Закрыть

Условное обозначение счетчика электроэнергии на схеме: ГОСТ 25372-95 Условные обозначения для счетчиков электрической энергии…

Содержание

Условное обозначение счетчика на однолинейных схемах

Счетчик потребляемой электроэнергии — это основной элемент однолинейных схем учетно-распределительных электрических щитов квартиры или дома.

Его правильное обозначение формируется из графического изображения и буквенного кода — маркировки.


Условное графическое обозначение

 

Для электроизмерительных устройств разработан государственный стандарт – ГОСТ2.729-68 (ЧИТАТЬ PDF), согласно которому, электросчетчик на однолинейной схеме показывается так (см. изображение ниже):



Изображение состоит из двух основных элементов: схематического вида измерительного устройства интегрирующего типа, и вписанного в него общепринятого сокращения измеряемой величины — ватт-часов (Wh).

Видя это, любой специалист понимает, что это устройство измеряет и рассчитывает количество потребляемой энергии. Интегрирующий, значит позволяющий получить суммарное (интегральное) значение измеряемой величины за все время действия.

В современном

ГОСТ Р МЭК 60617-DB-12M-2015 «Графические символы для схем (в формате базы данных)», в дополнение к стандартному, даётся и вид многотарифного электросчетчика, которые сейчас применяются гораздо чаще однотарифных:



В данном случае показан двухтарифных счетчик электрической энергии. Как вы, думаю, поняли, если используется многоставочные измерительные приборы с большим количеством тарифив, то на чертеже просто добавляются дополнительные блоки сверху, их число равно количеству тарифов.

Буквенный код

Согласно ГОСТ 2.710-81. «Обозначения буквенно-цифровые в электрических схемах» (ЧИТАТЬ PDF), буквенное обозначение счетчика на однолинейной схеме – PI


Данный код, складывается из двух знаков:

P – Прибор, измерительное оборудование (элемент однолинейной схемы)

I – Интегрирующий (код функционального назначения)

Маркировка устройтсвактивной энергии, может иметь нумерацию если их несколько — PI1, PI2 и т.д.

Обозначения На Электрических Схемах Гост

Домашнему мастеру будут интересны 3 типа схем: функциональная, принципиальная, монтажная.


КУ — кнопка управления. D — Символ заземления.

Для того чтобы прочесть любой текст, необходимо знать алфавит и правила чтения. Обозначение выключателя можно выполнять буквенным кодом Q без признака автоматики отключения F.
Как читать электрические схемы. Радиодетали маркировка обозначение

Условные обозначения отражают только основную функцию контакта — замыкание и размыкание цепи.

Для изображения коммутационных устройств, входящих в электросистему, используют 4 основных обозначения. В однолинейных электросхемах также присутствуют свои буквы, которые дают понять, что включено в сеть.

Количество отрезков — количество розеток на одном корпусе на фото ниже иллюстрация.


Количество отводов отображает количество клавиш на этом устройстве. Характерная особенность такой схемы — минимальная детализация.

Кабели с количеством жил Выключатели и розетки с открытым и скрытым способом установки имеют свои условные обозначения на чертежах ГОСТ.

Чертим гидравлическую схему [2] в САПР Компас3D

Графическое обозначение электроэнергетических объектов на схемах

К ним относят логические элементы, интегральные схемы аналоговые и цифровые, устройства задержки и хранения информации. Причем отличаются лампы дневного света люминесцентные и лампы накаливания.

Схема подключения розеток в квартире Виды и типы электрических схем На электрических схемах требуется размещать кодировку элементов.

D — Отображение аккумуляторного или гальванического источника питания.

Первая буква в таких обозначениях всегда указывает на тип устройства. Как выглядит схематичное изображение проходных выключателей В отличие от обычных выключателей, в этих при использовании двухклавишных моделей добавляется еще одна планка, параллельная верхней.


На схемах отображается даже форма и размеры светильников. Каждое из обозначений можно применять в определенных случаях.

Группы каждого вида установки отмечены черточками на клавишах приборов. Имеют более широкий спектр применения — чаще используются для электроснабжения промышленных объектов ввиду более высокой надежности и меньшей рыночной стоимости.

Условные обозначения отражают только основную функцию контакта — замыкание и размыкание цепи.
КАК ТЕЧЁТ ТОК В СХЕМЕ — Читаем Электрические Схемы 1 часть

Еще по теме: Прокладка электрокабеля под землей требования

Обозначения условные графические в схемах. Обозначения общего применения (ГОСТ 2.721-74)

На однолинейных схемах резисторы обозначают символом R шунты, варисторы, терморезисторы, потенциометры. Это обозначает что розетка влагозащищенная.


Буквой B на электросхемах выполняют преобразователи неэлектрической величины в электрическую микрофоны, фотоэлементы, тепловые датчики, пьезоэлементы, датчики давления, датчики скорости, звукосниматели, детекторы. Похожие записи:.

Обозначение розеток на чертежах Розетки для однофазной сети В обозначаются на схемах в виде полукруга с одним или несколькими торчащими вверх отрезками.

Вариант справа — для открытого монтажа. Выключатели По-разному рисуют розетки для скрытой и открытой проводки.

Примеры УГО в функциональных схемах Ниже представлен рисунок с изображением основных узлов систем автоматизации. На схеме все детали отмечены маркировкой. Вариант справа — для открытого монтажа.


Для них также можно найти соответствующие значки. Каждый начинающий электрик обязательно должен знать, как обозначаются на проекте электропроводки розетки, выключатели, коммутационные аппараты и даже счетчик электроэнергии в соответствии с ГОСТ. Наличие соединения при пересечении. Устройства общего назначения имеют код A. Виды и типы.

На начальном этапе все проектировщики, монтажники, а также инженеры сектора ПТО и сметчики должны изучить техническую документацию, ознакомиться с действующими ГОСТами для составления и понимания содержания проектов. I — Ответвления. Часто рассматриваются вопросы размещения электрооборудования в помещениях бытового назначения, в помещениях цехов, подстанций ит.

Обозначения выключателей на схемах Выключатели — самое распространенное устройство в электротехнике, так как выполняет главные функции — включения и выключения цепей. Графические обозначения Для каждого типа графического документа предусмотрены свои обозначения, регулируемые соответствующими нормативными документами. В — Тоже самое, что и пункт А, за исключением того, что элементы располагаются на пульте или электрощите. С появлением электротехнических чертежей возникла потребность в унификации графических обозначений электрических элементов на схемах, согласно ГОСТу. С помощью дополнительных пометок можно указать количество проводников в одном кабеле, напряжение в контуре, материал изготовления провода и пр.

Читаем принципиальные электрические схемы

Виды и типы электрических схем

Общее обозначение.

С помощью дополнительных пометок можно указать количество проводников в одном кабеле, напряжение в контуре, материал изготовления провода и пр.

Важно запомнить как изображаются основные группы, а количество групп контактов определяется по штрихам.

Чтобы быть в курсе подобных нововведений, профессионалы отслеживают изменения в нормативных документах, любителям это делать не обязательно, достаточно знать расшифровку основных обозначений. Парные галочки при изображении розеток — это количество проводов.

Настоящий стандарт распространяется на схемы, выполняемые вручную или автоматизированным способом, изделий всех отраслей промышленности и строительства и устанавливает условные графические обозначения коммутационных устройств, контактов и их элементов. Условные обозначения для проводов, кабелей, шин, слияний и пересечений двух возможно и более линий, ответвлений. H — Соединение в месте пересечения.

Обозначение розеток на чертежах Розетки для однофазной сети В обозначаются на схемах в виде полукруга с одним или несколькими торчащими вверх отрезками. К ним относят логические элементы, интегральные схемы аналоговые и цифровые, устройства задержки и хранения информации. Как выглядит схематичное изображение проходных выключателей В отличие от обычных выключателей, в этих при использовании двухклавишных моделей добавляется еще одна планка, параллельная верхней.

Специальным знаком отмечают функциональное назначение контактора. M — буквенное обозначение двигателей постоянного и переменного тока.

План однолинейного построения передаёт изображение одних силовых цепей. Графические изображения в электросхемах Чертеж электросети представляет собой набор графических элементов, которые в совокупности образуют неразрывную систему. Реле, контакторы и катушки Лампы, разъёмные, разборные узлы и измерители имеют своё характерное изображение.

Как нарисовать розетки, выключатели и лампы на плане квартиры.

Условные обозначения на однолинейных схемах электроснабжения

Умение читать электросхемы – это важная составляющая, без которой невозможно стать специалистом в области электромонтажных работ. Каждый начинающий электрик обязательно должен знать, как обозначаются на проекте электропроводки розетки, выключатели, коммутационные аппараты и даже счетчик электроэнергии в соответствии с ГОСТ. Далее мы предоставим читателям сайта

Сам Электрик

условные обозначения в электрических схемах, как графические, так и буквенные.

Графические

Что касается графического обозначения всех элементов, используемых на схеме, этот обзор мы предоставим в виде таблиц, в которых изделия будут сгруппированы по назначению.

В первой таблице Вы можете увидеть, как отмечены электрические коробки, щиты, шкафы и пульты на электросхемах:

Следующее, что Вы должны знать – условное обозначение питающих розеток и выключателей (в том числе проходных) на однолинейных схемах квартир и частных домов:

Что касается элементов освещения, светильники и лампы по ГОСТу указывают следующим образом:

В более сложных схемах, где применяются электродвигатели, могут указываться такие элементы, как:

Также полезно знать, как графически обозначаются трансформаторы и дроссели на принципиальных электросхемах:

Электроизмерительные приборы по ГОСТу имеют следующее графические обозначение на чертежах:

А вот, кстати, полезная для начинающих электриков таблица, в которой показано, как выглядит на плане электропроводки контур заземления, а также сама силовая линия:

Помимо этого на схемах Вы можете увидеть волнистую либо прямую линию, «+» и «-», которые указывают на род тока, напряжение и форму импульсов:

В более сложных схемах автоматизации Вы можете встретить непонятные графические обозначения, вроде контактных соединений. Запомните, как обозначаются этим устройства на электросхемах:

Помимо этого Вы должны быть в курсе, как выглядят радиоэлементы на проектах (диоды, резисторы, транзисторы и т.д.):

Вот и все условно графические обозначения в электрических схемах силовых цепей и освещения. Как уже сами убедились, составляющих довольно много и запомнить, как обозначается каждый можно только с опытом. Поэтому рекомендуем сохранить себе все эти таблицы, чтобы при чтении проекта планировки проводки дома либо квартиры Вы могли сразу же определить, что за элемент цепи находится в определенном месте.

Интересное видео по теме:

Буквенные

Мы уже рассказывали Вам, как расшифровать маркировку проводов и кабелей. В однолинейных электросхемах также присутствуют свои буквы, которые дают понять, что включено в сеть. Итак, согласно ГОСТ 7624-55, буквенное обозначение элементов на электрических схемах выглядит следующим образом:

  1. Реле тока, напряжения, мощности, сопротивления, времени, промежуточное, указательное, газовое и с выдержкой по времени, соответственно – РТ, РН, РМ, РС, РВ, РП, РУ, РГ, РТВ.
  2. КУ – кнопка управления.
  3. КВ – конечный выключатель.
  4. КК – командо-контроллер.
  5. ПВ – путевой выключатель.
  6. ДГ – главный двигатель.
  7. ДО – двигатель насоса охлаждения.
  8. ДБХ – двигатель быстрых ходов.
  9. ДП – двигатель подач.
  10. ДШ – двигатель шпинделя.

Помимо этого в отечественной маркировке элементов радиотехнических и электрических схем выделяют следующие буквенные обозначения:

На этом краткий обзор условных обозначений в электрических схемах закончен. Надеемся, теперь Вы знаете, как обозначаются розетки, выключатели, светильники и остальные элементы цепи на чертежах и планах жилых помещений.

Также читают:

  • Как работает магнитный пускатель
  • Какие бывают электрические схемы
  • Как рассчитать количество кабеля для электропроводки

Как невозможно читать книгу без знания букв, так невозможно понять ни один электрический чертеж без знания условных обозначений.

