сложного!
Мощность электрического тока — Технарь
С мощностью электрического тока мы уже встречались, когда вводили понятие напряжения. Выведем теперь формулу для расчета мощности электрического тока. Вспомним, что напряжение на концах участка цепи равно отношению мощности к силе тока. Это кратко можно записать в виде формулы:
U = P/I
в которой буквой U обозначено напряжение, Р — мощность и I — сила тока. Из этой формулы легко получить формулу для расчета мощности электрического тока:
P = UI
Мощность электрического тока равна произведению напряжения на силу тока.
Единицей мощности, как мы знаем, является 1 ватт, по формуле мощности электрического тока ватт можно выразить через вольт и ампер.
1 ватт = 1 вольт X 1 ампер, или 1 Вт = 1 В • 1 А = 1 В • А.
В практике используются также единицы мощности, дольные и кратные ватту: гектоватт (гВт), киловатт (кВт), мегаватт (МВт).
В таблице 14 приведены мощности некоторых источников и потребителей электрического тока.
Измерить мощность электрического тока можно с помощью вольтметра и амперметра. Чтобы вычислить искомую мощность, перемножают напряжение и силу тока, найденные по показаниям приборов.
Существуют специальные приборы — ваттметры, которые непосредственно измеряют мощность электрического тока в цепи.
Вопросы. 1. Что называют мощностью? 2. Как рассчитать мощность? 3. Как выражается мощность электрического тока через напряжение и силу тона? 4. Что принимают за единицу мощности? 5. Как выражается единица мощности через единицы напряжения и силы тока? 6. Какие единицы мощности используют на практике?
Упражнения. 1. В цепь с напряжением 127 В включена электрическая лампа, сила тока в которой 0,6 А. Найдите мощность тока в лампе. 2. Электроплитка рассчитана на напряжение 220 В и силу тока 3 А Определите мощность тока в плитке. 3. Электрическая лампа мощностью 15 Вт и плитка мощностью 600 Вт включены в осветительную сеть квартиры под напряжением 220 В. Определите силу тока в подводящих ток проводах.
Ток и напряжение. Виды и правила. Работа и характеристики
Ток и напряжение являются количественными параметрами, применяемыми в электрических схемах. Чаще всего эти величины меняются с течением времени, иначе не было бы смысла в действии электрической схемы.
Напряжение
Условно напряжение обозначается буквой
«U». Работа, затраченная на перемещение единицы заряда из точки, имеющей малый потенциал в точку с большим потенциалом, является напряжением между этими двумя точками. Другими словами, это энергия, освобождаемая после перехода единицы заряда от высокого потенциала к малому.Напряжение еще могут называть разностью потенциалов, а также электродвижущей силой. Этот параметр измеряется в вольтах. Чтобы переместить 1 кулон заряда между двумя точками, которые имеют напряжение 1 вольт, нужно выполнить работу в 1 джоуль. Кулонами измеряются электрические заряды. 1 кулон равен заряду 6х1018 электронов.
Напряжение разделяется на несколько видов, в зависимости от видов тока:
- Постоянное напряжение. Оно присутствует в электростатических цепях и цепях постоянного тока.
- Переменное напряжение. Этот вид напряжения имеется в цепях с синусоидальными и переменными токами. В случае синусоидального тока рассматриваются такие характеристики напряжения, как:
— амплитуда колебаний напряжения – это максимальное его отклонение от оси абсцисс;
— мгновенное напряжение, которое выражается в определенный момент времени;
— действующее напряжение, определяется по выполняемой активной работе 1-го полупериода;
— средневыпрямленное напряжение, определяемое по модулю величины выпрямленного напряжения за один гармонический период.
При передаче электроэнергии по воздушным линиям устройство опор и их размеры зависят от величины применяемого напряжения. Величина напряжения между фазами называется линейным напряжением, а напряжение между землей и каждой из фаз – фазным напряжением. Такое правило применимо для всех типов воздушных линий. В России в электрических бытовых сетях, стандартным является трехфазное напряжение с линейным напряжением 380 вольт, и фазным значением напряжения 220 вольт.
Электрический токТок в электрической цепи является скоростью движения электронов в определенной точке, измеряется в амперах, и обозначается на схемах буквой «I». Также используются и производные единицы ампера с соответствующими приставками милли-, микро-, нано и т.д. Ток размером в 1 ампер образуется передвижением единицы заряда в 1 кулон за 1 секунду.
Условно считается, что ток в электрической цепи течет по направлению от положительного потенциала к отрицательному. Однако, из курса физики известно, что электрон движется в противоположном направлении.
Необходимо знать, что напряжение измеряется между 2-мя точками на схеме, а ток течет через одну конкретную точку схемы, либо через ее элемент. Поэтому, если кто-то употребляет выражение «напряжение в сопротивлении», то это неверно и неграмотно. Но часто идет речь о напряжении в определенной точке схемы. При этом имеется ввиду напряжение между землей и этой точкой.
Напряжение образуется от воздействия на электрические заряды в генераторах, батареях, солнечных элементах и других устройствах. Ток возникает путем приложения напряжения к двум точкам на схеме.
Чтобы понять, что такое ток и напряжение, правильнее будет воспользоваться осциллографом. На нем можно увидеть ток и напряжение, которые меняют свои значения во времени. На практике элементы электрической цепи соединены проводниками. В определенных точках элементы цепи имеют свое значение напряжения.
Ток и напряжение подчиняются правилам:
- Сумма токов, входящих в точку, равняется сумме токов, выходящих из точки (правило сохранения заряда). Такое правило является законом Кирхгофа для тока. Точка входа и выхода тока в этом случае называется узлом. Следствием из этого закона является следующее утверждение: в последовательной электрической цепи группы элементов величина тока для всех точек одинакова.
- В параллельной схеме элементов напряжение на всех элементах одинаково. Иначе говоря, сумма падений напряжений в замкнутом контуре равна нулю. Этот закон Кирхгофа применяется для напряжений.
- Работа, выполненная в единицу времени схемой (мощность), выражается следующим образом: Р = U*I. Мощность измеряется в ваттах. Работа величиной 1 джоуль, выполненная за 1 секунду, равна 1 ватту. Мощность распространяется в виде теплоты, расходуется на совершение механической работы (в электродвигателях), преобразуется в излучение различного вида, накапливается в емкостях или батареях. При проектировании сложных электрических систем, одной из проблем является тепловая нагрузка системы.
Обязательным условием существования тока в электрической цепи является замкнутый контур. Если контур цепи разрывается, то ток прекращается.
По такому принципу действуют все защиты и выключатели в электротехнике. Они разрывают электрическую цепь подвижными механическими контактами, и этим прекращают течение тока, выключая устройство.
В энергетической промышленности электрический ток возникает внутри проводников тока, которые выполнены в виде шин, кабелей, проводов и других частей, проводящих ток.
Также существуют другие способы создания внутреннего тока в:
- Жидкостях и газах за счет передвижения заряженных ионов.
- Вакууме, газе и воздухе с помощью термоэлектронной эмиссии.
- Полупроводниках, вследствие движения носителей заряда.
Условия возникновения электрического тока:
- Нагревание проводников (не сверхпроводников).
- Приложение к носителям заряда разности потенциалов.
- Химическая реакция с выделением новых веществ.
- Воздействие магнитного поля на проводник.
Формы сигнала тока:
- Прямая линия.
- Переменная синусоида гармоники.
- Меандром, похожий на синусоиду, но имеющий острые углы (иногда углы могут сглаживаться).
- Пульсирующая форма одного направления, с амплитудой, колеблющейся от нуля до наибольшей величины по определенному закону.
Виды работы электрического тока:
- Световое излучение, создающееся приборами освещения.
- Создание тепла с помощью нагревательных элементов.
- Механическая работа (вращение электродвигателей, действие других электрических устройств).
- Создание электромагнитного излучения.
Отрицательные явления, вызываемые электрическим током:
- Перегрев контактов и токоведущих частей.
- Возникновение вихревых токов в сердечниках электрических устройств.
- Электромагнитные излучения во внешнюю среду.
Создатели электрических устройств и различных схем при проектировании должны учитывать вышеперечисленные свойства электрического тока в своих разработках. Например, вредное влияние вихревых токов в электродвигателях, трансформаторах и генераторах снижается путем шихтовки сердечников, применяемых для пропускания магнитных потоков. Шихтовка сердечника – это его изготовление не из цельного куска металла, а из набора отдельных тонких пластин специальной электротехнической стали.
Но, с другой стороны, вихревые токи используют для работы микроволновых печей, духовок, действующих по принципу магнитной индукции. Поэтому, можно сказать, что вихревые токи оказывают не только вред, но и пользу.
Переменный ток с сигналом в форме синусоиды может различаться частотой колебаний за единицу времени. В нашей стране промышленная частота тока электрических устройств стандартная, и равна 50 герцам. В некоторых странах используется частота тока 60 герц.
Для различных целей в электротехнике и радиотехнике используют другие значения частоты:
- Низкочастотные сигналы с меньшей величиной частоты тока.
- Высокочастотные сигналы, которые намного выше частоты тока промышленного использования.
Считается, что электрический ток возникает при движении электронов внутри проводника, поэтому он называется током проводимости. Но существует и другой вид электрического тока, который получил название конвекционного. Он возникает при движении заряженных макротел, например, капель дождя.
Электрический ток в металлахДвижение электронов при воздействии на них постоянной силы сравнивают с парашютистом, который снижается на землю. В этих двух случаях происходит равномерное движение. На парашютиста действует сила тяжести, а противостоит ей сила сопротивления воздуха. На движение электронов действует сила электрического поля, а сопротивляются этому движению ионы решеток кристаллов. Средняя скорость электронов достигает постоянного значения, так же как и скорость парашютиста.
В металлическом проводнике скорость движения одного электрона равна 0,1 мм в секунду, а скорость электрического тока около 300 тысяч км в секунду. Это объясняется тем, что электрический ток течет только там, где к заряженным частицам приложено напряжение.
Поэтому достигается большая скорость протекания тока.При перемещении электронов в кристаллической решетке существует следующая закономерность. Электроны сталкиваются не со всеми встречными ионами, а только с каждым десятым из них. Это объясняется законами квантовой механики, которые можно упрощенно объяснить следующим образом.