В этой статье рассмотрим условные обозначения в электрических схемах: какие бываю, где найти расшифровку, если в проекте она не указана, как правильно должен быть обозначен и подписан тот или иной элемент на схеме.

Но начнем немного издалека…
Каждый молодой специалист, который приходит в проектирование, начинает либо со складывания чертежей, либо с чтения нормативной документации, либо нарисуй «вот это» по такому примеру. Вообще, нормативная литература изучается по ходу работы, проектирования.

Невозможно прочитать всю нормативную литературу, относящуюся к твоей специальности или, даже, более узкой специализации. Тем более, что ГОСТ, СНиП и другие нормативы периодически обновляются. И каждому проектировщику приходится отслеживать изменения и новые требования нормативных документов, изменения в линейках производителей электрооборудования, постоянно поддерживать свою квалификацию на должном уровне.

Помните, как Льюиса Кэролла в «Алисе в Стране Чудес»?

«Нужно бежать со всех ног, чтобы только оставаться на месте, а чтобы куда-то попасть, надо бежать как минимум вдвое быстрее!»

Это я не к тому, чтобы поплакаться «как тяжела жизнь проектировщика» или похвастаться «смотрите, какая у нас интересная работа». Речь сейчас не об этом. Учитывая такие обстоятельства, проектировщики перенимают практический опыт от более опытных коллег, многие вещи просто знают как делать правильно, но не знают почему. Работают по принципу «Здесь так заведено».

Порой, это достаточно элементарные вещи. Знаешь, как сделать правильно, но, если спросят «Почему так?», ответить сразу не сможешь, сославшись хотя бы на название нормативного документа.

В этой статье я решил структурировать информацию, касающуюся условных обозначений, разложить всё по полочкам, собрать всё в одном месте.

Виды и типы электрических схем

Прежде, чем говорить об условных обозначения на схемах, нужно разобраться, какие виды и типы схем бывают. С 01.07.2009 на территории РФ введен в действие ГОСТ 2.701-2008 «ЕСКД. Схемы. Виды и типы. Общие требования к выполнению».
В соответствии с этим ГОСТ, схемы разделяются на 10 видов:

  1. Схема электрическая
  2. Схема гидравлическая
  3. Схема пневматическая
  4. Схема газовая
  5. Схема кинематическая
  6. Схема вакуумная
  7. Схема оптическая
  8. Схема энергетическая
  9. Схема деления
  10. Схема комбинированная

Виды схем подразделяются на восемь типов:

  1. Схема структурная
  2. Схема функциональная
  3. Схема принципиальная (полная)
  4. Схема соединений (монтажная)
  5. Схема подключения
  6. Схема общая
  7. Схема расположения
  8. Схема объединенная

Меня, как электрика, интересуют схемы вида «Схема электрическая». Вообще, описание и требования к схемам приведены в ГОСТ 2.701-2008 на примере электрических схем, но с 01 января 2012 действует ГОСТ 2.702-2011 «ЕСКД. Правила выполнения электрических схем». Большей частью текст этого ГОСТ дублирует текст ГОСТ 2.701-2008, ссылается на него и другие ГОСТ.

ГОСТ 2.702-2011 подробно описывает требования к каждому виду электрической схемы. При выполнении электрических схем следует руководствоваться именно этим ГОСТ.

ГОСТ 2.702-2011 дает следующее определение понятия электрической схемы: «Схема электрическая — документ, содержащий в виде условных изображений или обозначений составные части изделия, действующие при помощи электрической энергии, и их взаимосвязи». Далее ГОСТ ссылается на документы, регламентирующие правила выполнения условных графических изображения, буквенных обозначений и обозначений проводов и контактных соединений электрических элементов. Рассмотрим каждый отдельно.

Графические обозначения в электрических схемах

В части графических обозначений в электрических схемах ГОСТ 2.702-2011 ссылается на три других ГОСТ:

  • ГОСТ 2.709-89 «ЕСКД. Обозначения условные проводов и контактных соединений электрических элементов, оборудования и участков цепей в электрических схемах».
  • ГОСТ 2.721-74 «ЕСКД. Обозначения условные графические в схемах. Обозначения общего применения»
  • ГОСТ 2.755-87 «ЕСКД. Обозначения условные графические в электрических схемах. Устройства коммутационные и контактные соединения».

Условные графические обозначения (УГО) автоматов, рубильников, контакторов, тепловых реле и прочего коммутационного оборудования, которое используется в однолинейных схемах электрических щитов, определены в ГОСТ 2.755-87.

Однако, обозначение УЗО и дифавтоматов в ГОСТ отсутствует. Думаю, в скором времени он будет перевыпущен и обозначение УЗО будет добавлено. А пока, каждый проектировщик изображает УЗО по собственному вкусу, тем более, что ГОСТ 2.702-2011 это предусматривает. Достаточно привести обозначение УГО и его расшифровку в пояснениях к схеме.

Дополнительно к ГОСТ 2.755-87 для полноты схемы понадобится использование изображений из ГОСТ 2.721-74 (в основном для вторичных цепей).

Все обозначения коммутационных аппаратов построены на четырех базовых изображениях:

с использованием девяти функциональных признаков:

Основные условные графические обозначения, используемые в однолинейных схемах электрических щитов:

Наименование Изображение
Автоматический выключатель (автомат)
Выключатель нагрузки (рубильник)
Контакт контактора
Тепловое реле
УЗО
Дифференциальный автомат
Предохранитель
Автоматический выключатель для защиты двигателя (автомат со встроенным тепловым реле)
Выключатель нагрузки с предохранителем (рубильник с предохранителем)
Трансформатор тока
Трансформатор напряжения
Счетчик электрической энергии
Частотный преобразователь
Замыкающий контакт нажимного кнопочного выключателя с размыканием и возвратом элемента управления автоматически
Замыкающий контакт нажимного кнопочного выключателя с размыканием и возвратом элемента управления посредством вторичного нажатия кнопки
Замыкающий контакт нажимного кнопочного выключателя с размыканием и возвратом элемента управления посредством вытягивания кнопки
Замыкающий контакт нажимного кнопочного выключателя с размыканием и возвратом элемента управления посредством отдельного привода (например, нажатия кнопки-сброс)
Контакт замыкающий с замедлением, действующим при срабатывании
Контакт замыкающий с замедлением, действующим при возврате
Контакт замыкающий с замедлением, действующим при срабатывании и возврате
Контакт размыкающий с замедлением, действующим при срабатывании  
 Контакт размыкающий с замедлением, действующим при возврате  
 Контакт замыкающий с замедлением, действующим при срабатывании и возврате
Катушка контактора, общее обозначение катушки реле
Катушка импульсного реле
Катушка фотореле
Катушка реле времени
Мотор-привод
Лампа осветительная, световая индикация (лампочка)
Нагревательный элемент
Разъемное соединение (розетка):

гнездоштырь

Разрядник
Ограничитель перенапряжения (ОПН), варистор
Разборное соединение (клемма)
Амперметр
Вольтметр
Ваттметр
Частотометр

Обозначения проводов, шин в электрических щитах определяется ГОСТ 2.721-74.

Буквенные обозначения в электрических схемах

Буквенные обозначения определены ГОСТ 2.710-81 «ЕСКД. Обозначения буквенно-цифровые в электрических схемах».

Обозначения дифавтоматов и УЗО в этом ГОСТ отсутствует. На различных сайтах и форумах в интернете долго обсуждали как же правильно обозначать УЗО и дифавтомат. ГОСТ 2.710-81 в п.2.2.12. допускает использование многобуквенных кодов (а не только одно- и двухбуквенных), поэтому до введения нормативного обозначения я для себя принял трехбуквенное обозначение УЗО и дифавтомата. К двухбуквенному обозначению рубильника я добавил букву D и получил обозначение УЗО. Аналогично поступил с дифавтоматом.

Думаю, в скором времени он будет перевыпущен и обозначение УЗО будет добавлено.

Обозначения основных элементов, используемых в однолинейных схемах электрических щитов:

Наименование Обозначение
Автоматический выключатель в силовых цепях QF
Автоматический выключатель в цепях управления SF
Автоматический выключатель с дифференциальной защитой (дифавтомат) QFD
Выключатель нагрузки (рубильник) QS
Устройство защитного отключения (УЗО) QSD
Контактор KM
Тепловое реле F, KK
Реле времени KT
Реле напряжения KV
Фотореле KL
Импульсное реле KI
Разрядник, ОПН FV
Плавкий предохранитель FU
Трансформатор тока TA
Трансформатор напряжения TV
Частотный преобразователь UZ
Амперметр PA
Вольтметр PV
Ваттметр PW
Частотометр PF
Счетчик активной энергии PI
Счетчик реактивной энергии PK
Фотоэлемент BL
Нагревательный элемент EK
Лампа осветительная EL
Прибор световой индикации (лампочка) HL
Штепсельный разъем (розетка) XS
Выключатель или переключатель в цепях управления SA
Выключатель кнопочный в цепях управления SB
Клеммы XT

Изображение электрооборудования на планах

Хотя ГОСТ 2.701-2008 и ГОСТ 2.702-2011 предусматривают вид электрической схемы «схема расположения», при проектировании зданий и сооружений следует руководствоваться ГОСТ 21.210-2014 «СПДС. Изображения условные графические электрооборудования и проводок на планах». Данный ГОСТ устанавливает условные обозначения электропроводок, прокладок шин, шинопроводов, кабельных линий, электрического оборудования (трансформаторов, электрических щитов, розеток, выключателей, светильников) на планах прокладки электрических сетей.

Эти условные обозначения применяются при выполнении чертежей электроснабжения, силового электрооборудования, электрического освещения и других чертежей. Также данные обозначения используются для изображении потребителей в однолинейных принципиальных схемах электрических щитов.

Условные графические изображения электрооборудования, электротехнических устройств и электроприемников

Условные графические обозначения линий проводок и токопроводов

К сожалению, AutoCAD в базовой поставке не содержит все необходимые типы линий.

Проектировщики решают эту проблему по-разному:

  • большинство выполняет отрисовку проводки обычной линией, а потом дополняет обозначениями кружков, квадратиков и пр.;
  • продвинутые пользователи AutoCAD создают собственные типы линий.

Я — сторонник второго способа, т.к. он гораздо удобнее. Если вы используете специальный тип линии, то при её перемещении все «дополнительные» обозначения также перемещаются, ведь они часть линии.

Создать собственный тип линии в AutoCAD достаточно просто. Вы потратите некоторое время на освоение этого навыка, зато сэкономите потом массу времени при проектировании.

Изображение вертикальной прокладки удобнее всего сделать при помощи блоков AutoCAD, а лучше при помощи динамических блоков.

Условные графические изображения шин и шинопроводов

Отрисовку шин и шинопроводов в AutoCAD удобно выполнять при помощи полилинии и/или динамических блоков.

Условные графические изображения коробок, шкафов, щитов и пультов

Наименование Изображение
Коробка ответвительная
Коробка вводная
Коробка протяжная, ящик протяжной
Коробка, ящик с зажимами
Шкаф распределительный
Щиток групповой рабочего освещения
Щиток групповой аварийного освещения
Щиток лабораторный
Ящик с аппаратурой
Ящик управления
Шкаф, панель, пульт, щиток одностороннего обслуживания, пост местного управления
Шкаф, панель двухстороннего обслуживания
Шкаф, щит, пульт из нескольких панелей одностороннего обслуживания
Шкаф, щит, пульт из нескольких панелей двухстороннего обслуживания
Щит открытый
Ящик трансформаторный понижающий (ЯТП)

Отрисовку в AutoCAD удобно выполнять при помощи блоков и динамических блоков.

Условные графические обозначения выключателей, переключателей

ГОСТ 21.210-2014 не предусматривает условных изображения для светорегуляторов (диммеров) и отдельного изображения для кнопочных выключателей, поэтому я ввёл для них собственные обозначения в соответствии с п.4.7.

Отрисовку в AutoCAD удобно выполнять при помощи динамических блоков. Я себе сделал один динамический блок для всех типов выключателей.

Условные графические обозначения штепсельных розеток

Отрисовку в AutoCAD удобно выполнять при помощи динамических блоков. Я себе сделал один динамический блок для всех типов розеток.

Условные графические обозначения светильников и прожекторов

Радует, что в обновленной версии ГОСТ добавлены изображения светодиодных светильников и светильников с компактными люминесцентными лампами.

Отрисовку светильников в AutoCAD удобно выполнять при помощи динамических блоков.

Условные графические обозначения аппаратов контроля и управления

Отрисовку в AutoCAD удобно выполнять при помощи динамических блоков.

Подпишитесь и получайте уведомления о новых статьях на e-mail

Любые электрические цепи могут быть представлены в виде чертежей (принципиальных и монтажных схем), оформление которых должно соответствовать стандартам ЕСКД. Эти нормы распространяются как на схемы электропроводки или силовых цепей, так и электронные приборы. Соответственно, чтобы «читать» такие документы, необходимо понимать условные обозначения в электрических схемах.

Нормативные документы

Учитывая большое количество электроэлементов, для их буквенно-цифровых (далее БО) и условно графических обозначений (УГО) был разработан ряд нормативных документов исключающих разночтение. Ниже представлена таблица, в которой представлены основные стандарты.

Таблица 1. Нормативы графического обозначения отдельных элементов в монтажных и принципиальных электрических схемах.

Номер ГОСТа Краткое описание
2.710 81 В данном документе собраны требования ГОСТа к БО различных типов электроэлементов, включая электроприборы.
2.747 68 Требования к размерам отображения элементов в графическом виде.
21.614 88 Принятые нормы  для планов электрооборудования и проводки.
2.755 87 Отображение на схемах коммутационных устройств и контактных соединений
2.756 76 Нормы для воспринимающих частей электромеханического оборудования.
2.709 89 Настоящий стандарт регулирует нормы, в соответствии с которыми на схемах обозначаются контактные соединения и провода.
21.404 85 Схематические обозначения для оборудования, используемого в системах автоматизации

Следует учитывать, что элементная база со временем меняется, соответственно вносятся изменения и в нормативные документы, правда это процесс более инертен. Приведем простой пример, УЗО и дифавтоматы широко эксплуатируются в России уже более десятка лет, но единого стандарта по нормам ГОСТ 2.755-87 для этих устройств до сих пор нет, в отличие от автоматических выключателей. Вполне возможно, в ближайшее время это вопрос будет урегулирован. Чтобы быть в курсе подобных нововведений, профессионалы отслеживают изменения в нормативных документах, любителям это делать не обязательно, достаточно знать расшифровку основных обозначений.

Виды электрических схем

В соответствии с нормами ЕСКД под схемами подразумеваются графические документы, на которых при помощи принятых обозначений отображаются основные элементы или узлы конструкции, а также объединяющие их связи. Согласно принятой классификации различают десять видов схем, из которых в электротехнике, чаще всего, используется три:

  • Функциональная, на ней представлены узловые элементы (изображаются как прямоугольники), а также соединяющие их линии связи. Характерная особенность такой схемы – минимальная детализация. Для описания основных функций узлов, отображающие их прямоугольники, подписываются стандартными буквенными обозначениями. Это могут быть различные части изделия, отличающиеся функциональным назначением, например, автоматический диммер с фотореле в качестве датчика или обычный телевизор. Пример такой схемы представлен ниже. Пример функциональной схемы телевизионного приемника
  • Принципиальная. Данный вид графического документа подробно отображает как используемые в конструкции элементы, так и их связи и контакты. Электрические параметры некоторых элементов могут быть отображены, непосредственно в документе, или представлены отдельно в виде таблицы. Пример принципиальной схемы фрезерного станка

Если на схеме отображается только силовая часть установки, то она называется однолинейной, если приведены все элементы, то – полной.

Пример однолинейной схемы

  • Монтажные электрические схемы. В данных документах применяются позиционные обозначения элементов, то есть указывается их место расположения на плате, способ и очередность монтажа. Монтажная схема  стационарного сигнализатора горючих газов

Если на чертеже отображается проводка квартиры, то места расположения осветительных приборов, розеток и другого оборудования указываются на плане. Иногда можно услышать, как такой документ называют схемой электроснабжения, это неверно, поскольку последняя отображает способ подключения потребителей к подстанции или другому источнику питания.

Разобравшись с электрическими схемами, можем переходить к обозначениям указанных на них элементов.

Графические обозначения

Для каждого типа графического документа предусмотрены свои обозначения, регулируемые соответствующими нормативными документами. Приведем в качестве примера основные графические обозначения для разных видов электрических схем.

Примеры УГО в функциональных схемах

Ниже представлен рисунок с изображением основных узлов систем автоматизации.

Примеры условных обозначений электроприборов и средств автоматизации в соответствии с ГОСТом 21.404-85

Описание обозначений:

  • А – Основные (1) и допускаемые (2) изображения приборов, которые устанавливаются за пределами электрощита или распределительной коробки.
  • В – Тоже самое, что и пункт А, за исключением того, что элементы располагаются на пульте или электрощите.
  • С – Отображение исполнительных механизмов (ИМ).
  • D – Влияние ИМ на регулирующий орган (далее РО) при отключении питания:
  1. Происходит открытие РО
  2. Закрытие РО
  3. Положение РО остается неизменным.
  • Е – ИМ, на который дополнительно установлен ручной привод. Данный символ может использоваться для любых положений РО, указанных в пункте D.
  • F- Принятые отображения линий связи:
  1. Общее.
  2. Отсутствует соединение при пересечении.
  3. Наличие соединения при пересечении.

УГО в однолинейных и полных электросхемах

Для данных схем существует несколько групп условных обозначений, приведем наиболее распространенные из них. Для получения полной информации необходимо обратиться к нормативным документам, номера государственных стандартов будут приведены для каждой группы.

Источники питания.

Для их обозначения приняты символы, приведенные на рисунке ниже.

УГО источников питания на принципиальных схемах (ГОСТ 2.742-68 и ГОСТ 2.750.68)

Описание обозначений:

  • A – источник с постоянным напряжением, его полярность обозначается символами «+» и «-».
  • В – значок электричества, отображающий переменное напряжение.
  • С – символ переменного и постоянного напряжения, используется в тех случаях, когда устройство может быть запитано от любого из этих источников.
  • D – Отображение аккумуляторного или гальванического источника питания.
  • E- Символ батареи, состоящей из нескольких элементов питания.

Линии связи

Базовые элементы электрических соединителей представлены ниже.

Обозначение линий связи на принципиальных схемах (ГОСТ 2.721-74 и ГОСТ 2.751.73)

Описание обозначений:

  • А – Общее отображение, принятое для различных видов электрических связей.
  • В – Токоведущая или заземляющая шина.
  • С – Обозначение экранирования, может быть электростатическим (помечается символом «Е») или электромагнитным («М»).
  • D – Символ заземления.
  • E – Электрическая связь с корпусом прибора.
  • F – На сложных схемах, из нескольких составных частей, таким образом обозначается обрыв связи, в таких случаях «Х» это информация о том, где будет продолжена линия (как правило, указывается номер элемента).
  • G – Пересечение с отсутствием соединения.
  • H – Соединение в месте пересечения.
  • I – Ответвления.

Обозначения электромеханических приборов и контактных соединений

Примеры обозначения магнитных пускателей, реле, а также контактов коммуникационных устройств, можно посмотреть ниже.

УГО, принятые для электромеханических устройств и контакторов (ГОСТы 2.756-76, 2.755-74, 2.755-87)

Описание обозначений:

  • А – символ катушки электромеханического прибора (реле, магнитный пускатель и т.д.).
  • В – УГО воспринимающей части электротепловой защиты.
  • С – отображение катушки устройства с механической блокировкой.
  • D – контакты коммутационных приборов:
  1. Замыкающие.
  2. Размыкающие.
  3. Переключающие.
  • Е – Символ для обозначения ручных выключателей (кнопок).
  • F – Групповой выключатель (рубильник).

УГО электромашин

Приведем несколько примеров, отображения электрических машин (далее ЭМ) в соответствии с действующим стандартом.

Обозначение электродвигателей и генераторов на принципиальных схемах (ГОСТ 2.722-68)

Описание обозначений:

  • A – трехфазные ЭМ:
  1. Асинхронные (ротор короткозамкнутый).
  2. Тоже, что и пункт 1, только в двухскоростном исполнении.
  3. Асинхронные ЭМ с фазным исполнением ротора.
  4. Синхронные двигатели и генераторы.
  • B – Коллекторные, с питанием от постоянного тока:
  1. ЭМ с возбуждением на постоянном магните.
  2. ЭМ с катушкой возбуждения.

Обозначение электродвигателей на схемахУГО трансформаторов и дросселей

С примерами графических обозначений данных устройств можно ознакомиться на представленном ниже рисунке.

Правильные обозначения трансформаторов, катушек индуктивности и дросселей (ГОСТ 2.723-78)

Описание обозначений:

  • А – Данным графическим символом могут быть обозначены катушки индуктивности или обмотки трансформаторов.
  • В – Дроссель, у которого имеется ферримагнитный сердечник (магнитопровод).
  • С – Отображение двухкатушечного трансформатора.
  • D – Устройство с тремя катушками.
  • Е – Символ автотрансформатора.
  • F – Графическое отображение ТТ (трансформатора тока).

Обозначение измерительных приборов и радиодеталей

Краткий обзор УГО данных электронных компонентов показан ниже. Тем, кто хочет более широко ознакомиться с этой информацией рекомендуем просмотреть ГОСТы 2.729 68 и 2.730 73.

Примеры условных графических обозначений электронных компонентов и измерительных приборов

Описание обозначений:

  1. Счетчик электроэнергии.
  2. Изображение амперметра.
  3. Прибор для измерения напряжения сети.
  4. Термодатчик.
  5. Резистор с постоянным номиналом.
  6. Переменный резистор.
  7. Конденсатор (общее обозначение).
  8. Электролитическая емкость.
  9. Обозначение диода.
  10. Светодиод.
  11. Изображение диодной оптопары.
  12. УГО транзистора (в данном случае npn).
  13. Обозначение предохранителя.

УГО осветительных приборов

Рассмотрим, как на принципиальной схеме отображаются электрические лампы.

Пример того, как указываются лампочки на схемах (ГОСТ 2.732-68)

Описание обозначений:

  • А – Общее изображение ламп накаливания (ЛН).
  • В – ЛН в качестве сигнализатора.
  • С – Типовое обозначение газоразрядных ламп.
  • D – Газоразрядный источник света повышенного давления (на рисунке приведен пример исполнения с двумя электродами)

Обозначение элементов в монтажной схеме электропроводки

Завершая тему графических обозначений, приведем примеры отображения розеток и выключателей.

Пример изображения на монтажных схемах розеток скрытой установки

Как изображаются розетки других типов, несложной найти в нормативных документах, которые доступны в сети.

Обозначение выключатели скрытой установкиОбозначение розеток и выключателей

Видео по теме:

Буквенные обозначения

В электрических схемах помимо графических обозначений также используются буквенные, поскольку без последних чтение чертежей будет довольно проблематичным. Буквенно-цифровая маркировка так же, как и УГО регулируется нормативными документами, для электро это ГОСТ 7624 55. Ниже представлена таблица с БО для основных компонентов электросхем.

Буквенные обозначения основных элементов

К сожалению, размеры данной статьи не позволяют привести все правильные графические и буквенные обозначения, но мы указали нормативные документы, из которых можно получить всю недостающую информацию. Следует учитывать, что действующие стандарты могут меняться в зависимости от модернизации технической базы, поэтому, рекомендуем отслеживать выход новых дополнений к нормативным актам.

Условные обозначения в электрических схемах Гост

Уметь читать специальные электрические обозначения должен уметь каждый человек, который имеет отношение к электричеству.  Обозначений существует огромное количество, но знать их нужно всегда, или просто изредка подглядывать в нашу статью. Здесь мы разберем, какие существуют условные обозначения в электрических схемах гост, и разберем все возможные варианты.