Движению электронов мешают большие ионы, которые оказывают сопротивление. Это особенно заметно при нагревании металлов, когда тяжелые ионы «качаются», увеличиваются в размерах и уменьшают электропроводность решеток кристаллов проводника. Поэтому при нагревании металлов всегда увеличивается их сопротивление. При снижении температуры повышается электрическая проводимость. При снижении температуры металла до абсолютного нуля можно добиться эффекта сверхпроводимости.
Похожие темы:
Напряжение, мощность и сопротивление в электрической цепи
Электрической цепью считается комплекс определенных элементов и устройств, специально предназначенных для протекания электрического тока, в которых электромагнитные процессы можно описать, благодаря таким понятиям, как напряжение и сила тока. Изображение электрической цепи условными знаками называется электрической схемой.
Напряжение в электрической цепи
Для рассмотрения напряжения электрической цепи имеет смысл определить такое понятие, как электрический ток. Электроток характеризуется заряженными частицами, пребывающими в каком-то из проводников в упорядоченном движении. Для его возникновения заранее формируется электрическое поле, оказывающее определенное воздействие на заряженные частицы и приводящее их в движение. Возникновение зарядов при этом будет наблюдаться исключительно в том случае, когда различные вещества между собой тесно контактируют.
Помощь со студенческой работой на тему
Напряжение, мощность и сопротивление в электрической цепи
В некоторых отдельно взятых видах веществ заряды будут свободно перемещаться среди их разных частей, в то же время, в других веществах это не осуществляется. В этих случаях проводящие вещества называют проводниками, а непроводящие считаются диэлектриками (или изоляторами).
Электрический ток, как явление свободных зарядов в упорядоченном движении, характеризуется силой тока, равнозначной количеству электричества (заряда), проходящему за единицу времени через поперечное сечение вещества. Таким образом, если за время $dt$ по сечению вещества переносится некий заряд $dq = dq + dq$, то ток будет выражен в формуле:
$i = \frac{dq}{dt} = \frac{q}{t}$
Согласно характеру своего проявления, электрические заряды бывают: положительными и отрицательными. Ток в теле, которое было наэлектризовано, будет существовать непродолжительное время, что объясняется постепенным угасанием заряда самого по себе. С целью более продолжительного существования тока в проводнике потребуется обеспечение постоянной поддержки в нем электрического поля.
Электрическое поле может сформировать исключительно какой-либо источник электротока.
Пример 1
Простейшим примером процесса возникновения электрического тока можно назвать соединение одного конца провода с наэлектризованным предварительно телом и другого конца – с землей.
Изобретенная в свое время батарея стала первым стабильным источником электрического тока. Основными величинами выступают:
- сила тока;
- сопротивление;
- напряжение.
Данные величины, имея тесную взаимосвязь между собой, наиболее точным образом могут охарактеризовать происходящие в электрической цепи процессы.
Определение 1
Напряжение в электрической цепи представляет одну из основных характеристик электротока. Током в физике считается упорядоченное движение электронов (заряженных частиц). Поле, формирующее это движение, будет выполнять определенные действия, которые характеризуются, подобно его работе. Чем больший заряд за одну секунду перемещается в цепи, тем больше работы выполняет электрическое поле.
В качестве одного из факторов, воздействующих непосредственно на работу тока, и выступает напряжение, представляющее собой отношение работы к заряду, который пройдет через определенный участок цепи. Единицей измерения работы тока выступает джоуль (Дж), а заряда – кулон (Кл). Единицей напряжения, таким образом, будет 1 Дж/Кл (или один вольт (В)).
Чтобы возникло напряжение, потребуется источник тока. В ситуации с разомкнутой цепью напряжение присутствует только на клеммах источника. Если включить источник в цепь, на ее отдельных участках можно зафиксировать появление напряжения, а, соответственно, и тока. Напряжение можно измерить вольтметром, включенным параллельно в электрическую цепь.
Электрический потенциал $ф$ представляет отношение энергии (работы) $Э$ электрического поля к единичному заряду $q_0$ (малый заряд, который не искажает поле, куда он внесен). Формула получается при этом следующая:
$dф = \frac{dЭ}{dq_0} = \frac{Э}{q_0}$
Электрическое напряжение является разностью потенциалов между двумя точками электрополя (например, 1 и 2), что выражается формулами:
$U_{1-2} = ф_1 — ф_2 = \frac{dЭ_1}{q_0}-\frac{dЭ_2}{q_0} = \frac{dЭ_{1-2}}{q_0}$
$U_{1-2} = \frac{Э_{1-2}}{q_0}$
$U_{2-1} = -\frac{Э_{1-2}}{q_0}$
Таким образом, электрическое напряжение считается работой электрического поля, ориентированного на перемещение единичного заряда из одной точки в другую.
Мощность в электрических цепях
Определение 2
В качестве одного из характеризующих поведение электронов параметров (помимо тока и напряжения) может выступать мощность. Она представляет меру количества работы, которую возможно совершить за единицу времени. Работа зачастую сравнивается с подъемом веса. Так, чем больше окажется вес и высота его подъема, тем больший объем работы выполнен.
Мощность, определяя скорость совершения работы в единицу времени, считается равной произведению напряжения и силы тока:
$P = IU$, где:
- $P$ – мощность тока,
- $I$ – сила тока,
- $U$ – напряжение в цепи.
Мощность является величиной, обозначающей интенсивность передачи электроэнергии. С целью измерения мощности применяются ваттметры. Мощностью определяется работа по перемещению электрических зарядов за единицу времени:
$P = \frac{A}{\delta t}$
Здесь:
- $A$ – работа,
- $\delta t$– время, на протяжении которого такая работа совершалась.
Мощность тока в разных приборах и оборудовании будет зависеть параллельно от таких основных величин, как напряжение и сила тока. Чем выше будет ток, тем большим окажется значение мощности, соответственно, она возрастает и если напряжение повысится.
Существует две основных разновидности электрической мощности:
- активная;
- реактивная.
В первом случае мощность электротока безвозвратно превращается такие виды энергии, как:
- механическая;
- тепловая;
- световая;
- прочие.
В производственной и бытовой среде применяются уже более крупные значения: киловатты и мегаватты. К реактивной мощности будет относиться такая степень электрической нагрузки, которая создается в устройствах индуктивными и емкостными колебаниями энергии электромагнитного поля.
Сопротивление в электрической цепи
Электрическое сопротивление является определяющей величиной для силы тока, текущего при заданном напряжении по цепи. Под электрическим сопротивлением $R$ понимается отношение напряжения, возникшего на концах проводника, к силе тока, который течет по проводнику.
$R = \frac{U}{I}$, где
- $R$- электрическое сопротивление проводника;
- $U$ — напряжение;
- $I$ — сила тока.
При расчетах напряжений и токов через элементы электроцепи нужно знать показатель их общего сопротивления. Источники энергии существуют в двух разновидностях: постоянный ток (аккумуляторы, выпрямители, батарейки) и переменный ток (промышленные и бытовые сети). В первом случае ЭДС со временем не изменяется, а во втором она будет изменяться, согласно синусоидальному закону с определенной частотой.
Сопротивление нагрузки существует в активном и реактивном виде. Активное сопротивление $R$ не зависит от частоты сети, что говорит об изменении тока синхронно с напряжением. Реактивное сопротивление бывает индуктивным и емкостным.
Замечание 1
Отличительной чертой реактивной нагрузки считают присутствие опережения или отставания тока от напряжения. Ток в емкостной нагрузке будет опережать напряжение, а в индуктивной – отставать от него. На практике это выглядит, как если бы разряженный конденсатор подключить к источнику постоянного тока, а в момент включения наблюдать максимальное количество тока через него при минимальном напряжении.
Со временем будет фиксироваться уменьшение тока и возрастание напряжения до заряда конденсатора. При подключении к источнику переменного тока конденсатора, он начнет постоянно перезаряжаться с частотой сети, а ток будет увеличиваться раньше напряжения.
1.2. Ток, напряжение и мощность в электрической цепи
1.2. Ток, напряжение и мощность в электрической цепи.
Электрический ток и напряжение являются основными величинами, характеризующими состояние электрических цепей. Электрический ток в проводниках представляет явление упорядоченного движения электрических зарядов под действием электрического поля. Под словами ток понимают также интенсивность или силу тока, измеряемую количеством электрического заряда q, прошедшего через поперечное сечение проводника в единицу времени:
, [A] (1.1)
где ∆q — электрический заряд, прошедший за время ∆t через поперечное сечение проводника.
Следовательно, ток характеризует скорость изменения заряда во времени.
В системе СИ заряд измеряется в кулонах (Кл), время — в секундах, а ток — в Амперах (А).
Ток является скалярной алгебраической величиной, знак которой зависит от направления движения одноименных зарядов, а именно условно принятого положительного заряда. Для однозначного определения знака тока достаточно произвольно выбрать одно из двух возможных направлений за положительное, которое отмечается стрелкой (см. рис. 1.2.). Перед началом анализа электрической цепи необходимо отметить во всех ветвях положительные направления токов, выбор которых может быть произвольным. Закон изменения тока во времени может быть выражен функцией времени произвольной формы.
Постоянным называется ток, значение которого неизменно во времени при неизменных параметрах электрической цепи. Постоянный ток принято обозначать буквой I.
Прохождение электрического тока в цепи связано с преобразованием или потреблением энергии. Для определения энергии, затрачиваемой при перемещении заряда между двумя рассматриваемыми точками проводника, вводят новую величину — напряжение.
Электрическим напряжением между двумя точками называют количество энергии, затрачиваемой на перемещение заряда из одной точки в другую.
, [В] (1.2.)
где W – энергия электрического поля. При измерении энергии в джоулях (Дж) и заряда в кулонах (Кл) напряжение измеряется в вольтах (В).
Для однозначного определения знака напряжения между двумя выводами рассматриваемого участка цепи одному из выводов условно приписывают положительную полярность, которую отмечают либо знаком <+>, либо стрелкой, направленной от вывода (рис. 1.3). Напряжение положительно, если его полярность совпадает с выбранной.