Какие бывают условные обозначения в электрических схемах

Всего существует две основных группы обозначений на схемах, они используются повсеместно, поэтому их стоит знать. Ведь по-другому вы не узнаете, как обозначаются: выключатели, светильники, розетки и другие элементы цепи на вашей электрической схеме. Если вы только думаете, составить схему, тогда обязательно используйте только правильные обозначения, ведь рано или поздно вы к ней вернетесь, если разобрать не сможете – будет очень плохо.

Если говорить за два вида электрических обозначений, то стоит назвать:

  1. Графические.
  2. Буквенные.

О них мы и поговорим в этой статье, прочитав все внимательно, вы сможете что-то понять. Чтобы выучить, прочитать придется раз 20, как минимум. Итак, существуют следующие условные обозначения в электрических схемах, если вы сможете в них вникнуть, тогда и учить все будет легче. Все они поддаются логике, но основное запомнить придется. Вам будет интересно узнать, какие существуют программы для черчения схем.

Графические обозначения в электрических схемах

Изначально мы поговорим об графических обозначениях электрических элементов, которые используются в стандартных схемах. Чтобы вам проще было вникнуть в суть, мы решили сделать для вас подборку в виде таблиц, которые мы встретили в интернете.

Первая таблица означает схемы: электрических коробок, щитов, пультов и шкафов на стандартных электросхемах.

Вот так обозначаются розетки и выключатели, более подробно вы найдете в статье, обозначение розеток.

Если говорить за элементы освещение обозначения, то по ГОСТу они обозначаются образом:

Следующим образом обозначаются трансформаторы и генераторы.

Если говорить за более серьезные схемы, то можно сразу назвать различные электродвигатели, элементы на них обозначаются вот так:

Такие обозначения важно будет узнать начинающим электрикам, ведь следующим образом выглядит контур заземления и силовая линия.

Опытные электрики всегда заинтересуются сложными графическими электрическими обозначениями в виде контактных соединений. Таким образом, обозначаются устройства на электросхемах по ГОСТУ.

Вот так выглядит радиоэлементы, сюда можно отнести: диоды, резисторы, транзисторы и прочее.

Итак, мы с вами разобрали все графические обозначения на электрических схемах, которые применяются в силовых сетях для освещения. Как вы могли заметить, обозначений много, но запомнить их всех можно, с электродвигателями ситуация немного сложней, но такие обозначения используют только профессиональные электрики. Мы рекомендуем сохранить эту страницу, она станет для вас спасением рано или поздно.

Буквенное обозначения в электрических схемах

Мы уже разбирали похожую статью: расшифровка кабелей и проводов, если вы читали эту статью, вам будет проще разобраться со всеми буквенными обозначениями. Согласно ГОСТ 7624-54 буквенное обозначение элементов на электрических схемах выглядит вот так:

  1. КВ – конечный выключатель.
  2. ПВ – путевой выключатель.
  3. ДО – двигатель насоса охлаждения.
  4. ДП – двигатель подач.
  5. ДШ – двигатель шпинделя.
  6. ДБХ – двигатель быстрых ходов.
  7. ДГ – главный двигатель.
  8. КК – командо-контроллер.
  9. КУ – кнопкауправления.
  10. Напряжение, мощность, время, указательное, реле тока, соответственно – РТ, РН, РМ, РС, РВ, РП, РУ, РГ, РТВ.

Радиотехнические элементы на электронных схемах обозначаются следующим образом.

Вот мы с вами и разобрали, какие существуют электрически обозначения на схемах, посмотрите еще вот такое интересное видео, оно поможет понять некоторые особенности.

Статья по теме: Что делать если соседи воруют электричество.

Схема проводки в квартире. Условные обозначения

Если вы решили заменить проводку в квартире, то для начала необходимо составить подробную схему. Для того, чтобы правильно составить схему проводки, необходимо знать, как на схеме должны отображаться все ее основные элементы. Помимо этого, в данной статье будут рассмотрены некоторые типовые схемы проводки в квартире.

Разновидности схем проводки

При собственноручной замене проводки в квартире вам понадобится два варианта схемы – электромонтажная и принципиальная.

Схема, на которой показаны основные электрические связи, существующие между всеми элементами, которые изображены с помощью специальных условных графических и буквенно-цифровых обозначений, называется принципиальной схемой. Принципиальная схема чаще всего изображается однолинейной.

Однолинейной схемой называют такую схему, на которой все фазные провода отображены всего одной линией и не отображается нулевой проводник, а защитные аппараты и нагрузки изображены схематично, без указания схемы их подключения.

На электромонтажной схеме на план квартиры, который изображается в масштабе, наносят все обозначения. На электромонтажной схеме обязательно должно быть указано точное прохождение всех линий, расположение квартирного щита, выключателей, монтажных коробок, освещения и розеток.

Условные обозначения, используемые на схемах проводки для квартиры

Для правильного составления схемы проводки, необходимо знать обозначения различных элементов. Все эти обозначения нормируются ГОСТами и называют их условными графическими обозначениями.

Вот два ГОСТа, которые стоит изучить перед составлением схемы проводки: ГОСТ 2.710-81 «Обозначения буквенно-цифровые в электрических схемах» и ГОСТ 21.614-88 «Изображения условные графические электрооборудования и проводок на планах».

Далее будут расписаны УГО всех основных элементов схемы проводки, которые могут вам понадобится при составлении схемы для квартиры.

Обозначения, которые применяются на принципиальных схемах

Автомат или выключатель автоматический (ГОСТ 2.755-87). Он обозначается буквами QF.

УЗО, дифавтомат. Обозначается буквами QF.

Электрический счетчик активной мощности (ГОСТ 2.729-68). Обозначается буквами PI.

Силовой щит (ГОСТ21.614-88).

Лампочка накаливания (ГОСТ 2.732-68). Обозначается буквами EL.

Обозначения, которые применяются на электромонтажных схемах

Все данные по этим обозначениям можно найти в ГОСТ 21.614-88.

Осветительная коробка, монтажная коробка.

Накладной выключатель.

Выключатель со скрытой установкой.

Накладная розетка, имеющая защитный контакт.

Розетка со скрытой установкой, имеющая защитный контакт.

Примеры схем проводки в квартире

Первая из предложенных схем, является самой простой однолинейной схемой для однокомнатной или двухкомнатной квартиры. Питание квартиры осуществляется от одной фазы через этажный щит. Помимо этого, в квартиру заводится защитное и рабочее заземление с этажного щита. После этого идет двухполюсный вводный автомат, который отключает ноль и фазу. Согласно правил (п.1.5.36 ПУЭ), автомат должен быть установлен до счетчика электроэнергии – «Для того, чтобы можно было безопасно устанавливать и, по необходимости, заменять счетчики в сетях, имеющих напряжение до 380 В, необходимо предусмотреть возможность отключать счетчик с помощью установленных до него предохранителей или коммутационных аппаратов на расстоянии не больше 10 метров. Должна быть возможность снимать напряжение со всех фаз, присоединенных к счетчику».

За счетчиком должна устанавливаться шина, к которой подключаются автоматы освещения и плиты, а также розетки через дифавтомат (УЗО).

Вторая схема несколько сложнее и предназначена для двухкомнатных и трехкомнатных квартир. Такая схема отличается тем, что розетки запитываются через два двухполюсных дифавтомата (УЗО). Благодаря этому для комнат образуется отдельная линия питания и отдельная линия для кухни, туалета, коридора и ванной. На данной схеме электрическая плита запитывается через двухполюсный дифавтомат (УЗО). Делать это необязательно, но желательно, так как это повысит безопасность от попадания под так называемое косвенное напряжение.

Выше показана схема, которая выполнена с обозначением рабочего и защитного заземления. Данная схема является более подробным вариантом предыдущей схемы.

Обозначение выключателей и розеток на чертежах

Мы уже много раз говорили о том, насколько важно перед выполнением ремонтных работ по домашней электрике грамотно составить схему электроснабжения, с неё всё должно начинаться. На схемах отображаются основные электрические узлы – вводная линия, счётчик электрической энергии, устройства защиты, распределительные коробки и отходящие от них проводники, коммутационные аппараты, осветительные элементы. Чтобы глядя на схему хотя бы мало-мальски в ней разбираться, нужно знать каково условное обозначение выключателей и розеток на чертежах. Предлагаем вам этому немного поучиться.

Очень многие начинают ремонтные работы в строящемся доме или вновь приобретённой квартире с приглашения специалиста для помощи в составлении схемы. От вас потребуется лишь подробно рассказать, где вы планируете располагать крупногабаритную мебель и бытовую электротехнику. А уже задача профессионала – схематически отобразить всё это с указанием места установки выключателей и розеток на плане. Такой чертёж поможет вам чётко определиться с количеством необходимых материалов и рационально распланировать порядок ведения электромонтажных работ.

Мы не будем вести речь о сложных электрических элементах, типа рубильников, реле, тиристоров, симисторов, двигателей. Для домашних электросетей в этом нет необходимости. Наша главная задача – научиться распознавать обозначение бытовых выключателей и розеток на схематических чертежах.

Условное обозначение электрических элементов выполняется при помощи графических символов – треугольников, окружностей, прямоугольников, линий и т. д.

Обозначение розеток

Розетка – коммутационный аппарат, который является частью штепсельного соединения, работает в паре с вилкой, предназначен для подключения электроприборов в сеть.

Обозначение розеток на чертежах выполняется полукругом, от выпуклой части которого отходят одна или несколько чёрточек в зависимости от типа коммутационного аппарата.

На видео показаны основные обозначения электрооборудования:

Розетки по способу монтажа бывают:

  1. Наружные (для открытой проводки). Их монтируют на стенной поверхности. Они обозначаются пустым полукругом, не имеющим внутри никаких дополнительных чёрточек.
  2. Внутренние (для скрытой проводки). Они монтируются внутри стены, для этого необходимо проделать отверстие и вставить в него специальный подрозетник, напоминающий по форме неглубокий стакан. В схематическом изображении таких коммутационных аппаратов полукруг внутри имеет по центру черту.

Часто применяют в бытовых сетях сдвоенные розетки. Они представляют собой моноблок, в котором есть два штепсельных разъёма (то есть можно подключить в них две вилки от двух различных электроприборов) и одно установочное место (монтаж производится в один подрозетник). Обозначение сдвоенной розетки на электрической схеме выглядит как полукруг с двумя чёрточками с внешней выпуклой стороны:

В современных бытовых сетях всё чаще используют розетки с заземлением, они гарантируют долгую надёжную работу электроприборов и безопасность людей в плане поражения электрическим током.

Эти устройства отличаются от обыкновенных тем, что у них имеется третий контакт, к которому подсоединяется провод заземления.

Этот провод идёт к общему распределительному щитку, где подключается к специальной клемме заземления. Обозначение такой розетки на электрической схеме выглядит следующим образом:

Как видите, заземление обозначается горизонтальной чертой, которая по касательной примыкает к выпуклой части полукруга.

Уже не редкость, когда для современного дома подводится не однофазная электрическая сеть, а трёхфазная. Некоторые потребители электроэнергии требуют напряжения именно 380 В (отопительные котлы, водонагреватели, электрические плиты). Для их подключения применяют трёхполюсные розетки с защитным заземлением. Коммутационные аппараты такого типа имеют пять контактов – три фазных, один нулевой и ещё один для защитного заземления. Розетка трёхполюсная обозначается с тремя чёрточками с внешней стороны полукруга:

А вот так выглядят условные обозначения розеток сдвоенных, с защитным заземлением:

Иногда вы можете увидеть обозначение розетки, у которой полукруг внутри полностью закрашен чёрным цветом. Это означает, что коммутационный аппарат влагостойкого исполнения, он оснащён защитной крышкой, которая исключает возможность попадания в розетку влаги или пыли. Степень защиты подобных элементов маркируется специальными символами:

  • Две английские буквы IP обозначают само понятие, что розетка имеет определённый уровень защиты.
  • Затем следуют две цифры, первая из которых означает степень защиты от пыли, вторая – от влаги.

На схеме розетки со степенью защиты IP 44-55 выглядят так:

Если у них есть контакт защитного заземления, то соответственно добавляется ещё горизонтальная черта:

Если делать схему электропроводки в специализированных программах, то на видео пример чертежа в AutoCad:

Обозначение выключателей

Выключатель – коммутационный аппарат, предназначенный для управления осветительными приборами в доме. Во время его включения-отключения электрическая цепь замыкается либо размыкается. Соответственно при включенном выключателе по замкнутой цепочке напряжение поступает на светильник, и он загорается. И наоборот, если выключатель отключен, электрическая цепь разорвана, напряжение до лампочки не доходит, и она не горит.

Обозначение выключателей на чертежах выполняется кружочком с чёрточкой вверху:

Как видите, чёрточка на конце ещё имеет небольшой крючок. Это означает, что коммутационный аппарат одноклавишный. Обозначение двухклавишного и трёхклавишного выключателя соответственно будет иметь два и три крючочка:

Аналогично розеткам выключатели бывают наружными и внутренними. Все выше приведенные обозначения относятся к аппаратам открытой (или наружной) установки, то есть когда они монтируются на поверхности стены.

Выключатель скрытой (или внутренней) установки на схеме обозначается точно так же, только с крючочками, направленными в обе стороны:

Выключатели, предназначенные для монтажа на улице или в помещениях с повышенной влажностью, имеют определённую степень защиты, которая маркируется так же, как и у розеток — IP 44-55. На схемах такие выключатели изображаются с кружочком, закрашенным внутри чёрным цветом:

Иногда можно увидеть на схеме изображение выключателя, у которого от окружности чёрточки с крючочками направлены в две противоположные стороны, как будто в зеркальном отображении. Таким образом обозначается переключатель или, как его по-другому называют, проходной выключатель.

Эти коммутационные аппараты подключаются по специальной схеме и дают возможность управлять одним и тем же осветительным прибором из разных мест (их применение очень удобно в длинных коридорах, на лестничных маршах).

Они также бывают двухклавишными или трёхклавишными:

Обозначение блоков

Многим наверняка приходилось сталкиваться с таким элементом электрической сети, как блок «выключатель-розетка». Его применение весьма выгодно. Во-первых, это экономит немного места. А во-вторых, не нужно проделывать штробы для прокладки проводов отдельно к каждому коммутационному аппарату (проводники, идущие и на розетку, и на выключатель, укладывают в одной штробе). Компонуют подобные блоки по-разному.

Наглядно про блоки на следующем видео:

Обозначение розеток и выключателей, совмещённых в один блок, выглядит на схеме уже гораздо сложнее:

  • Блок скрытой установки из одного выключателя и одной розетки.
  • Блок скрытой установки из одного выключателя и одной розетки с защитным заземлением.

  • Блок скрытой установки из двух выключателей и розетки с защитным заземлением.
  • Блок скрытой установки из одноклавишного выключателя, двухклавишного выключателя и розетки с защитным заземлением.

Все эти изображения не нужно заучивать наизусть, главное, их понимать. А хороший, грамотно составленный чертёж всегда должен иметь внизу сноски с расшифровкой тех или иных обозначений.

% PDF-1.5 % 1 0 obj> endobj 2 0 obj> endobj 3 0 obj> endobj 4 0 obj> поток конечный поток endobj xref 0 5 0000000000 65535 ф 0000000016 00000 н. 0000000075 00000 п 0000000120 00000 н. 0000000210 00000 п. трейлер ] >> startxref 3379 %% EOF 1 0 obj> / OCG [11 0 R] >>>> endobj 2 0 obj> endobj 3 0 obj> endobj 5 0 obj null endobj 6 0 obj> / XObject> / ProcSet [/ PDF / Text / ImageC] / ExtGState >>>>> endobj 7 0 obj> endobj 8 0 obj> endobj 9 0 obj> / ProcSet [/ PDF / Text] >> / Subtype / Form / FormType 1 / Matrix [1.kx- 獼 w # | OY | omq6? ‘_] — @ [茮 z / «0

SE-02 — Спецификации для поверки и повторной поверки счетчиков электроэнергии

Категория: Электроэнергия
Спецификация: SE-02 (ред. 5)
Документ (ы) : SS-Series, S-02, E-26
Дата выпуска:
Дата вступления в силу:
Заменяет: SE-02 (ред. 4)

Эти спецификации применяются к любому счетчику электроэнергии, представленному для проверки или повторной проверки в соответствии с Законом об инспекции электроэнергии и газа .

Эти спецификации выпущены в соответствии с разделом 18 Правил контроля электроэнергии и газа .

Закон

Закон Об инспекции электроэнергии и газа

Расширенная функция счетчика

Функция, встроенная в счетчик, которая использует измеренную информацию для предоставления дополнительной информации, непосредственно связанной с установлением платы за электричество. Примеры включают: постоянные импульсов, множители счетчиков и компенсацию потерь.( fonction de mesurage avancée )

Счетчик автоматического обнаружения обслуживания

Счетчики, способные определять конфигурации обслуживания. ( компьютер с автоматическим обнаружением службы )

Шкаф (метра)

Полный корпус. ( нижнее белье d’un compteur )

Настраиваемый счетчик

Счетчик, который спроектирован таким образом, что его сервисная конфигурация может быть изменена программно или аппаратно, чтобы сделать его совместимым с различными схемами.Это может быть выполнено автоматически или при вмешательстве оператора. Например, счетчик можно перенастроить с счетчика на 2½ элемента для измерения трехфазной четырехпроводной схемы звезды на двухэлементный счетчик для измерения трехфазной трехпроводной схемы. ( компьютер конфигурируется )

Константы ( константы )
Дисковая постоянная K h (индукционный счетчик)

Количество единиц энергии, измеряемых на оборот диска.Для счетчика ватт-часов постоянная диска K h равна ватт-часам на оборот. ( constante du disque K h compteur à индукционный )

Постоянная выходного сигнала инициатора импульса K p (постоянная импульса)

Количество единиц энергии, измеряемых на импульсный выход. Импульс может поступать с выхода KYZ или любого другого устройства импульсного вывода. ( constante de sortie du générateur d’impulsions K p constant d’impulsions )

Однофазная испытательная постоянная

Коэффициент умножения, необходимый для определения правильной регистрации при тестировании определенных многоэлементных счетчиков с использованием последовательно-параллельных однофазных методов тестирования.( постоянное монофазное )

Испытательная постоянная K с (электронный счетчик)

Количество единиц энергии, измеряемых по показаниям средств проверки счетчика (светодиод, ЖК-индикатор или другое). ( constante d’essai K s compteur électronique )

Крышка (метра)

Часть корпуса, которая является съемной или может открываться для доступа к внутренней части счетчика.( couvercle d’un compteur )

Накопительный регистр

Не сбрасываемый регистр энергии, в котором накапливается полная энергия, измеренная счетчиком (Втч, варч, ВАч и джоуль). ( enregistreur cumulatif )

Диапазон тока

Диапазон токов, в котором счетчик или трансформатор рассчитаны на работу в указанных пределах погрешности. ( цветовая гамма )

Трансформатор тока

Измерительный трансформатор, предназначенный для измерения и контроля тока.( трансформер куранта )

Дефект

Отклонение характеристики качества счетчика от заданного уровня или состояния, которое происходит с серьезностью, достаточной для того, чтобы счетчик не удовлетворял требованиям нормального использования. В зависимости от характера и серьезности дефекта, он может вызвать несоответствие сразу же или в какой-то момент в будущем. ( по умолчанию )

Отведенная энергия

Энергия, измеренная при протекании тока через счетчик от электросети к нагрузке.( Энергетическая энергия )

Спрос ( puissance appelée )

Среднее значение мощности, измеренное за указанный интервал времени. Ниже перечислены наиболее часто используемые типы:

Интервал спроса

Указанная продолжительность времени, на которой основано измерение спроса. ( период интеграции апелляционной службы )

Интегрированная потребность (потребность в интервале блоков)

Потребление определяется путем измерения энергии, потребляемой за фиксированный интервал времени, деленной на интервал времени.( подача апелляции в период интеграции подача апелляции в период интеграции )

Счетчик потребления с задержкой или экспоненциальным откликом

Измеритель потребления, в котором индикация потребности определяется путем отслеживания экспоненциальной или тепловой реакции на приложенную нагрузку. ( compteur de puissance appelée à retardement или réponse exponentielle )

Максимальный (или пиковый) спрос

Наибольшая из всех требований, которые возникли в течение определенного периода времени, обычно расчетного периода.( Максимальное имя: ou de crête )

Максимальный (полномасштабный) рейтинг потребления

Наибольшая потребность, которую счетчик способен измерять в указанных пределах погрешности. ( максимальное имя апелляции )

Период отклика — экспоненциальный счетчик потребления

Время, необходимое для того, чтобы показания счетчика достигли 90 процентов окончательной реакции на скачкообразное изменение измеряемой величины.( temps de réponse — compteur de puissance appelée à réponse exponentielle )

Раздвижное окно

Тип ответа на запрос, при котором в конце каждого нового подинтервала значение самого старого значения потребности подинтервала отбрасывается, а новое значение спроса вычисляется на основе суммы энергии, зарегистрированной в самом последнем непрерывном подинтервале. -интервалы, составляющие общий интервал потребления. ( puissance appelée à fenêtre mobile )

Директор

Директор, упомянутый в Законе и правилах, относится к Президенту Министерства промышленности Канады по измерениям.( директор )

Дисплей

Устройство или другие средства, используемые для визуального представления значения измеренной величины и другой соответствующей информации. Он может быть составной частью счетчика или отдельным модулем индикации. ( affichage or dispositif afficheur )

Электромеханический счетчик

Счетчик электроэнергии, который включает в себя механические элементы для измерения и регистрации измеренных величин.( compteur électromécanique )

Электронный счетчик

Твердотельный счетчик электроэнергии. ( электронный компьютер )

Элемент

Комбинация блока измерения напряжения (т.е. датчика или катушки), связанного с блоком измерения тока (например, датчиком или катушкой). ( элемент )

Разделенный элемент катушки

Разделенный катушечный элемент содержит схему измерения тока, которая связана с более чем одной схемой измерения напряжения.Иногда также называется датчиком Z-катушки. ( бобин по цене )

Счетчик энергии

Устройство, которое суммирует элементарные количества энергии измеренного входа либо непрерывно, либо в течение фиксированного интервала времени для случая, когда счетчик энергии используется для определения потребления. ( compteur d’énergie )

Ошибка ( erreur )
Абсолютная ошибка

Значение, зарегистрированное счетчиком, минус истинное значение.( Erreur Absolue )

Относительная (истинная) ошибка

Абсолютная ошибка измерения, деленная на условное истинное значение меры, традиционно называемое «истинной ошибкой». Выраженная в процентах относительная погрешность рассчитывается как:

где,

  • E r — относительная погрешность тестируемого измерителя, выраженная в процентах
  • Q м — количество, показанное тестируемым счетчиком
  • Q s — количество, указанное в эталонном стандарте, выраженное в тех же единицах, что и Q m ( относительная ошибка vraie )
Ошибка полной шкалы

Отношение абсолютной ошибки к значению полной шкалы.( erreur pleine échelle )

Прошивка

Программа, встроенная в энергонезависимую память счетчика. ( micrologiciel )

Рама (метра)

Деталь, к которой крепятся рабочие части и приспособления. ( bâti d’un compteur )

Значение полной шкалы

Наибольшее значение исполнительной электрической величины, которое может быть указано на шкале, или, в случае прибора, у которого ноль находится между концами шкалы, значение полной шкалы представляет собой арифметическую сумму абсолютных значений исполнительной электрической количество, соответствующее двум концам шкалы.( valeur de pleine échelle )

Функция

Операция в устройстве, которая выполняет указанное действие или приводит к определенному выходу. ( функция )

Индукционный счетчик

Счетчик энергии, работающий за счет вращения диска индукционного измерительного элемента. ( индукционный компьютер )

Измерительный трансформатор

Трансформатор, который предназначен для воспроизведения во вторичной цепи в определенной и известной пропорции тока или напряжения первичной цепи с сохранением в значительной степени фазового соотношения.( transformateur de mesure )