Обычно условно положительную полярность напряжения выбирают согласованной с выбранным положительным напряжением тока, когда стрелки для тока и напряжения совпадают. В цепях постоянного тока напряжение принято обозначать буквой U.
Из определения напряжения (1.2) получается выражение энергии W, затраченной на перемещение заряда q на участке цепи с напряжением U к моменту времени t :
(1.3)
Дифференцирование этого равенства во времени дает выражение мгновенной мощности p — скорости изменения энергии во времени :
(1.4)
Мощность измеряется в Ваттах (Вт). Мощность в электрической цепи постоянного тока обозначается буквой P и равна P=UI. Она является алгебраической величиной, знак которой определяется знаком напряжения и тока: при совпадении этих знаков мощность положительна (Р>0), что соответствует потреблению энергии в рассматриваемом участке цепи; при несовпадении знаков тока и напряжения мощность отрицательна (P<0), что означает выделение ее из участка цепи (такой участок является источником энергии).
Мощность переменного тока. Мощность тока через катушку, резистор, конденсатор
Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев
Темы кодификатора ЕГЭ: переменный ток, вынужденные электромагнитные колебания.Переменный ток несёт энергию. Поэтому крайне важным является вопрос о мощности в цепи переменного тока.
Пусть и — мгновенные значение напряжения и силы тока на данном участке цепи. Возьмём малый интервал времени — настолько малый, что напряжение и ток не успеют за это время сколько-нибудь измениться; иными словами, величины и можно считать постоянными в течение интервала .
Пусть за время через наш участок прошёл заряд (в соответствии с правилом выбора знака для силы тока заряд считается положительным, если он переносится в положительном направлении, и отрицательным в противном случае). Электрическое поле движущихся зарядов совершило при этом работу
Мощность тока — это отношение работы электрического поля ко времени, за которое эта работа совершена:
(1)
Точно такую же формулу мы получили в своё время для постоянного тока. Но в данном случае мощность зависит от времени, совершая колебания вместе током и напряжением; поэтому величина (1) называется ещё мгновенной мощностью.
Из-за наличия сдвига фаз сила тока и напряжение на участке не обязаны совпадать по знаку (например, может случиться так, что напряжение положительно, а сила тока отрицательна, или наоборот). Соответственно, мощность может быть как положительной, так и отрицательной. Рассмотрим чуть подробнее оба этих случая.
1. Мощность положительна: . Напряжение и сила тока имеют одинаковые знаки. Это означает, что направление тока совпадает с направлением электрического поля зарядов, образующих ток. В таком случае энергия участка возрастает: она поступает на данный участок из внешней цепи (например, конденсатор заряжается).
2. Мощность отрицательна: . Напряжение и сила тока имеют разные знаки. Стало быть, ток течёт против поля движущихся зарядов, образующих этот самый ток.
Как такое может случиться? Очень просто: электрическое поле, возникающее на участке, как бы «перевешивает» поле движущихся зарядов и «продавливает» ток против этого поля. В таком случае энергия участка убывает: участок отдаёт энергию во внешнюю цепь (например, конденсатор разряжается).
Если вы не вполне поняли, о чём только что шла речь, не переживайте — дальше будут конкретные примеры, на которых вы всё и увидите.
Мощность тока через резистор
Пусть переменный ток протекает через резистор сопротивлением . Напряжение на резисторе, как нам известно, колеблется в фазе с током:
Поэтому для мгновенной мощности получаем:
(2)
График зависимости мощности (2) от времени представлен на рис. 1. Мы видим, что мощность всё время неотрицательна — резистор забирает энергию из цепи, но не возвращает её обратно в цепь.
Рис. 1. Мощность переменного тока через резистор
Максимальное значение нашей мощности связано с амплитудами тока и напряжения привычными формулами:
На практике, однако, интерес представляет не максимальная, а средняя мощность тока. Это и понятно. Возьмите, например, обычную лампочку, которая горит у вас дома. По ней течёт ток частотой Гц, т. е. за секунду совершается колебаний силы тока и напряжения. Ясно, что за достаточно продолжительное время на лампочке выделяется некоторая средняя мощность, значение которой находится где-то между и . Где же именно?
Посмотрите ещё раз внимательно на рис. 1. Не возникает ли у вас интуитивное ощущение, что средняя мощность соответствует «середине» нашей синусоиды и принимает поэтому значение ?
Это ощущение совершенно верное! Так оно и есть. Разумеется, можно дать математически строгое определение среднего значения функции (в виде некоторого интеграла) и подтвердить нашу догадку прямым вычислением, но нам это не нужно. Достаточно интуитивного понимания простого и важного факта:
среднее значение квадрата синуса (или косинуса) за период равно .
Этот факт иллюстрируется рисунком 2.
Рис. 2. Среднее значение квадрата синуса равно
Итак, для среднего значения мощности тока на резисторе имеем:
(3)
В связи с этими формулами вводятся так называемые действующие (или эффективные) значения напряжения и силы тока (на самом деле это есть не что иное, как средние квадратические значения напряжения и тока. Такое у нас уже встречалось: средняя квадратическая скорость молекул идеального газа (листок «Уравнение состояния идеального газа»):
(4)
Формулы (3), записанные через действующие значения, полностью аналогичны соответствующим формулам для постоянного тока:
Поэтому если вы возьмёте лампочку, подключите её сначала к источнику постоянного напряжения , а затем к источнику переменного напряжения с таким же действующим значением , то в обоих случаях лампочка будет гореть одинаково ярко.
Действующие значения (4) чрезвычайно важны для практики. Оказывается, вольтметры и амперметры переменного тока показывают именно действующие значения (так уж они устроены). Знайте также, что пресловутые вольт из розетки — это действующее значение напряжения бытовой электросети.
Мощность тока через конденсатор
Пусть на конденсатор подано переменное напряжение . Как мы знаем, ток через конденсатор опережает по фазе напряжение на :
Для мгновенной мощности получаем:
График зависимости мгновенной мощности от времени представлен на рис. 3.
Рис. 3. Мощность переменного тока через конденсатор
Чему равно среднее значение мощности? Оно соответствует «середине» синусоиды и в данном случае равно нулю! Мы видим это сейчас как математический факт. Но интересно было бы с физической точки зрения понять, почему мощность тока через конденсатор оказывается нулевой.
Для этого давайте нарисуем графики напряжения и силы тока в конденсаторе на протяжении одного периода колебаний (рис. 4).
Рис. 4. Напряжение на конденсаторе и сила тока через него
Рассмотрим последовательно все четыре четверти периода.
1. Первая четверть, . Напряжение положительно и возрастает. Ток положителен (течёт в положительном направлении), конденсатор заряжается. По мере увеличения заряда на конденсаторе сила тока убывает.
Мгновенная мощность положительна: конденсатор накапливает энергию, поступающую из внешней цепи. Эта энергия возникает за счёт работы внешнего электрического поля, продвигающего заряды на конденсатор.
2. Вторая четверть, . Напряжение продолжает оставаться положительным, но идёт на убыль. Ток меняет направление и становится отрицательным: конденсатор разряжается против направления внешнего электрического поля.В конце второй четверти конденсатор полностью разряжен.
Мгновенная мощность отрицательна: конденсатор отдаёт энергию. Эта энергия возвращается в цепь: она идёт на совершение работы против электрического поля внешней цепи (конденсатор как бы «продавливает» заряды в направлении, противоположном тому, в котором внешнее поле «хочет» их двигать).
3. Третья четверть, . Внешнее электрическое поле меняет направление: напряжение отрицательно и возрастает по модулю. Сила тока отрицательна: идёт зарядка конденсатора в отрицательном направлении.
Ситуация полностью аналогична первой четверти, только знаки напряжения и тока — противоположные. Мощность положительна: конденсатор вновь накапливает энергию.
4. Четвёртая четверть, . Напряжение отрицательно и убывает по модулю. Конденсатор разряжается против внешнего поля: сила тока положительна.
Мощность отрицательна: конденсатор возвращает энергию в цепь. Ситуация аналогична второй четверти — опять-таки с заменой заменой знаков тока и напряжения на противоположные.
Мы видим, что энергия, забранная конденсатором из внешней цепи в ходе первой четверти периода колебаний, полностью возвращается в цепь в ходе второй четверти. Затем этот процесс повторяется вновь и вновь. Вот почему средняя мощность, потребляемая конденсатором, оказывается нулевой.
Мощность тока через катушку
Пусть на катушку подано переменное напряжение . Ток через катушку отстаёт по фазе от напряжения на :
Для мгновенной мощности получаем:
Снова средняя мощность оказывается равной нулю. Причины этого, в общем-то, те же, что и в случае с конденсатором. Рассмотрим графики напряжения и силы тока через катушку за период (рис. 5).
Рис. 5. Напряжение на катушке и сила тока через неё
Мы видим, что в течение второй и четвёртой четвертей периода энергия поступает в катушку из внешней цепи. В самом деле, напряжение и сила тока имеют одинаковые знаки, сила тока возрастает по модулю; для создания тока внешнее электрическое поле совершает работу против вихревого электрического поля, и эта работа идёт на увеличение энергии магнитного поля катушки.
В первой и третьей четвертях периода напряжение и сила тока имеют разные знаки: катушка возвращает энергию в цепь. Вихревое электрическое поле, поддерживающее убывающий ток, двигает заряды против внешнего электрического поля и совершает тем самым положительную работу. А за счёт чего совершается эта работа? За счёт энергии, накопленной ранее в катушке.
Таким образом, энергия, запасаемая в катушке за одну четверть периода, полностью возвращается в цепь в ходе следующей четверти. Поэтому средняя мощность, потребляемая катушкой, оказывается равной нулю.
Мощность тока на произвольном участке
Теперь рассмотрим самый общий случай. Пусть имеется произвольный участок цепи — он может содержать резисторы, конденсаторы, катушки…На этот участок подано переменное напряжение .
Как мы знаем из предыдущего листка «Переменный ток. 2», между напряжением и силой тока на данном участке имеется некоторый сдвиг фаз . Мы записывали это так:
Тогда для мгновенной мощности имеем:
(5)
Теперь нам хотелось бы определить, чему равна средняя мощность. Для этого мы преобразуем выражение (5), используя формулу:
В результате получим:
(6)
Но среднее значение величины равно нулю! Поэтому средняя мощность оказывается равной:
(7)
Данную формулу можно записать с помощью действующих значений (4) напряжения и силы тока:
Формула (7) охватывает все три рассмотренные выше ситуации. В случае резистора имеем , и мы приходим к формуле (3). Для конденсатора и катушки , и средняя мощность равна нулю.
Кроме того, формула (7) даёт представление о весьма общей проблеме, связанной с передачей электроэнергии. Чрезвычайно важно, чтобы у потребителя был как можно ближе к единице. Иначе потребитель начнёт возвращать значительную часть энергии назад в сеть (что ему совсем невыгодно), и к тому же возвращаемая энергия будет безвозвратно расходоваться на нагревание проводов и других элементов цепи.
С этой проблемой приходится сталкиваться разработчикам электрических схем, содержащих электродвигатели. Обмотки электродвигателей обладают большими индуктивностями, и возникает ситуация, близкая к «чистой» катушке. Чтобы избежать бесполезного циркулирования энергии по сети, в цепь включают дополнительные элементы, сдвигающие фазу — например, так называемые компенсирующие конденсаторы.
основные понятия, нахождение через силу тока и сопротивление
При проектировании схем различных устройств радиолюбителю необходимо производить точные расчеты c помощью измерительных приборов и формул. В электротехнике используются формулы для вычислений величин электричества (формулы напряжения, сопротивления, силы тока и так далее).
Общие сведения об электрическом токе
Электрическим током является процесс движения заряженных частиц (свободных электронов), имеющий вектор направленности. Частицы перемещаются под действием напряженности электрического поля, имеющей векторное направление. Это поле совершает работу по перемещению этих частиц. Влияют на работу электрического поля сила тока, напряжение и сопротивление.
Физический смысл
Под физическим смыслом понимается работа тока на участке, соотносящаяся с величиной заряда. Положительный заряд перемещается из одной точки, обладающей одним потенциалом, в другую, причем потенциал в этой точке отличается от предыдущего. В результате этого и возникает разность потенциалов, именуемая напряжением или ЭДС (электродвижущей силой).
Для полного понимания этого физического процесса и выяснения физического смысла напряжения необходимо провести аналогию с трубой. Допустим, труба наполнена водой и к ней прикручен кран для слива воды. Эта труба также оборудована краном для заливания воды с помощью мощного насоса.
Для демонстрации аналогии нужно открыть кран полностью, вода начнет выливаться и можно сделать вывод о незначительном давлении. Во втором случае спускной кран открыт не полностью и происходит набор воды при помощи насоса. В трубе создается давление и напор усиливается. Насос, создающий давление, и является в этом примере напряженностью электрического поля.
Электричество, если его не контролировать и не знать о пагубном влиянии на организм человека, способно создать множество проблем начиная от сгорания приборов и пожаров, и заканчивая угрозой жизни и здоровью человека. Техника безопасности очень важна в любой сфере.
Пагубное влияние на человека
Электричество очень опасно и является причиной несчастных случаев. Радиолюбители подвержены риску поражения электрическим током довольно часто. Некоторые радиолюбители пробуют наличие напряжения пальцами и пренебрегают техникой безопасности. Большинство из них считает опасным для жизни напряжение от 500 В, а 110 и 220 — не наносящими вреда здоровью. Удары от маломощных источников тока (маломощный силовой трансформатор, конденсатор), по их мнению, являются неопасными.
Согласно технике безопасности при работах с электричеством, они ошибаются, но есть и другая сторона этого вопроса: организм каждого человека индивидуален, обладает разными параметрами. Из этого утверждения следует, что смертельные характеристики электричества (напряжение и ток) индивидуальны для каждого человека. Одних может ударить 36 В, а других не пробивает и 220 В.
Действие электричества на организм человека зависит от нескольких факторов: силы и частоты, времени и пути прохождения через организм, сопротивления организма или участка тела, по которому протекает ток.
Исследованиями ученых установлено, что величина смертельного тока, поражающего сердце, составляет более 100 мА. Токи от 50 мА до 100 мА вызывают потерю сознания при кратковременном касании к поверхности, которая проводит ток. Токи до 50 мА могут стать причиной травм, например, падения с лестницы, выпускания из рук токоведущего проводника и т. д.
Влияние на фактор поражения еще оказывает и сопротивление тела человека. Сопротивление для каждого индивида определить сложно и диапазон его составляет от 30 кОм до 200 кОм. Эта величина зависит от множества факторов: толщины кожи, влажности тела и окружающей среды, усталости, нервно-эмоционального состояния, болезни и других факторов. Сопротивление резко уменьшается при повышенной влажности воздуха и работе на влажных участках.
Формула расчета напряжения, опасного для жизни, предполагая, что Rч = 2кОм и I = 60 мА, выглядит так: U = I * R = 0,06 * 2000 = 120 В. В этой ситуации опасным напряжением можно считать 120 В и выше.
Частота тока является еще одной опасной характеристикой, обладающей поражающим действием. При увеличении частоты опасность уменьшается прямо пропорционально. Ток оказывает и тепловое действие, поэтому считать высокочастотные токи безопасными нельзя.
Травмы, происходящие из-за электричества, называются электротравмами. Каждая из них несет в себе меньшую или большую опасность. Наиболее опасными являются травмы, полученные от электрической дуги, которая обладает высокой температурой от 5 тыс. до 12 тыс. градусов по Цельсию. Виды электрических травм:
- Электрические ожоги происходят при тепловом воздействии на ткани организма человека, по которым течет ток.
- Обожженные участки на коже возникают при прямом контакте ее с токоведущей частью проводника. Пораженный участок приобретает серый или бледно-серый цвет.
- Металлизация кожи — пропитывание кожи частицами металла при коротком замыкании или сварке.
- Механические повреждения — самопроизвольная судорога мышц, приводящая к падению. При падении происходят переломы, ушибы вывихи суставов и т. д.
- Электроофтальмия — воспаление слизистой оболочки глаз при воздействии излучения электрической дуги.
Существует еще один вид поражения — электрический удар. Этот вид поражения можно условно разделить на 5 групп: без потери сознания; с потерей сознания, связанной с нарушением сердечной деятельности или без нее; клиническая смерть и электрический шок.
Единицы измерения
Работа электрического поля по перемещению заряда измеряется в Дж (Джоуль), заряд в Кл (кулон). Вот, как обозначается напряжение или его единица измерения: отношение этих величин (работа по перемещению в Дж к электрическому заряду в Кл) и является разностью потенциалов, измеряется в вольтах (В) и обозначается U. Разность потенциалов бывает:
- Переменной (амплитуда и полярность изменяются с течением времени, в зависимости от характерной частоты).
- Постоянной (имеет постоянное значение амплитуды и полярность есть величина постоянная).
А также у единиц измерения есть приставки, например, кВ (Киловольт = 1000В) и МВ (мегавольт = 1000000В). Существуют о совсем низкие значения, например, мВ (милливольт = 0,001В).
Цепи переменного и постоянного тока
В цепях постоянного и переменного тока U обладает различными свойствами и производит иные влияния на проводники. Для постоянного напряжения существуют законы по вычислению его характеристик, но для переменного способы вычисления показателей заметно отличаются. Разберем более подробно все различия и сходства.
Расчет и анализ цепей выполняется при помощи закона Ома: сила тока полной цепи прямо пропорциональна напряжению и обратно пропорциональна сумме сопротивлений цепи и источника питания.
Следствие из закона при условии пренебрежения внутренним сопротивлением источника электричества: сила тока участка цепи прямо пропорциональна ЭДС и обратно пропорциональна сопротивлению этого участка.
Запись закона Ома, из которого следует формула напряжения, тока и сопротивления: I = U / (Rц + Rвн), где I — сила тока, U — ЭДС, Rц — сопротивление цепи, Rвн — внутреннее сопротивление источника питания.
Формула силы тока через сопротивление и напряжение: I = U / Rц.
Формула напряжения электрического тока: U = I * Rц.
Для расчета мощности необходимо U умножить на I: P = U * I = U * U / R, где P — мощность.
Переменное однофазное напряжение
В цепях для переменного тока происходят совершенно другие явления и процессы, для них справедливы другие законы. Различают такие основные виды:
- Мгновенное (разность потенциалов в конкретный промежуток времени: u = u (t)).
- Амплитудное значение (максимальное значение мгновенного U в момент времени: u (t) = Uм * sin (wt + f), где w — угловая частота, t — конкретный момент времени и f — угол начальной фазы напряжения).
- Среднее значение (для синусоиды равно нулю).
- Среднеквадратичное — Uq (U за весь период колебаний и для синусоиды имеет вид: Uq = 0,707 * Uм).
- Средневыпрямленное — Uv (среднее значение модуля U: Um примерно равно 0,9 * Uq).
В цепях 3-фазного тока различают 2 вида напряжений: линейное (фаза-фаза) и фазное (фаза-ноль). При соединении в цепь «треугольником» фазное и линейное U равны. В случае соединения «звездой» — фазное в 1,732050808 раз меньше линейного.
Рекомендации по выбору прибора
Для расчетов необходимо измерять значения величин электричества. Существуют специальные приборы, которые помогают произвести точные расчеты. Для измерения разности потенциалов применяют вольтметр.
Вольтметр (вольт — единица измерения ЭДС, метр — измеряю) — прибор для измерения ЭДС в цепи, подключаемый параллельно участку, на котором необходимо провести замер.
Для конкретного случая необходимо применять тот или иной прибор. Для более точных расчетов приобретаются приборы с высоким классом точности. Классификация вольтметров:
- Принцип действия: электромеханические (стрелочные) и электронные.
- Назначение: постоянного и переменного тока, импульсные, селективные и универсальные.
- Конструктивное исполнение: щитовые, переносные и стационарные.
Аналоговый электромеханический вольтметр имеет большие погрешности измерений в высокоомных цепях, но отлично зарекомендовал себя в низкоомных цепях и возможностью модернизации (увеличение значений измерения U за счет добавочного резистора).