Максимальный номинальный ток ( I макс )

Наибольшее значение тока, для которого утвержден счетчик, при котором он сохраняет свои характеристики в установленных пределах погрешности. Счетчики с номинальным номиналом имеют I max , что в четыре раза больше номинального тока счетчика. ( курант максимальный номинальный I макс )

Измерительная аппаратура

Устройство или инструмент, который используется для измерения электроэнергии в целях калибровки счетчиков электроэнергии.( Мерная одежда )

Метр

Счетчик электроэнергии, включающий в себя любое оборудование, используемое для измерения или получения основы для оплаты электроэнергии, поставляемой покупателю (ссылка: Закон об инспекции электроэнергии и газа ). ( компьютер )

Множитель счетчика

Коэффициент, на который нужно умножить показания счетчика, чтобы получить правильную величину измеряемой величины.( мультипликатор дешель )

Метрологическая функция, характеристика, характеристика или параметр

Любая функция, характеристика, характеристика или параметр счетчика, который обеспечивает измеренное количество или способствует определению количества, которое может использоваться для выставления счетов. ( fonction, propriété, caractéristique ou paramètre métrologique )

Минимальный номинальный ток ( I мин )

Наименьшее значение тока, для которого утвержден счетчик, чтобы поддерживать свои характеристики в установленных пределах погрешности.( курант минимальный номинальный I мин )

Многофункциональный счетчик

Измеритель, способный выполнять две или более функции измерения. ( compteur multifonctions )

Многоканальный счетчик (например, многоскоростной регистровый счетчик)

Приложение для измерения электроэнергии, которое записывает измеренные значения электроэнергии в различные регистры или «бункеры» (электронные или механические) в зависимости от различных условий, таких как время (т.е.е., время использования, ценообразование в реальном времени), температура и т. д. ( compteur à registres multiples )

Несоответствие

Отклонение характеристики качества счетчика от заданного уровня или состояния, которое происходит с серьезностью, достаточной для того, чтобы счетчик не удовлетворял одному или нескольким требованиям спецификации. ( несоответствие )

Нормальный режим работы

Рабочий режим, предполагаемый счетчиком во время работы без вмешательства оператора.( mode de fonctionnement normal )

Фазовращающий трансформатор Фазирующий трансформатор

Измерительный трансформатор, который представляет собой сборку из двух или более автотрансформаторов, используемых в качестве вспомогательных измерительных трансформаторов, предназначенных для подключения между фазами многофазной цепи, чтобы обеспечивать напряжения в правильном фазовом соотношении для подачи питания на счетчики переменного тока, счетчики часов переменного тока. или другое измерительное оборудование. ( transformateur déphaseur )

Президент

Президент Измерения Канады, имеющий полномочия «Директора», как указано в Законе.( президент )

Коэффициент мощности

Отношение активной мощности к полной мощности. В условиях чистой синусоидальной волны коэффициент мощности определяется как cos φ, где φ — сдвиг фаз между напряжением и током. ( facteur de puissance )

Инициатор импульса

Инициатор данных, используемый с измерителем-источником для инициирования импульсов, количество которых пропорционально измеряемой величине.( générateur d’impulsions )

Регистратор импульсов

Устройство, которое накапливает импульсы от внешнего источника, представляющие целые единицы энергии. ( enregistreur d’impulsions )

Счетчик моточасов

Электросчетчик, измеряющий энергию, эффективно отстающий от приложенного напряжения на 60 °. ( q-heuremètre )

Диапазон (показывающего или записывающего измерителя)

Область, охватываемая диапазоном и выраженная двумя конечными значениями шкалы.Если диапазон проходит через ноль, диапазон указывается путем вставки «нуля» или «0» между конечными значениями шкалы. ( gamme de mesure d’un compteur indicateur or enregistreur )

Номинальная частота

Частота или частоты, на которых рассчитан прибор. ( номинальная частота )

Номинальное напряжение

Напряжение, при котором счетчик или устройство спроектировано для работы, или, в случае счетчиков, предназначенных для работы с различными цепями напряжения, любое предпочтительное напряжение (как указано в Спецификациях для утверждения типов счетчиков электроэнергии, измерительных трансформаторов и вспомогательного оборудования). Устройств), на которых может работать счетчик.( номинальное напряжение )

Полученная энергия

Энергия, измеренная, когда ток течет через счетчик со стороны нагрузки службы обратно в электрическую сеть. ( énergie reçue )

Контрольный счетчик

Измерительный прибор с ошибками, прослеживаемыми Национальным исследовательским советом Канады и используемый для установления истинного значения измерения. ( compteur de reference )

Регистр (электронный)

Область памяти в измерителе, где значение измеряемой величины записывается в электронном виде.( регистр электронный )

Регистр (механический)

Механическое устройство, встроенное в счетчик, где значение измеряемой величины записывается и отображается визуально. ( регистр mécanique )

Коэффициент регистра R r — интегрирующий измеритель индукционного типа

Число оборотов первой шестерни регистра за один оборот стрелки первого циферблата.( раппорт о регистрации R r — compteur intégrateur à индукции )

Правила

Правила проверки электроэнергии и газа . ( Регламент )

Время возврата — регистр механической нагрузки

Интервал времени в пределах каждого интервала потребления, в течение которого приводной элемент и индикатор потребности отключаются друг от друга, чтобы позволить приводному элементу вернуться в исходное положение.( temps de débrayage — registre de puissance appelée mécanique )

Повторная проверка

Любое последующее подтверждение соответствия счетчика требованиям законодательства после его первоначальной проверки соответствия этим же требованиям, выполняемой по истечении периода повторной проверки счетчика (т. Е. Периода пломбирования). (Модификация )

Уплотнение

Средство, с помощью которого может быть эффективно обнаружен несанкционированный доступ к внутренней части, настройкам или органам управления счетчиком.( картина )

Автономный счетчик

Счетчик, предназначенный для прямого подключения к силовой цепи без использования внешних устройств, таких как измерительные трансформаторы или шунты. ( автономный компьютер )

Серия тест

Испытание, выполняемое на измерителе, при котором все входные цепи напряжения запитываются напряжениями одинаковой величины и фазового соотношения, а все входные токовые цепи питаются токами одинаковой величины и фазового соотношения.Это может быть достигнуто путем размещения всех входных цепей напряжения измерителя в параллельной цепи и всех цепей тока измерителя в последовательной цепи. ( essai en série )

Вид услуги

Количество проводов и фаз, а также соединение между ними, используемых для питания измерительной нагрузки. ( тип обслуживания )

Однофазные услуги ( однофазные услуги )

Однофазные услуги могут быть предоставлены следующим образом:

Сетевая служба

Трехпроводная сеть, питаемая от трехфазной, четырехпроводной, звездообразной распределительной системы, при этом один из проводов является нейтральным проводником, а два других проводника являются фазовыми.( сервисный центр )

Трехпроводная связь

Однофазное трехпроводное соединение может обеспечиваться от однофазной или многофазной распределительной системы. Один провод, нейтраль, заземлен, и нормальное рабочее напряжение составляет 240 В между незаземленными проводниками и 120 В между любым из незаземленных проводов и заземленным проводом. ( служебная тройка )

Двухпроводная связь

Однофазное двухпроводное соединение может обеспечиваться от многих распределительных сетей и обычно имеет один заземленный провод с номинальным напряжением 120 В между проводниками.( обслуживание deux fils )

Полифазные услуги ( полифазные услуги )

Полифазные услуги могут быть предоставлены следующим образом:

Трехфазный, четырехпроводной, треугольник

Трехфазная четырехпроводная схема подключения по схеме «треугольник» — это схема подключения по схеме «треугольник», при которой один трансформаторный центр подключен к нейтральному проводу (и заземлен). В этом случае, когда напряжение между любыми двумя фазами составляет 240 В, напряжение между заземленным проводом и любой из двух фаз, от которых он отводится по центру, будет 120 В, а напряжение от третьей фазы к заземленным фазам будет быть 208 В.( трехфазный сервисный центр в треугольнике )

Три фазы, четыре провода, звезда

Трехфазная, четырехпроводная схема «звезда» имеет три фазы и нейтральный провод, где напряжения между фазой и нейтралью номинально равны друг другу, а напряжение между фазами равно √3-кратному напряжению между фазой и нейтралью. ( сервис трифасе quatre fils en étoile )

Трехфазный, трехпроводной

Трехфазная трехпроводная сеть не имеет нейтрального проводника и может питаться от батареи трансформаторов с открытым или закрытым треугольником.( сервисный тройной тройной фильтр )

Однорегистровый двунаправленный счетчик

Счетчик, который определен как способный измерять как положительный, так и отрицательный средний поток энергии, и где чистый результат будет помещен в один регистр. Этот процесс эквивалентен тому, что определяется как «неттинг». ( двунаправленный компьютер в регистр )

Одно регистровый счетчик только одного направления

Измеритель, который определен как способный измерять и регистрировать только положительный или отрицательный средний поток энергии.Это исторически называлось в Канаде «однонаправленным измерителем». ( compteur unidirectionnel seulement à un registre )

Предел спецификации

Максимально допустимая погрешность рабочих характеристик счетчика. ( предел спецификации )

Тестовое звено

Средство для полной или частичной изоляции цепи напряжения от цепи тока счетчика. ( залоговое право )

Тестовый режим

Режим работы или вывода, который облегчает проверку точности счетчика за счет введения более коротких периодов проверки и / или большей разрешающей способности показаний.Выходные данные функции или работы тестового режима не являются выходными данными, используемыми для установления основы для оплаты юридических единиц измерения электроэнергии во время нормальной работы счетчика. ( mode d’essai )

Контрольное значение ( e i )

Результат измерения после исправления любых известных систематических ошибок в контрольной точке «i». ( valeur d’essai e i )

Термическая стабильность

Считается, что счетчик достиг термической стабильности после изменения температуры, если метрологические характеристики счетчика не изменились более чем на ± 0.2% за 10-минутный интервал. ( термостойкая )

Трансформатор

См. Измерительный трансформатор. ( трансформер )

Счетчик трансформаторов (первичный)

Измеритель трансформаторного типа, который показывает или регистрирует первичную величину, измеряемую с помощью определенных коэффициентов измерительного трансформатора. ( compteur branché sur transformateur )

Счетчик трансформаторный

Счетчик, предназначенный для использования с измерительными трансформаторами.( compteur à transformateur )

Двух регистровый, двунаправленный счетчик

Счетчик, который определен как способный измерять как положительный, так и отрицательный средний поток энергии, как определено подключением счетчика, и где положительный результат и отрицательный результат помещаются в разные регистры. Это исторически называлось в Канаде «двунаправленным измерителем». ( двунаправленный компьютер для двух регистров )

Тип

Обозначение, присвоенное счетчику или устройству производителем с целью отличить его конкретный дизайн и конструкцию от других конструкций, моделей или образцов.Такое обозначение типа должно охватывать только те диапазоны и номиналы, которые по существу схожи по внешнему виду и характеристикам. ( тип )

Вар час (доставлено)

Определяется как вар часов, когда фазовый угол между напряжением и током составляет от 0 ° до 90 ° (квадрант I) и от 90 ° до 180 ° (квадрант II). ( varheure livré )

Вар час (получено)

Определяется как вар часов, когда фазовый угол между напряжением и током составляет от 180 ° до 270 ° (квадрант III) и от 270 до 360 ° (квадрант IV).( varheure reçu )

Счетчик часов вар.