Выпрямительный вольтметр обладает более высоким классом точности. Состоит из самого измерительного прибора (обладает чувствительностью к постоянному току) и выпрямительного устройства. Они получили не очень широкое распространение из-за высоких погрешностей, и применяются в качестве сигнальных приборов (примерное значение U).
Цифровые вольтметры применяются в комбинированных приборах-мультиметрах. Поступающее напряжение на клеммы (измерительные щупы) прибора преобразовывается в сигнал при помощи аналого-цифрового преобразователя (АЦП). Происходит отображение на цифровом табло. Этот вид приборов получил широкое применение благодаря высокой точности и универсальности.
Импульсный вольтметр необходимо применять при измерении амплитуд импульсных сигналов и одиночных импульсов.
Основным применением фазочувствительных вольтметров является измерение квадратурных составляющих комплексного напряжения (наличие мнимой и действительной частей) первичной гармоники. Они, как правило, снабжены 2-мя индикаторами для выявления мнимой и действительной частей. Они получили широкое применение в измерении АФХ (амплитудно-фазовая характеристика) для подбора деталей и настройки усилителей.
Для измерения номинала постоянного напряжения используются вольтметры подгруппы В2 (вольтметры для постоянного напряжения), а также В7 (универсальные).
Для определения переменного напряжения необходимо использовать устройства из подгруппы В3 или универсального типа (В7). Однако часто в этих вольтметрах применяются специальные преобразователи из переменного напряжения в постоянное.
В3 и В7 рассчитаны только для определения среднеквадратического гармонического напряжения. В этих электроизмерительных приборах возможно применение детекторов (преобразователей): пикового, выпрямительного и квадратичного. Оптимальным вариантом является вольтметр на квадратичном детекторе, при этом измеряемое значение выдается напрямую без всяких преобразований. Измерительные приборы на пиковых и выпрямительных детекторах пересчитывают значения, тем самым уменьшая точность измерений. Для измерения периодического негармонического напряжения выбирают вольтметр на квадратичном детекторе.
Таким образом, расчет напряжения играет важную роль в электротехнике. Расчеты для переменных и постоянных цепей электрического тока существенно отличаются, в результате чего необходимо определить сначала тип тока, а затем производить расчеты. Но также необходимо соблюдать технику безопасности при работах с электричеством. Ведь ее основные положения основаны на горьком опыте человечества.
Закон Ома и соотношение V-I-R
В физике есть определенные формулы, которые настолько мощны и распространены, что достигают уровня общеизвестных знаний. Студент, изучающий физику, записывал такие формулы столько раз, что запоминал их, даже не пытаясь. Безусловно, для профессионалов в этой области такие формулы настолько важны, что остаются в их сознании. В области современной физики E = m • c 2 . В области ньютоновской механики F net = m • a.В области волновой механики v = f • λ. А в области текущего электричества ΔV = I • R.
Преобладающим уравнением, которое пронизывает изучение электрических цепей, является уравнение
ΔV = I • RДругими словами, разность электрических потенциалов между двумя точками в цепи ( ΔV ) эквивалентна произведению тока между этими двумя точками ( I ) и общего сопротивления всех электрических устройств, присутствующих между этими двумя точками ( R ).В остальной части этого раздела Физического класса это уравнение станет самым распространенным уравнением, которое мы видим. Это уравнение, часто называемое уравнением закона Ома , является мощным средством прогнозирования взаимосвязи между разностью потенциалов, током и сопротивлением.
Закон Ома как предсказатель токаУравнение закона Ома можно переформулировать и выразить как
В качестве уравнения это служит алгебраическим рецептом для вычисления тока, если известны разность электрических потенциалов и сопротивление.Тем не менее, хотя это уравнение служит мощным рецептом решения проблем, это гораздо больше. Это уравнение указывает две переменные, которые могут повлиять на величину тока в цепи. Ток в цепи прямо пропорционален разности электрических потенциалов, приложенной к ее концам, и обратно пропорционален общему сопротивлению внешней цепи. Чем больше напряжение аккумулятора (то есть разность электрических потенциалов), тем больше ток. И чем больше сопротивление, тем меньше ток.Заряд идет с наибольшей скоростью, когда напряжение батареи увеличивается, а сопротивление уменьшается. Фактически, двукратное увеличение напряжения батареи привело бы к двукратному увеличению тока (если все остальные факторы остаются равными). А увеличение сопротивления нагрузки в два раза приведет к уменьшению тока в два раза до половины его первоначального значения.
Приведенная ниже таблица иллюстрирует это соотношение как качественно, так и количественно для нескольких цепей с различными напряжениями и сопротивлением батарей.
Строки 1, 2 и 3 показывают, что удвоение и утроение напряжения батареи приводит к удвоению и утроению тока в цепи. Сравнение строк 1 и 4 или строк 2 и 5 показывает, что удвоение общего сопротивления служит для уменьшения вдвое тока в цепи.
Поскольку на ток в цепи влияет сопротивление, в цепях электроприборов часто используются резисторы, чтобы влиять на величину тока, присутствующего в ее различных компонентах.Увеличивая или уменьшая величину сопротивления в конкретной ветви схемы, производитель может увеличивать или уменьшать величину тока в этой ветви . Кухонные приборы, такие как электрические миксеры и переключатели света, работают, изменяя ток на нагрузке, увеличивая или уменьшая сопротивление цепи. Нажатие различных кнопок на электрическом микшере может изменить режим с микширования на взбивание, уменьшив сопротивление и допуская большее количество тока в миксере.Точно так же поворот ручки регулятора яркости может увеличить сопротивление его встроенного резистора и, таким образом, уменьшить ток.
На схеме ниже изображена пара цепей, содержащих источник напряжения (аккумуляторная батарея), резистор (лампочка) и амперметр (для измерения тока). В какой цепи у лампочки наибольшее сопротивление? Нажмите кнопку «Посмотреть ответ», чтобы убедиться, что вы правы.
Уравнение закона Ома часто исследуется в физических лабораториях с использованием резистора, аккумуляторной батареи, амперметра и вольтметра.Амперметр — это устройство, используемое для измерения силы тока в заданном месте. Вольтметр — это устройство, оснащенное датчиками, которых можно прикоснуться к двум точкам цепи, чтобы определить разность электрических потенциалов в этих местах. Изменяя количество ячеек в аккумуляторной батарее, можно изменять разность электрических потенциалов во внешней цепи. Вольтметр может использоваться для определения этой разности потенциалов, а амперметр может использоваться для определения тока, связанного с этим ΔV.К батарейному блоку можно добавить батарею, и процесс можно повторить несколько раз, чтобы получить набор данных I-ΔV. График зависимости I от ΔV даст линию с крутизной, эквивалентной обратной величине сопротивления резистора. Это значение можно сравнить с заявленным производителем значением, чтобы определить точность лабораторных данных и справедливость уравнения закона Ома.
Величины, символы, уравнения и единицы!Тенденция уделять внимание единицам — неотъемлемая черта любого хорошего студента-физика.Многие трудности, связанные с решением проблем, могут быть связаны с тем, что не уделялось внимания подразделениям. Поскольку все больше и больше электрических величин и их соответствующих метрических единиц вводится в этот раздел учебного пособия «Физический класс», становится все более важным систематизировать информацию в своей голове. В таблице ниже перечислены некоторые из введенных на данный момент количеств. Для каждой величины также указаны символ, уравнение и соответствующие метрические единицы.Было бы разумно часто обращаться к этому списку или даже делать свою копию и добавлять к ней по мере развития модуля. Некоторые студенты считают полезным составить пятый столбец, в котором приводится определение каждой величины.
Кол-во | Символ | Уравнение (я) | Стандартная метрическая единица | Другие единицы |
Разность потенциалов (г.к.а. напряжение) | ΔV | ΔV = ΔPE / Q ΔV = I • R | Вольт (В) | J / C |
Текущий | я | I = Q / т I = ΔV / R | Амперы (А) | Усилитель или Кл / с или В / Ом |
Мощность | п | P = ΔPE / т (еще впереди) | Ватт (Вт) | Дж / с |
Сопротивление | р | R = ρ • L / A R = ΔV / I | Ом (Ом) | В / А |
Энергия | E или ΔPE | ΔPE = ΔV • Q ΔPE = P • t | Джоуль (Дж) | V • C или Вт • с |
(Обратите внимание, что символ C представляет собой кулоны.)
В следующем разделе Урока 3 мы еще раз рассмотрим количественную мощность. Новое уравнение мощности будет введено путем объединения двух (или более) уравнений в приведенной выше таблице.
Мы хотели бы предложить … Зачем просто читать об этом и когда можно с этим взаимодействовать? Взаимодействовать — это именно то, что вы делаете, когда используете одно из интерактивных материалов The Physics Classroom.Мы хотели бы предложить вам совместить чтение этой страницы с использованием нашего интерактивного средства построения цепей постоянного тока. Вы можете найти его в разделе Physics Interactives на нашем сайте. Построитель цепей постоянного тока предоставляет учащемуся набор для построения виртуальных цепей. Легко перетащите источник напряжения, резисторы и провода на рабочее место. Соедините их, и у вас будет схема. Добавьте амперметр для измерения тока и используйте датчики напряжения для определения падения напряжения. Это так просто. И не нужно беспокоиться о поражении электрическим током (если, конечно, вы не читаете это в ванной).
1. Что из перечисленного ниже приведет к уменьшению тока в электрической цепи? Выберите все, что подходит.
а. уменьшить напряжение
г. уменьшить сопротивление
г. увеличить напряжение
г.увеличить сопротивление
2. Определенная электрическая цепь содержит батарею из трех элементов, провода и лампочку. Что из перечисленного может привести к тому, что лампа будет светить менее ярко? Выберите все, что подходит.
а. увеличить напряжение АКБ (добавить еще одну ячейку)
г. уменьшить напряжение аккумулятора (удалить элемент)
г.уменьшить сопротивление цепи
г. увеличить сопротивление цепи
3. Вероятно, вас предупредили, чтобы вы не прикасались к электроприборам или даже к электрическим розеткам, когда ваши руки мокрые. Такой контакт более опасен, когда ваши руки мокрые (а не сухие), потому что мокрые руки вызывают ____.
а.напряжение цепи должно быть выше
г. напряжение в цепи должно быть ниже
г. ваше сопротивление будет выше
г. ваше сопротивление должно быть ниже
e. ток через тебя будет ниже
4. Если бы сопротивление цепи было утроено, то ток в цепи был бы ____.
а. треть от
г. втрое больше
г. без изменений
г. … бред какой то! Сделать такой прогноз невозможно.
5. Если напряжение в цепи увеличить в четыре раза, то ток в цепи будет ____.
а.четверть от
г. в четыре раза больше
г. без изменений
г. … бред какой то! Сделать такой прогноз невозможно.
6. В схему подключены блок питания, резистор и амперметр (для измерения тока). Амперметр показывает ток 24 мА (миллиампер). Определите новый ток, если напряжение источника питания было…
а. … увеличился в 2 раза, а сопротивление осталось постоянным.
г. … увеличился в 3 раза, а сопротивление осталось постоянным.
г. … уменьшилось в 2 раза, а сопротивление осталось постоянным.
г. … оставалось постоянным, а сопротивление увеличивалось в 2 раза.
e. … оставалось постоянным, а сопротивление увеличивалось в 4 раза.
ф…. оставалось постоянным, а сопротивление уменьшалось в 2 раза.
г. … увеличилось в 2 раза, а сопротивление увеличилось в 2 раза.
ч. … увеличилось в 3 раза, а сопротивление уменьшилось в 2 раза.
и. … уменьшилось в 2 раза, а сопротивление увеличилось в 2 раза.
7.Используйте уравнение закона Ома, чтобы дать числовые ответы на следующие вопросы:
а. Электрическое устройство с сопротивлением 3,0 Ом позволит протекать через него току 4,0 А, если на устройстве наблюдается падение напряжения ________ Вольт.
г. Когда на электрический нагреватель подается напряжение 120 В, через нагреватель будет протекать ток 10,0 А, если сопротивление составляет ________ Ом.
г. Фонарик, который питается от 3 вольт и использует лампочку с сопротивлением 60 Ом, будет иметь ток ________ ампер.
8. Используйте уравнение закона Ома для определения недостающих значений в следующих схемах.
9. См. Вопрос 8 выше. В схемах схем A и B какой метод использовался для контроля тока в схемах? А в схемах схем C и D какой метод использовался для контроля тока в схемах?
Что такое напряжение? | Fluke
Напряжение — это давление от источника питания электрической цепи, которое проталкивает заряженные электроны (ток) через проводящую петлю, позволяя им выполнять такую работу, как включение света.
Короче говоря, напряжение = давление , и оно измеряется в вольт (В). Этим термином признан итальянский физик Алессандро Вольта (1745-1827), изобретатель гальванической батареи — предшественника современной бытовой батареи.
В первые дни развития электричества напряжение было известно как электродвижущая сила (ЭДС). Вот почему в уравнениях, таких как закон Ома, напряжение обозначается символом E .
Пример напряжения в простой цепи постоянного тока:
- В этой цепи постоянного тока переключатель замкнут (включен).
- Напряжение в источнике питания — «разность потенциалов» между двумя полюсами батареи — активируется, создавая давление, которое заставляет электроны течь в виде тока через отрицательную клемму батареи.
- Ток достигает света, заставляя его светиться.
- Ток возвращается к источнику питания.
Напряжение — это либо напряжение переменного тока , либо напряжение постоянного тока , либо напряжение постоянного тока . Способы, которыми они различаются:
Напряжение переменного тока (представленное на цифровом мультиметре как):
- Течет равномерно волнообразными волнами, как показано ниже:
- Меняет направление на регулярные интервалы.
- Обычно производятся коммунальными предприятиями с помощью генераторов , в которых механическая энергия — вращательное движение, приводимое в движение проточной водой, паром, ветром или теплом — преобразуется в электрическую энергию.
- Чаще, чем напряжение постоянного тока. Коммунальные предприятия поставляют переменное напряжение в дома и на предприятия, где большинство устройств используют переменное напряжение.
- Источники первичного напряжения зависят от страны. В США, например, 120 вольт.
- Некоторые бытовые устройства, такие как телевизоры и компьютеры, используют питание постоянного тока.Они используют выпрямители (например, этот толстый блок в шнуре портативного компьютера) для преобразования переменного напряжения и тока в постоянный.
Напряжение постоянного тока (обозначено на цифровом мультиметре значком и):
- Перемещается по прямой линии и только в одном направлении.
- Обычно производится из источников накопленной энергии, таких как батареи .
- Источники постоянного напряжения имеют положительную и отрицательную клеммы. Клеммы устанавливают полярность в цепи, и полярность может использоваться, чтобы определить, является ли цепь постоянным или переменным током.
- Обычно используется в портативном оборудовании с батарейным питанием (автомобили, фонарики, фотоаппараты).
Какая разница потенциалов?
Термин «напряжение» и термин «разность потенциалов» часто используются как синонимы. Разницу потенциалов можно было бы лучше определить как разность потенциальной энергии между двумя точками в цепи.Величина разницы (выраженная в вольтах) определяет, сколько существует потенциальной энергии для перемещения электронов из одной конкретной точки в другую. Количество определяет, сколько работы потенциально может быть выполнено через схему.
Бытовая щелочная батарея AA, например, имеет напряжение 1,5 В. Обычные бытовые электрические розетки имеют напряжение 120 В. Чем больше напряжение в цепи, тем выше ее способность «выталкивать» больше электронов и выполнять работу.
Напряжение / разность потенциалов можно сравнить с водой, хранящейся в резервуаре.Чем больше резервуар и чем больше его высота (и, следовательно, его потенциальная скорость), тем больше способность воды создавать удар, когда клапан открывается и вода (как электроны) может течь.
Почему полезно измерение напряжения
Технические специалисты подходят к большинству ситуаций устранения неисправностей, зная, как обычно должна работать цепь.
Цепи используются для передачи энергии нагрузке — от небольшого устройства до бытовой техники и промышленного двигателя. Нагрузки часто имеют паспортную табличку, на которой указаны их стандартные электрические эталонные значения, включая напряжение и ток.Вместо паспортной таблички некоторые производители предоставляют подробную схему (техническую схему) схемы нагрузки. Руководства могут включать стандартные значения.
Эти числа говорят технику, какие показания следует ожидать при нормальной работе нагрузки. Показания цифрового мультиметра позволяют объективно определить отклонения от нормы. Даже в этом случае технический специалист должен использовать знания и опыт, чтобы определить факторы, вызывающие такие отклонения.
Ссылка: Принципы цифрового мультиметра от Glen A.Мазур, американское техническое издательство.
Электроэнергия и энергия | Безграничная физика
Использование энергии
Используемая энергия — это временной интеграл от электрической мощности.
Цели обучения
Сформулируйте взаимосвязь между использованием энергии и электрической мощностью
Основные выводы
Ключевые моменты
- Напомним, что мощность — это скорость выполнения работы или скорость, с которой энергия потребляется или производится. По току и напряжению это P = IV.
- Используемая энергия — это количество заряда q, прошедшего через напряжение V за интервал времени t. Он равен интегралу мощности во времени.
- Общей единицей, используемой для описания потребления энергии, является киловатт-час, энергия 1000 Вт, действующая в течение одного часа.
Ключевые термины
- киловатт-час : единица электрической энергии, равная мощности одного киловатта, действующего в течение одного часа; равняется 3,6 мегаджоулей. Обозначение: кВтч.
Во многих случаях необходимо рассчитать потребление энергии электрическим устройством или набором устройств, например, в доме.Например, мы (или энергокомпания) можем захотеть рассчитать сумму задолженности за потребленную электроэнергию. В другом случае нам может потребоваться определить энергию, необходимую для питания компонента или устройства в течение заданного периода времени. Последнее различие имеет решающее значение — энергия, используемая схемой или компонентом, равна интегралу по времени от электрической мощности .
Мощность
Напомним, что мощность — это скорость выполнения работы или скорость, с которой энергия потребляется или производится, и измеряется в ваттах (Вт).Электрическая мощность в ваттах, вырабатываемая электрическим током I, состоящим из заряда Q кулонов каждые t секунд, проходящего через разность электрических потенциалов (напряжений) V, равна [латекс] \ text {P} = \ frac {\ text {QV} } {\ text {t}} = \ text {IV} [/ latex], где Q — электрический заряд в кулонах, t — время в секундах, I — электрический ток в амперах, а V — электрический потенциал или напряжение в вольтах. 2} {\ text {R}} [/ latex], где R — электрическое сопротивление.Власть не обязательно постоянна; он может меняться со временем. Тогда общее выражение для электроэнергии
.[латекс] \ text {P} (\ text {t}) = \ text {I} (\ text {t}) \ text {V} (\ text {t}) [/ latex]
, где ток I и напряжение V могут изменяться во времени.
Энергия
В любом заданном временном интервале потребляемая (или предоставляемая, в зависимости от вашей точки зрения) энергия определяется выражением [latex] \ text {PE} = \ text {qV} [/ latex], где E — электрическая энергия, V — напряжение, а q — количество заряда, перемещенного за рассматриваемый интервал времени.Мы можем связать общую потребляемую энергию с мощностью, интегрировав по времени: Положительная энергия соответствует потребляемой энергии, а отрицательная энергия соответствует производству энергии. Обратите внимание, что элемент схемы, имеющий как положительный, так и отрицательный профиль мощности в течение некоторого промежутка времени, может потреблять или производить энергию в соответствии со знаком интеграла мощности. Если мощность постоянна в течение временного интервала, то энергию можно просто выразить как:
[латекс] \ text {E} = \ text {Pt} [/ latex].
Единицы потребления энергии
Мы, конечно, хорошо знакомы с единицей измерения энергии в системе СИ — джоуль. Однако, как правило, в счетах за электроэнергию домохозяйства указывается потребление энергии в киловатт-часах (кВтч). Кроме того, это устройство часто встречается в других местах, когда рассматривается использование энергии энергопотребляющими устройствами, структурами или юрисдикциями. Мы можем проанализировать преобразование киловатт-часов в джоули следующим образом: 1 Вт = 1 Дж / с, киловатт равен 1000 Вт, а один час равен 3600 секундам, поэтому 1 кВт-ч равен (1000 Дж / с) (3600 с). = 3 600 000 джоулей.Это масштаб домашнего использования энергии в США, который составляет порядка сотен киловатт-часов в месяц.