Интегрирующий прибор, измеряющий реактивную энергию в вар-часах или в подходящих кратных им. ( varheuremètre )

Проверка

Процесс, посредством которого утвержденный счетчик оценивается на соответствие метрологическим, техническим и административным требованиям, указанным в Законе, Правилах и настоящих Спецификациях.( проверка )

Вольт-ампер-час

Вольт-ампер-часов независимо от направления нагрузки или квадранта. ( voltampèreheure )

Вольт-ампер-час (с доставкой)

Вольт-ампер-часов, связанных с доставленными ватт-часами. ( voltampèreheure livré )

Вольт-ампер-час (получено)

Вольт-ампер-часов, связанных с полученными ватт-часами.( voltampèreheure reçu )

Счетчик вольт-ампер-часов

Интегрирующий прибор, измеряющий полную энергию в вольт-ампер-часах или в подходящих кратных им величинах. ( Voltampèreheuremètre )

Трансформатор напряжения

Измерительный трансформатор, первичная обмотка которого соединена поперек цепи с измеряемым напряжением. ( преобразователь напряжения )

Ватт-час (доставлено)

Определяется как ватт-часы, когда фазовый угол между напряжением и током составляет от 0 ° до 90 ° (квадрант I) и от 270 ° до 360 ° (квадрант IV).

Ватт-час (получено)

Определяется как ватт-часы, когда фазовый угол между напряжением и током составляет от 90 ° до 180 ° (квадрант II) и от 180 ° до 270 ° (квадрант III).

Счетчик ватт-часов

Интегрирующий прибор, измеряющий активную энергию в ватт-часах или в подходящих кратных им величинах. ( Wattheuremètre )

Нулевая нагрузка

Состояние нулевого тока или энергии, проходящей через счетчик к измеряемой нагрузке.( à vide )

5.1.1 Поверка и повторная проверка предназначены для подтверждения того, что счетчик соответствует всем эксплуатационным и неиспользуемым требованиям утвержденного образца (конструкция, особенности, функции, маркировка и т. Д.). Объем проверок или повторных проверок должен соответствовать данным спецификациям и любым дополнительным требованиям, утвержденным Measurement Canada (MC) в отношении этих спецификаций. Хотя применение этих требований позволяет проводить верификацию и повторную поверку счетчиков электроэнергии, владелец счетчика по-прежнему несет юридическую ответственность за обеспечение соответствия счетчиков Закону и соответствующим политикам и программам MC.Владельцы счетчиков также должны подчинять счетчики программам мониторинга рынка, установленным MC.

5.1.2 Любой счетчик, который не удовлетворяет требованиям к рабочим характеристикам или несоответствиям, или который имеет дефект, который может повлиять на его способность соответствовать установленным требованиям, должен классифицироваться как несоответствующий.

5.1.3 Все испытания измерителя на соответствие должны проводиться в соответствии с документированными процедурами, техническая адекватность которых была оценена соответствующими техническими экспертами МК.

Все условия, указанные в данном документе для тестирования, должны быть выполнены до того, как счетчик будет оцениваться на предмет работоспособности.

5.2.2.1 В принципе, проверка или повторная проверка должны подтверждать рабочие характеристики каждой утвержденной измерительной функции счетчика, которая может использоваться в качестве основы для установления платы за потребление электроэнергии; однако объем испытаний, необходимых для этой цели, должен основываться на конструкции счетчика и оценках, выполненных во время экзаменов для утверждения.

5.2.2.2 Одобренные функции измерения, которые владелец счетчика просил не проверять, должны быть отключены. Такие функции не должны быть доступны никакими средствами, включая дисплей счетчика или порты связи счетчика, после проверки и опломбирования счетчика.

5.2.2.3 Если конструкция счетчика позволяет и как одобрено MC, от определенных функциональных тестов измерения можно отказаться, если рабочие характеристики функции могут быть определены посредством других связанных тестов.Эти функции должны считаться проверенными после завершения утвержденных соответствующих испытаний.

5.2.2.4 Испытания, от которых можно отказаться во время проверки и / или повторной проверки, должны быть определены в процессе утверждения.

5.2.2.5 Сертификационные испытания также могут указывать на то, что могут потребоваться дополнительные испытания помимо стандартных проверок и / или повторных проверок, указанных в данном документе.

Хотя решение относительно приемлемости точности функции измерения основывается на результатах испытаний в нескольких дискретных точках, все функции измерения должны быть точными в определенных пределах во всех соответствующих диапазонах измерения.

Результаты испытаний счетчика, выполненных с целью поверки и перепроверки, должны быть исправлены на все известные систематические ошибки. Эти ошибки должны включать известные ошибки калибровочной консоли.

Каждая ошибка, определенная для счетчика в любой контрольной точке, должна указываться как минимум с точностью до 0,1% для электромеханических счетчиков и 0,01% для электронных счетчиков.

Хотя ошибка контрольной точки считается допустимой, если она не выходит за пределы спецификации для этой контрольной точки, этот факт не должен означать, что измеритель может быть намеренно откалиброван для регистрации с ошибками, близкими к пределам спецификации.Целью калибровки является средняя точка диапазона спецификации.

Электричество — электроны в зависимости от обычного тока

Электричество — это форма энергии, генерируемая трением, индукцией или химическим изменением (электрохимия), а ток — это движущийся поток заряженных частиц, в основном электронов. Вопрос о том, кто (и когда) открыл электричество, остается открытым, но, похоже, это произошло примерно на 2000 лет назад. Глиняные горшки с железным прутом, окруженные медным листом, были найдены в реликвиях примерно 27 г. до н.э.C до 395 г. н.э. возле Багдада, Ирак. 1 Железный стержень в центре медного листа имел цилиндрическую форму вверху и принял форму карандаша внизу, что свидетельствует о биметаллической коррозионной ячейке и о том, что батареи были изобретены в ту эпоху. Есть предположение, что серебряные мастера Багдада использовали эти батареи для гальваники небольших изделий.

Слово электричество происходит от греческого названия янтаря «электрон». Янтарь — это смолистый минерал, который используется для изготовления украшений. В Древней Греции вполне вероятно, что волокна ткани цеплялись за янтарные украшения, и попытки стереть их оказались тщетными из-за статического электричества.В 1600 году Уильям Гилберт использовал латинское слово «electricus» для описания силы, которую некоторые вещества проявляют при трении друг о друга. К XVI веку было сделано много открытий в области электростатики, включая электростатический генератор.

Знаменитый запуск воздушного змея Бенджамина Франклина, в котором во время грозы в 1752 году от ключа возникла искра, доказал, что молния была большой электрической искрой (дугой). Исследования гальванического электричества и электролитов были завершены на лягушачьих лапах в 1789 году Гальвани.Алессандро Вольта обнаружил, что некоторые химические реакции производят электричество; а в 1800 году он построил гальваническую батарею — электрическую батарею, которая вырабатывала постоянный электрический ток. В 1812 году сэр Хамфри Дэви предположил, что химические и электрические заряды идентичны, и открыл катодную защиту (CP) меди с использованием цинковых или железных анодов. В 1831 году Майкл Фарадей изобрел электрическую динамо-машину (грубый генератор энергии), чтобы обеспечить практическое средство непрерывного производства электроэнергии.

CP можно определить как метод уменьшения коррозии металлической поверхности путем превращения этой поверхности в катод электрохимической ячейки. В 1902 г. К. Коэн добился практического КП, используя наложенный ток. Хотя Х. Гепперт установил первую систему CP на трубопроводе в Германии в 1906 году, она так и не стала популярной в этой стране. В 1928 году Р.Дж. Кун установил первый выпрямитель для подачи тока на трубопровод в Новом Орлеане, штат Луизиана, и установил первое практическое применение CP на трубопроводах, что в конечном итоге привело к созданию Национальной ассоциации инженеров по коррозии (ныне известной как NACE International) в 1943 году.

Хотя CP является общепризнанным средством борьбы с коррозией, и его основы широко понятны, использование терминов «обычный ток» и «электроны» может быть перепутано.

Обычное направление тока или электронов

Электрохимическая ячейка (коррозионная ячейка) состоит из анода и катода в электролите, соединенных металлической дорожкой (проводником) (Рисунок 1). 2 Электролит состоит из молекул, состоящих из атомов. Атом состоит из нейтронов (нейтральный заряд), протонов (положительный заряд) и электронов (отрицательный заряд).Ион — это атом, у которого либо больше электронов, чем протонов, и он заряжен отрицательно, либо протонов больше, чем электронов, и он заряжен положительно. Электричество в электролите возникает из-за движения ионов (Рисунок 1).

Передача электричества по металлическому проводнику происходит за счет движения отрицательно заряженных электронов. В электролите нет электронов; Передача электричества через электролит происходит из-за переноса заряда положительно заряженных ионов (катионов), движущихся от анода к катоду, в то время как отрицательно заряженные ионы (анионы) движутся от катода к аноду.Направление обычного тока (I) в металлическом пути (проводнике) — это направление положительно заряженных частиц, переходящих от электроположительного потенциала к электроотрицательному (рис. 2). Похоже, это соглашение было начато с первоначального убеждения, что электричество состоит из положительно заряженных частиц, которые позже были обнаружены как отрицательно заряженные электроны. К этому времени, однако, соглашение было установлено. Направление тока определяется по полярности на вольтметре; таким образом, обычное направление тока вне батареи — от контакта вольтметра положительной клеммы к контакту отрицательной клеммы.

В электрохимической ячейке более высокий положительный потенциал представляет собой катод, поэтому обычное направление тока — от катода к аноду через проводник (металлический путь) и от анода к катоду в электролите (Рисунок 1).

Если металлы с двумя разными потенциалами электрически соединены и погружены в электролит, электроны в соединяющем металле (проводнике) будут перемещаться от металла с наибольшим электроотрицательным потенциалом к ​​металлу с наименее электроотрицательным (наиболее электроположительным).При использовании обычного направления тока считается, что ток идет от наиболее электроположительного металла к наиболее электроотрицательному металлу в соединительном проводнике или от наиболее электроотрицательного металла к наименее электроотрицательному металлу в электролите. В таблице 1 3 показано практическое гальваническое соединение с направлением электронов и тока, если два металла соединены проводником и погружены в электролит.

Измерение тока

Ток в проводнике можно измерить по падению напряжения на калиброванном резисторе (шунте) и рассчитать по закону Ома, показанному в уравнении (1):

, где I равен току (A), V равен напряжению, а R равно сопротивлению (Ом).

Амперметр, представляющий собой вольтметр со шкалой, откалиброванной по внутреннему шунту для прямого считывания в амперах, может быть вставлен в проводящую часть цепи для непосредственного измерения тока. При установке амперметра сопротивление внешней цепи увеличивается на сопротивление, равное сопротивлению внутреннего шунта и проводки. Это внутреннее сопротивление может варьироваться от 0,01 до 1000 Ом в зависимости от шкалы счетчика, поскольку для более низкой шкалы тока требуется шунт с более высоким сопротивлением. В CP количественное количество тока и направление измеряется на металлическом пути либо амперметром, либо милливольтметром через внешний шунт, оставленный в цепи.

Направление тока

Если направление тока невозможно легко измерить, например, при заглубленной или погруженной конструкции, его можно определить путем измерения потенциала структуры относительно электролита при приложении тока. Подъем тока на измеряемой металлической поверхности приведет к электроотрицательному увеличению потенциала структуры при приложении тока (рис. 3).

Это измерение должно быть обязательным, когда выпрямитель находится под напряжением, чтобы обеспечить правильную полярность.

Другой источник путаницы — направление тока при сравнении смещенного (бокового стока) потенциала структуры к электролиту с измерением потенциала, проведенным над структурой (т. Е. Терминология «структура-электролит», связанная с отрицательным значением, может быть недоумением). Если структура считается другим электродом, электроположительный потенциал будет указывать на то, что ток идет от структурного электрода к электроду сравнения, в то время как электроотрицательный потенциал указывает на обратное.

Если потенциал смещения структуры к электролиту (ссылка A на рисунке 4) более электроотрицательный, чем потенциал электрода, размещенного над трубой (ссылка B на рисунке 4), это означает, что структура более электроотрицательна по сравнению с смещенный электрод сравнения (Ссылка A), а не электрод сравнения над структурой (Ссылка B), и поэтому смещенный электрод сравнения (Ссылка A) является более электроположительным по сравнению с электродом сравнения по структуре (Ссылка B).Таким образом, направление тока — от ссылки A к B, и на структуре указан ток датчика.