Снижение потребления энергии
Потребляемая электрическая энергия (E) может быть уменьшена либо за счет сокращения времени использования, либо за счет снижения энергопотребления этого прибора или приспособления. Это не только снизит стоимость, но и снизит воздействие на окружающую среду. Улучшение освещения — один из самых быстрых способов снизить потребление электроэнергии в доме или на работе.Около 20% энергии в доме расходуется на освещение, в то время как в коммерческих учреждениях эта цифра приближается к 40%. Флуоресцентные лампы примерно в четыре раза эффективнее ламп накаливания — это верно как для длинных ламп, так и для компактных люминесцентных ламп (КЛЛ). Таким образом, лампу накаливания мощностью 60 Вт можно заменить КЛЛ мощностью 15 Вт, которая имеет такую же яркость и цвет. КЛЛ имеют изогнутую трубку внутри шара или спиралевидную трубку, соединенную со стандартным резьбовым основанием, подходящим для стандартных розеток лампы накаливания.(Первоначальные проблемы с цветом, мерцанием, формой и высокими начальными затратами на КЛЛ были решены в последние годы.) Теплопередача от этих КЛЛ меньше, и они служат до 10 раз дольше.
Компактный люминесцентный светильник (КЛЛ) : КЛЛ намного более эффективны, чем лампы накаливания, и поэтому потребляют гораздо меньше энергии для получения яркого света.
Зависимость тока от напряжения — разница и сравнение
Связь между напряжением и током
Ток и напряжение — две фундаментальные величины в электричестве.Напряжение — это причина, а ток — это следствие.
Напряжение между двумя точками равно разности электрических потенциалов между этими точками. На самом деле это электродвижущая сила (ЭДС), ответственная за движение электронов (электрический ток) по цепи. Поток электронов, приводимый в движение напряжением, называется током. Напряжение представляет собой потенциал каждого кулоновского электрического заряда для выполнения работы.
В следующем видео объясняется взаимосвязь между напряжением и током:
Схема
Электрическая цепь с источником напряжения (эл.грамм. аккумулятор) и резистор.Источник напряжения имеет две точки с разностью электрических потенциалов. Когда между этими двумя точками существует замкнутый контур, он называется цепью, и ток может течь. При отсутствии цепи ток не будет течь, даже если есть напряжение.
Условные обозначения и единицы
Заглавная курсивная буква I обозначает ток. Стандартная единица измерения — Ампер (или Ампер), обозначаемая буквой A. Единица измерения тока в системе СИ — кулонов в секунду .
1 ампер = 1 кулон в секунду.
Один ампер тока соответствует одному кулону электрического заряда (6,24 x 10 18 носителей заряда), проходящего мимо определенной точки в цепи за одну секунду. Устройство, используемое для измерения тока, называется Амперметр .
Заглавная курсивная буква В обозначает напряжение.
1 вольт = 1 джоуль / кулон.
Один вольт перемещает один кулон (6,24 x 10 18 ) носителей заряда, таких как электроны, через сопротивление в 1 Ом за одну секунду.Вольтметр используется для измерения напряжения.
Поля и интенсивность
Электрический ток всегда создает магнитное поле. Чем сильнее ток, тем сильнее магнитное поле.
Напряжение создает электростатическое поле. По мере увеличения напряжения между двумя точками электростатическое поле становится более интенсивным. По мере увеличения расстояния между двумя точками, имеющими заданное напряжение по отношению друг к другу, интенсивность электростатического заряда между точками уменьшается.
Последовательные и параллельные соединения
В последовательной цепи
Напряжения суммируются для компонентов, соединенных последовательно. Токи одинаковы во всех последовательно соединенных компонентах.
Электрические компоненты в последовательном соединенииНапример, если батарея 2 В и батарея 6 В подключены последовательно к резистору и светодиоду, ток через все компоненты будет одинаковым (скажем, 15 мА), но напряжения будут разными (5 В на резисторе и 3 В на светодиод).Эти напряжения складываются с напряжением батареи: 2 В + 6 В = 5 В + 3 В.
В параллельной цепи
Сумма токов для компонентов, подключенных параллельно. Напряжения одинаковы на всех компонентах, подключенных параллельно.
Электрические компоненты при параллельном подключенииНапример, если одни и те же батареи подключены к резистору и светодиоду параллельно, напряжение через компоненты будет одинаковым (8 В). Однако ток 40 мА через аккумулятор распределяется по двум путям в цепи и прерывается до 15 мА и 25 мА.
Список литературы
Как соотносятся напряжение, ток и сопротивление: Закон Ома
Том I — Округ Колумбия »ЗАКОН ОМА»Электрическая цепь образуется, когда создается токопроводящий путь для позволяют свободным электронам непрерывно двигаться. Это непрерывное движение Свободные электроны, проходящие через проводники цепи, называют током , , и его часто называют «потоком», как поток жидкости через полую трубу.
Сила, побуждающая электроны «течь» в цепи, называется напряжением , напряжением . Напряжение — это особая мера потенциальной энергии, которая всегда относительный между двумя точками. Когда мы говорим об определенном количестве напряжение, присутствующее в цепи, мы имеем в виду измерение о том, сколько потенциальной энергии существует для перемещения электронов из одной конкретной точки в этой цепи в другую конкретную точку. Без ссылки на два конкретных пункта термин «напряжение» не имеет значения.
Свободные электроны имеют тенденцию перемещаться по проводникам с некоторой степенью трение или противодействие движению. Это противодействие движению больше правильно называется сопротивление . Количество тока в цепи зависит от количества доступного напряжения, чтобы мотивировать электронов, а также количество сопротивления в цепи, чтобы противостоять электронный поток. Как и напряжение, сопротивление — величина относительная. между двумя точками. По этой причине величины напряжения и сопротивление часто указывается как «между» или «поперек» двух точек в цепи.
Чтобы иметь возможность делать значимые заявления об этих количествах в цепей, мы должны иметь возможность описывать их количество в одном и том же способ, которым мы могли бы количественно определить массу, температуру, объем, длину или любой другой другой вид физической величины. Для массы мы можем использовать единицы «фунт» или «грамм». Для температуры мы можем использовать градусы Фаренгейта или градусов Цельсия. Вот стандартные единицы измерения для электрический ток, напряжение и сопротивление:
«Символ», указанный для каждого количества, является стандартным буквенным обозначением. буква, используемая для обозначения этой величины в алгебраическом уравнении.Подобные стандартизированные буквы распространены в дисциплинах физика и техника, и признаны во всем мире. Единица аббревиатура «для каждого количества представляет собой используемый алфавитный символ. как сокращенное обозначение его конкретной единицы измерения. А также, да, этот странный на вид символ «подкова» — заглавная греческая буква Ω, просто символ иностранного алфавита (извинения перед читателями-греками).
Каждая единица измерения названа в честь известного экспериментатора в области электричества: amp в честь француза Андре М.Ампер, вольт после итальянского Алессандро Вольта и Ом после немца Георга Симона Ома.
Математический символ для каждой величины также имеет значение. В «R» для сопротивления и «V» для напряжения говорят сами за себя, тогда как «I» для тока кажется немного странным. Считается, что «я» должно было представлять «Интенсивность» (потока электронов) и другой символ напряжения, «E». расшифровывается как «Электродвижущая сила.»Из каких исследований мне удалось Да, похоже, есть некоторые споры о значении «я». Символы «E» и «V» по большей части взаимозаменяемы, хотя некоторые тексты зарезервируйте «E» для обозначения напряжения на источнике (таком как батарея или генератор) и «V» для обозначения напряжения на любом другом элементе.
Все эти символы выражаются заглавными буквами, за исключением случаев, когда величина (особенно напряжение или ток) описывается в терминах короткого периода времени (называемого «мгновенное» значение).Например, напряжение батареи, которое стабильный в течение длительного периода времени, будет обозначаться заглавной буквой буква «Е», а пик напряжения удара молнии в самом момент, когда он попадет в линию электропередачи, скорее всего, будет обозначен строчная буква «е» (или строчная буква «v») для обозначения этого значения как находясь в один момент времени. Это же соглашение о нижнем регистре выполняется верно и для тока, строчная буква «i» обозначает ток в некоторый момент времени.Однако большинство измерений постоянного тока (DC), которые стабильны во времени, будут обозначены заглавными буквами.
Одна основополагающая единица электрического измерения, которой часто учат в начало курсов электроники, но впоследствии редко используемое, блок кулон , который является мерой электрического заряда, пропорциональной количеству электроны в несбалансированном состоянии. Один кулон заряда равен 6 250 000 000 000 000 000 электронов.Символ электрического заряда количество — это заглавная буква «Q» с единицей измерения кулоны. сокращенно заглавной буквой «C». Так получилось, что агрегат для поток электронов, amp, равен 1 кулону электронов, проходящих через заданная точка в цепи за 1 секунду времени. В этих терминах ток — это скорость движения электрического заряда по проводнику.
Как указывалось ранее, напряжение является мерой потенциальной энергии на единицу заряда , доступной для перемещения электронов из одной точки в другую.Прежде чем мы сможем точно определить, что такое «вольт» то есть, мы должны понять, как измерить эту величину, которую мы называем «потенциал энергия ». Общая единица измерения энергии любого вида — джоуль, , равно количеству работы, выполненной приложенной силой в 1 ньютон через движение на 1 метр (в том же направлении). В британских частях это чуть меньше 3/4 фунта силы, приложенной на расстоянии 1 фут. Проще говоря, требуется около 1 джоуля энергии для поднимите гирю 3/4 фунта на 1 фут от земли или перетащите что-нибудь расстояние в 1 фут с использованием параллельного тягового усилия 3/4 фунта.Определенный в этих научных терминах 1 вольт равен 1 джоуля электрической потенциальной энергии на (деленный на) 1 кулон заряда. Таким образом, батарея на 9 вольт выделяет 9 джоулей энергии на каждый кулон электронов, перемещаемых по цепи.
Эти единицы и символы электрических величин станут очень важно знать, когда мы начинаем исследовать отношения между ними в схемах. Первые и, пожалуй, самые важные отношения между током, напряжением и сопротивлением называется законом Ома, открытым Георгом Саймоном Омом и опубликованным в его статье 1827 года Математические исследования гальванической цепи .Главное открытие Ома заключалось в том, что величина электрического тока через металлический проводник в цепи прямо пропорционально напряжение, приложенное к нему, для любой заданной температуры. Ом выражен его открытие в виде простого уравнения, описывающего, как напряжение, ток и сопротивление взаимосвязаны:
В этом алгебраическом выражении напряжение (E) равно току (I) умноженное на сопротивление (R). Используя методы алгебры, мы можем преобразовать это уравнение в два варианта, решая для I и R, соответственно:
Давайте посмотрим, как эти уравнения могут работать, чтобы помочь нам анализировать простые схемы:
В приведенной выше схеме есть только один источник напряжения (аккумулятор слева) и только один источник сопротивления току. (лампа справа).Это позволяет очень легко применять закон Ома. Если мы знаем значения любых двух из трех величин (напряжения, тока и сопротивления) в этой цепи, мы можем использовать закон Ома для определения третьей.
В этом первом примере мы рассчитаем величину тока (I) в цепи, учитывая значения напряжения (E) и сопротивления (R):
Какая величина тока (I) в этой цепи?
В этом втором примере мы рассчитаем величину сопротивления (R) в цепи, учитывая значения напряжения (E) и тока (I):
Какое сопротивление (R) предлагает лампа?
В последнем примере мы рассчитаем величину напряжения, подаваемого батареей, с учетом значений тока (I) и сопротивления (R):
Какое напряжение обеспечивает аккумулятор?
Закон Ома — очень простой и полезный инструмент для анализа электрических схемы.Он так часто используется при изучении электричества и электроники, которую нужно сохранить в памяти серьезными ученик. Для тех, кто еще не знаком с алгеброй, есть трюк с запоминанием того, как решить для любого одного количества, учитывая другое два. Сначала расположите буквы E, I и R в виде треугольника следующим образом:
Если вы знаете E и I и хотите определить R, просто удалите R с картинки и посмотрите, что осталось:
Если вы знаете E и R и хотите определить I, удалите I и посмотрите, что осталось:
Наконец, если вы знаете I и R и хотите определить E, удалите E и посмотрите, что осталось:
В конце концов, вам придется познакомиться с алгеброй, чтобы серьезно изучать электричество и электронику, но этот совет может сделать ваш первый расчеты запомнить немного легче.Если тебе комфортно с алгебры, все, что вам нужно сделать, это зафиксировать E = IR в памяти и получить другие две формулы из того, когда они вам понадобятся!
- ОБЗОР:
- Напряжение измеряется в вольт , обозначается буквами «E» или «V».
- Ток измеряется в ампер , обозначается буквой «I».
- Сопротивление измеряется в Ом. обозначается буквой «R».
- Закон Ома: E = IR; I = E / R; R = E / I
Калькулятор закона Ома
Наш калькулятор закона Ома — это удобный небольшой инструмент, который поможет вам найти взаимосвязь между напряжением, током и сопротивлением в данном проводнике.Формула закона Ома и формула напряжения в основном используются в электротехнике и электронике. Кроме того, если вы знаете, как рассчитать мощность, вы можете найти его очень полезным при изучении электронных схем. Все эти расчеты вы производите с помощью нашего Калькулятора Ом.
В оставшейся части статьи вы найдете:
- Формула закона Ома
- Как пользоваться формулой напряжения
- Какое уравнение для мощности
- Как рассчитать мощность
- Закон Ома для анизотропных материалов
Формула закона Ома
Закон Ома — один из основных законов физики.Он описывает взаимосвязь между напряжением, силой тока (также известной как ток) и сопротивлением. Напряжение относится к разности потенциалов между двумя точками электрического поля. Сила тока связана с потоком носителей электрического заряда, обычно электронов или электронно-дефицитных атомов. Последний термин, сопротивление, — это сопротивление вещества потоку электрического тока.
ЗаконОма гласит, что ток течет через проводник со скоростью, которая пропорциональна напряжению между концами этого проводника.Другими словами, соотношение между напряжением и током постоянно:
I / V = const
Формулу закона Ома можно использовать для вычисления сопротивления как отношения напряжения и тока. Это может быть записано как:
R = V / I
Где:
- R — сопротивление
- В — напряжение
- I — Текущий
Сопротивление выражается в омах. И устройство, и правило названы в честь Георга Ома — физика и изобретателя закона Ома.
Помните, что формула закона Ома относится только к веществам, которые способны вызывать энергию. такие как металлы и керамика. Однако есть много других материалов, для которых нельзя использовать формулу закона Ома, например, полупроводники и изоляторы. Закон Ома также действует только при определенных условиях, например, при фиксированной температуре.
Ищете практическое применение закона Ома? Обязательно ознакомьтесь с калькулятором светодиодного резистора!
Формула напряжения
Формула напряжения — это одно из трех математических уравнений, связанных с законом Ома.Это формула, приведенная в предыдущем абзаце, но переписанная так, чтобы вы могли рассчитать напряжение на основе тока и сопротивления, то есть формула напряжения является произведением тока и сопротивления. Уравнение:
В = ИК
Это значение измеряется в вольтах.
Какое уравнение мощности?
Другая величина, которую вы можете вычислить на основании закона Ома, — это мощность. Мощность — это произведение напряжения и тока, поэтому уравнение выглядит следующим образом:
P = V x I
С помощью этой формулы вы можете рассчитать, например, мощность лампочки.Если вы знаете, что напряжение аккумулятора составляет 18 В,
, а ток составляет 6A
, вы можете, что мощность будет 108, с помощью следующего расчета:
P = 6A x 18V = 108 Вт
Как рассчитать мощность?
Если вы все еще не знаете, как рассчитать мощность по приведенным формулам, или просто хотите сэкономить время, вы можете использовать наш калькулятор закона Ома. Структура этого инструмента не слишком сложна, просто введите любые два из четырех значений, чтобы получить два других.Калькулятор закона Ома основан на формуле мощности вместе с формулой закона Ома. Все, что вам нужно сделать, чтобы получить значение мощности, это набрать:
- Напряжение (в вольтах)
- Ток (выраженный в амперах)
Тогда калькулятор закона Ома выдаст вам два значения — сопротивление, выраженное в омах, и мощность, выраженное в ваттах. Если вам нужен этот результат в другом устройстве, вы можете использовать наш калькулятор ватт в ампер.
Закон Ома для анизотропных материалов
Существует еще одна версия закона Ома, которая использует положение электрических свойств внутри проводника.Некоторые предпочитают его предыдущей формуле из-за его размерного вида. Электропроводящие материалы подчиняются закону Ома, когда удельное сопротивление материалов не зависит от величины и направления приложенного электрического поля.
Вы можете найти следующую формулу, если нажмете на кнопку Расширенный режим
:
ρ = E / J
, где
ρ
— удельное сопротивление проводящего материала.E
— вектор электрического поля.J
— вектор плотности тока.
Что касается изотропных материалов, лучше всего использовать первую формулу, поскольку она намного менее сложна. Изотропные материалы — это материалы с одинаковыми электрическими свойствами во всех направлениях, например металлы и стекло. Эта формула может пригодиться при работе с анизотропными материалами, такими как дерево или графит.
Измерение тока, напряжения и мощности, Том 7
Эта авторитетная новая книга посвящена последним разработкам в области приборов для передачи напряжений и токов.Он охватывает новые тенденции и проблемы в этой области, такие как измерения биотоков, увеличение скорости работы компонентов для сбора данных, тестирование компьютеров и интегральных схем, где необходимо измерение быстрых изменений напряжения и тока в очень небольшом геометрическом масштабе. Первая глава концентрируется на новейших методах измерения напряжений и токов, в то время как остальная часть книги исследует прикладную сторону, охватывая, например, измерения электрической мощности и энергии. Основная цель этого тома — проиллюстрировать обычно используемые методы, а не отслеживать научную эволюцию и достоинства, и поэтому в основном охватывает патентную литературу, предназначенную для промышленного применения.Это захватывающее дополнение, оправдывающее стремление серии охватить самые современные разработки как в прикладной, так и в теоретической области датчиков и исполнительных механизмов.
Измерение напряжений и токов — обычная задача в области электричества и электроники. С технической точки зрения полезно схематически обозначить различные этапы такого измерения. На первом этапе измеряется напряжение или ток, затем могут следовать промежуточные этапы, такие как усиление, передача и дальнейшая обработка, чтобы дать результат на последнем этапе.Сегодня в большинстве случаев микропроцессоры выполняют заключительные этапы таких измерений. Аналого-цифровые преобразователи оцифровывают напряжение, пропорциональное измеряемому значению, а процессор выполняет дальнейшие вычисления и обрабатывает сохранение и отображение результатов. Предпосылкой для таких измерений являются датчики или преобразователи, которые известным образом реагируют на измеряемое напряжение или ток. Основное внимание в этой книге уделяется последним разработкам измерительных приборов для измерения напряжения и тока.
Помимо общей тенденции к меньшим, более дешевым и надежным приборам, возникли новые требования. Новые приложения, такие как измерение биотоков, требуют более высокой чувствительности. Компьютеры и интегральные схемы ставят новые задачи. Чтобы использовать повышенную скорость компонентов для сбора данных, требуются подходящие датчики. Достигаемая точность больше, чем когда-либо, зависит от первого шага — получения необработанных данных. Влияние процесса измерения на результаты становится все более решающим.Тестирование самих интегральных схем — это совершенно новое приложение. Для таких испытаний необходимо измерять быстрые изменения напряжения и тока в очень маленьких геометрических масштабах. Здесь, как и в традиционных высоковольтных приложениях, важную роль играют бесконтактные измерения.
Книга построена следующим образом: В первой главе описаны различные методы измерения напряжений и токов. Для полноты картины упомянуты наиболее часто используемые методы, однако мы сосредоточимся на недавно разработанных.