Те, кто работает в области электроники, обычно думают о направлении электронов. В CP, вместо того, чтобы говорить о направлении электронов в проводнике и ионов в электролите, гораздо удобнее говорить о направлении обычного тока.

Однако важно различать, является ли направление обычным током или направлением отрицательно заряженных электронов.Непонимание направления тока может привести к ускоренной коррозии.

Сводка

• Электроны присутствуют только в металлическом проводнике и перемещаются от электроотрицательного к электроположительному потенциалу.

• Условное направление тока — от электроположительного к электроотрицательному металлу или точкам измерения.

• Захват тока на структуре приводит к электроотрицательному увеличению потенциала структуры к электролиту, когда ток проходит через структуру (защитный), тогда как токовый разряд приводит к электроположительному сдвигу потенциала (коррозионный).

• Более электроотрицательный потенциал между структурой и электролитом, измеренный по отношению к электроду сравнения, помещенному с одной стороны конструкции, по сравнению с электродом, размещенным над структурой, указывает на захват тока.

Список литературы

1 W. von Baekmann, W. Schwenk, W. Prinz, Справочник по катодной защите от коррозии, 3-е изд. (Хьюстон, Техас: Gulf Publishing Co., 1997).

2 CP1 — Учебное пособие по тестеру катодной защиты (Хьюстон, Техас: NACE International).

3 CP2 — Учебное пособие для техника по катодной защите (Хьюстон, Техас: NACE International).

HTTP / 1.1 404 не найдено

HTTP / 1.1 404 не найдено

Запрошенный ресурс недоступен.

трассировка стека

 com.sapportals.wcm.protocol.webdav.server.WDServletException
в com.sapportals.wcm.protocol.webdav.server.WDObject.throwNotFoundIf (WDObject.java:54)
в com.sapportals.wcm.protocol.webdav.server.WDGetHandler.дескриптор (WDGetHandler.java:176)
в com.sapportals.wcm.protocol.webdav.server.WDServlet.doGet (WDServlet.java:791)
в com.sapportals.wcm.protocol.webdav.server.WDServlet.service (WDServlet.java:483)
в javax.servlet.http.HttpServlet.service (HttpServlet.java:853)
в com.sapportals.wcm.portal.proxy.PCProxyServlet.service (PCProxyServlet.java:322)
в javax.servlet.http.HttpServlet.service (HttpServlet.java:853)
в com.sapportals.portal.prt.core.broker.ServletComponentItem $ ServletWrapperComponent.doContent (ServletComponentItem.java: 110)
на com.sapportals.portal.prt.component.AbstractPortalComponent.serviceDeprecated (AbstractPortalComponent.java:209)
в com.sapportals.portal.prt.component.AbstractPortalComponent.service (AbstractPortalComponent.java:114)
в com.sapportals.portal.prt.core.PortalRequestManager.callPortalComponent (PortalRequestManager.java:328)
в com.sapportals.portal.prt.core.PortalRequestManager.dispatchRequest (PortalRequestManager.java:136)
в com.sapportals.portal.prt.core.PortalRequestManager.dispatchRequest (PortalRequestManager.java: 189)
в com.sapportals.portal.prt.component.PortalComponentResponse.include (PortalComponentResponse.java:215)
в com.sapportals.portal.prt.pom.PortalNode.service (PortalNode.java:645)
в com.sapportals.portal.prt.core.PortalRequestManager.callPortalComponent (PortalRequestManager.java:328)
в com.sapportals.portal.prt.core.PortalRequestManager.dispatchRequest (PortalRequestManager.java:136)
в com.sapportals.portal.prt.core.PortalRequestManager.dispatchRequest (PortalRequestManager.java:189)
на ком.sapportals.portal.prt.core.PortalRequestManager.runRequestCycle (PortalRequestManager.java:753)
в com.sapportals.portal.prt.connection.ServletConnection.handleRequest (ServletConnection.java:235)
в com.sapportals.wcm.portal.connection.KmConnection.handleRequest (KmConnection.java:63)
в com.sapportals.portal.prt.dispatcher.Dispatcher $ doService.run (Dispatcher.java:557)
в java.security.AccessController.doPrivileged (собственный метод)
в com.sapportals.portal.prt.dispatcher.Dispatcher.service (Диспетчер.java: 430)
в javax.servlet.http.HttpServlet.service (HttpServlet.java:853)
в com.sap.engine.services.servlets_jsp.server.HttpHandlerImpl.runServlet (HttpHandlerImpl.java:401)
в com.sap.engine.services.servlets_jsp.server.HttpHandlerImpl.handleRequest (HttpHandlerImpl.java:266)
в com.sap.engine.services.httpserver.server.RequestAnalizer.startServlet (RequestAnalizer.java:386)
в com.sap.engine.services.httpserver.server.RequestAnalizer.startServlet (RequestAnalizer.java:364)
на com.sap.engine.services.httpserver.server.RequestAnalizer.invokeWebContainer (RequestAnalizer.java:1060)
в com.sap.engine.services.httpserver.server.RequestAnalizer.handle (RequestAnalizer.java:265)
в com.sap.engine.services.httpserver.server.Client.handle (Client.java:95)
в com.sap.engine.services.httpserver.server.Processor.request (Processor.java:175)
в com.sap.engine.core.service630.context.cluster.session.ApplicationSessionMessageListener.process (ApplicationSessionMessageListener.java:33)
на com.sap.engine.core.cluster.impl6.session.MessageRunner.run (MessageRunner.java:41)
в com.sap.engine.core.thread.impl3.ActionObject.run (ActionObject.java:37)
в java.security.AccessController.doPrivileged (собственный метод)
в com.sap.engine.core.thread.impl3.SingleThread.execute (SingleThread.java:104)
в com.sap.engine.core.thread.impl3.SingleThread.run (SingleThread.java:176) 

Electronics Club — Электричество и электроны, обычный ток

Electronics Club — Электричество и электроны, условный ток

Следующая страница: Последовательные и параллельные

См. Также: Условные обозначения и электрические схемы

Что такое электричество?

Электричество — это поток заряда по цепи , переносящий энергию от аккумулятор (или источник питания) для таких компонентов, как лампы и двигатели.

Электричество может течь только при наличии полной цепи от батареи через провода к компонентам и снова обратно к батарее.

На схеме представлена ​​простая схема из аккумулятора, проводов, выключателя и лампы. Переключатель работает, размыкая цепь.

При разомкнутом переключателе цепь разомкнута — электричество не течет, и лампа не горит.

При замкнутом переключателе цепь замкнута — пропускается электричество и лампа горит.Электричество переносит энергию от батареи к лампе.

Мы можем видеть, слышать или чувствовать эффекты протекающего электричества, такие как освещение лампы, звон колокола или двигатель вращается — но мы не можем видеть само электричество, так в какую сторону оно течет?


В каком направлении течет электричество?

Мы говорим, что электричество течет от положительной (+) клеммы батареи к отрицательная (-) клемма аккумулятора. Мы можем представить частицы с положительным электрический заряд течет в этом направлении по цепи, как красные точки на схеме.

Этот поток электричества называется условным током , и это направление потока используется во всей электронике.

Однако это еще не полный ответ, потому что движущиеся частицы фактически имеют отрицательный заряд, и они текут в обратном направлении! Пожалуйста, прочтите …


Мнимые положительные частицы, движущиеся в направлении
условного тока



Электрон

Когда было открыто электричество, ученые провели множество экспериментов, чтобы выяснить, в каком направлении электричество текло по цепям.В те первые дни они обнаружили, что это невозможно определить направление потока.

Они знали, что существует два типа электрического заряда: положительный (+) и отрицательный (-), и они решили сказать, что электричество — это поток положительного заряда от положительного к отрицательному. Они знали, что это предположение, но решение нужно было принять. Все, что было известно в то время, можно было бы объяснить, если бы электричество было отрицательный заряд течет в другую сторону, с отрицательного на положительный.

Электрон был открыт в 1897 году, и было обнаружено, что он имеет отрицательный заряд.В предположение, сделанное в первые дни появления электричества, оказалось неверным! Электричество почти во всех Проводники действительно представляют собой поток электронов (отрицательный заряд) от отрицательного к положительному.

К тому времени, как электрон был открыт, идея электричества течет от положительного к отрицательному (обычный ток) прочно утвердился. К счастью, подумать не проблема электричества таким образом, потому что Положительный заряд , текущий вперед, эквивалентен отрицательному заряду, текущему назад .

Использовать обычный ток

Во избежание путаницы вы должны всегда использовать обычного тока при попытке понять, как работают схемы, представьте, что положительно заряженные частицы текут от положительного к отрицательному.


Рекомендуемая книга

Рекомендую Электроника для детей как хорошее введение в электричество и электронику. Напечатанный в цвете с множеством иллюстраций, он знакомит с общими компонентами простых, но интересных проектов. строить на каждом этапе.Книга начинается с предположения об отсутствии предшествующих знаний, а затем тщательно строятся простые объяснения. о том, как работают компоненты, а также о практических методах, включая снятие изоляции с проводов, пайку и использование мультиметра.

Основные особенности включают освещение светодиода лимонами, использование реле для включения светодиода, создание музыкального инструмента, включение сигнала восхода солнца, игра по угадыванию цвета, проверка секретного кода и финальный проект используют три микросхемы для создания отличной игры.

Автор, Эйвинд Нидал Даль, проделал огромную работу, предоставив четкие пошаговые инструкции с макетом (или полосой). макеты, а также электрические схемы для проектов.Как технический рецензент книги, я сам создал все проекты, и я очень с радостью рекомендую его всем, кто хочет весело и познавательно познакомиться с электроникой.


Следующая страница: Последовательно и параллельно | Исследование


Политика конфиденциальности и файлы cookie

Этот сайт не собирает личную информацию. Если вы отправите электронное письмо, ваш адрес электронной почты и любая личная информация будет используется только для ответа на ваше сообщение, оно не будет передано никому.На этом веб-сайте отображается реклама, если вы нажмете на рекламодатель может знать, что вы пришли с этого сайта, и я могу быть вознагражден. Рекламодателям не передается никакая личная информация. Этот веб-сайт использует некоторые файлы cookie, которые классифицируются как «строго необходимые», они необходимы для работы веб-сайта и не могут быть отклонены, но они не содержат никакой личной информации. Этот веб-сайт использует службу Google AdSense, которая использует файлы cookie для показа рекламы на основе использования вами веб-сайтов. (включая этот), как объяснил Google.Чтобы узнать, как удалить файлы cookie и управлять ими в своем браузере, пожалуйста посетите AboutCookies.org.

electronicsclub.info © Джон Хьюс 2020

Веб-сайт размещен на Tsohost

Подготовка к экзамену IELTS — IELTS Writing Task 1 # 102

Тестовый наконечник

1) Опишите ключевые этапы процесса в логическом порядке, проводя сравнения где необходимо.
2) Используйте подходящие слова и фразы, чтобы структурировать и четко связать процесс.
3) Не забудьте включить обзор основных характеристик процесс.
4) Изменяйте словарный запас и используйте свои собственные слова, насколько это возможно.

На это задание нужно потратить около 20 минут.

На схемах показана конструкция, которая используется для выработки электроэнергии из энергии волн.

Обобщите информацию, выбрав и сообщив об основных характеристиках, и сделайте сравнения, где это необходимо.

Напишите не менее 150 слов.

Производство электроэнергии из морских волн

Типовой ответ

На двух диаграммах показано, как можно производить электричество из подъем и падение воды, вызванные морскими волнами.

В процессе используется конструкция, которая устанавливается на склоне утеса или моря. стена. Эта структура состоит из большой камеры. Один конец открыт к морю, и другой ведет в вертикальную колонну, открытую для атмосферы.Турбина установлен внутри этой колонны и используется для выработки электроэнергии в две фазы.

Первая диаграмма показывает, что когда волна приближается к устройству, вода нагнетается. в камеру, оказывая давление на воздух внутри колонны. Этот воздух ускользает в атмосферу через турбину, производя электричество.

Вторая диаграмма иллюстрирует следующую часть процесса, когда волна отступает. Когда уровень воды падает, воздух снаружи колонны всасывается обратно через турбина.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *