Закрыть

Величины магнитных пускателей: технические характеристики и принципы работы изделий

Содержание

Различие и особенности контакторов и магнитных пускателей

Основное предназначение контакторов и магнитных пускателей – управление электромоторами и замыкание силовых цепей с большими токами. Принцип действия аппаратов идентичный. Различие состоит в том, что магнитный пускатель представляет собой тот же контактор или два, собранных в устройство с защитными функциями, возможностью блокирования, цепями сигнализации.

Разные типы контакторов

Устройство контактора

Контактор – электромагнитный аппарат, позволяющий коммутировать силовые электроцепи через управляющий ток малых значений, который питает катушку соленоида устройства.

Работа контактора основана на явлении притяжения якоря электромагнита к сердечнику во время протекания тока. Сочлененная рычажная система прикреплена к якорю. Электрические контакты отделены от рычага изоляцией. Подвижные контакты прижимаются к неподвижным, замыкая электроцепь рабочего тока. Аппарат включен до тех пор, пока катушка находится под напряжением.

В зависимости от типа тока, контакторы делятся на:

  • переменного тока;
  • постоянного тока.

По количеству полюсов аппараты бывают:

  • однополярные;
  • двухполярные;
  • трех,- и четырехполюсные.

Все устройства состоят из магнитной системы и набора контактов: рабочих и вспомогательных.

Магнитная система

Составными частями магнитной системы являются:

  1. Катушка электромагнита;
  2. Сердечник, на котором установлена катушка;
  3. Якорь, подвижная арматура из железных пластин.

Схема контактора

Когда катушка оказывается под напряжением, протекающим через нее током создается магнитный поток, который замыкается по окружности через сердечник, якорь, воздушный зазор и арматуру. Он вызывает притяжение якоря к сердечнику. Как только ток прекращается, пружины возвращают якорь в первоначальное положение. В первый момент после включения контактора относительно большой ток течет через катушку, а затем его значение уменьшается, когда якорь приходит в полное соприкосновение с сердечником.

Важно! Для надежной работы контактора важно обеспечить правильную регулировку и сборку магнитной системы. Ослабленный крепеж элементов оказывает влияние на формирование вибраций.

В небольших контакторах (до 15 А) плотное соединение между якорем и сердечником иногда может вызвать «приклеивание» якоря из-за остаточного магнетизма. Чтобы это предотвратить, в некоторых аппаратах делают тонкую вставку из меди или латуни. В более крупных контакторах явление магнитного «прилипания» встречается редко, так как действуют мощные пружины.

Контактная система

  1. Фиксированные контакты устанавливаются на жестком основании, встроенном в изоляцию;
  2. Подвижные контакты прикреплены к мобильным основаниям, снабжены сильными пружинами и соединены с якорем электромагнита через шарнирный рычаг.

Важно! Хорошее сцепление контактных поверхностей – одно из основных условий эффективной работы аппаратов.

Медные контакты очень быстро окисляются, в оксидном слое возникает большое переходное сопротивление, увеличивая нагрев деталей. Чрезмерная температура вызывает, в свою очередь, повышенное окисление и «нагар» контактов, которым потребуется чистка.

Внутреннее устройство контактора

Для надежной работы важное значение имеют правильное позиционирование контактов и соответствующая сила начального и конечного давления. Это достигается регулировкой. По мере эксплуатации пружины могут ослабляться, поэтому необходимо периодически контролировать правильное положение контактов.

Когда аппарат отключается под нагрузкой, на рабочих контактах возникают искры и даже электрическая дуга. Для защиты смежных фаз от короткого замыкания применяются деионизационные камеры из огнеупорного изоляционного материала. Обычно это принадлежность мощных аппаратов.

Мощный контактор

В дополнение к основным контактам аппараты содержат вспомогательные, которые отличаются меньшим поперечным сечением, так как через них протекает небольшой управляющий ток. Однако за состоянием этих элементов также важно следить из-за их значимости в работе системы.

Многие думают, что величина коммутируемого тока и, соответственно, большие габариты – это то, чем отличается контактор от магнитного пускателя. Однако это не так. Современные контакторы могут быть и скромных размеров, рассчитанными на небольшие токи.

Магнитный пускатель

Магнитный пускатель представляет собой контактор или два (в реверсном варианте), наиболее часто используемых для запуска и остановки асинхронных двигателей.

Устройство часто оборудовано еще тепловым реле, защищающим цепь от перегрузок, дополнительными контактами, находящимися первоначально в замкнутом или разомкнутом состоянии. Эти отличающие особенности характеризуют магнитный пускатель, хотя контактор – основа его конструкции.

Термореле соединяется с силовыми контактами аппарата. Его внутреннее устройство состоит из биметаллических пластин, которые под действием тока греются. Их температурный изгиб вызывает размыкание контактов реле в цепи управления катушкой. Обесточенная катушка разрывает силовую цепь электромотора.

В отличие от контактора, магнитный пускатель может осуществлять реверс электромотора, то есть запускать его в прямом и обратном направлении. Для этого собирается аппарат из двух контакторов и поста с кнопками управления.

Реверсный магнитный пускатель

Важно! В схеме обязательно предусматривается наличие блокировок, чтобы не допустить одновременного замыкания обеих групп силовых контактов.

Классификация аппаратов

В основном, контакторы и магнитные пускатели, согласно российским стандартам, подразделяются в зависимости от коммутируемых нагрузочных токов. Аппараты сгруппированы в 7 классов, расположенных по возрастанию: от 6,3 А до 160 А.

Производятся устройства, отличающиеся по конструкции:

  1. Открытого типа. Монтаж таких аппаратов возможен только в пылезащищенных и влагозащищенных местах, например, в специальных шкафах;

Контактор открытого типа

  1. Закрытого типа. Могут монтироваться в производственных помещениях вне шкафов, но при этом там должны исключаться проникновение влаги и сильная запыленность;
  2. Защищенного типа. Это аппараты с практически герметичным корпусом. Допускаются к установке в наружных условиях. Необходимо только исключить воздействие прямого солнечного света и дождя.

Есть различия трехфазных приборов по питающему току катушки электромагнита. У одних пускателей катушка включается на фазное напряжение 220 В, у других – на линейное 380 В.

Эксплуатация контакторов и магнитных пускателей

Для того чтобы аппараты служили долго и безотказно, необходимо проводить регулярно в условиях эксплуатации следующие мероприятия:

  1. Визуальный осмотр. При нем выявляются явные повреждения и деформации кожуха. Сняв крышку, можно осмотреть состояние внутренних частей. В рабочем состоянии проверяется, нет ли вибраций и постороннего шума. Если контактор гудит при работе, проверяется плотность прилегания якоря и надежность механических соединений;
  2. Контролирование хода якоря. Нажатием вручную можно проверить плавность его перемещения, отсутствие помех, четкость работы пружины;
  3. Проверка и чистка контактов. Если на контактах отсутствует «нагар», то чистка не нужна из-за возможности разрушения тонкого покрытия. Контакты должны быть выровнены и одновременно соприкасаться всеми полюсами как можно большей частью поверхности. В противном случае производится регулировка;
  4. На катушке не должно быть видно потемнения, оплавления, трещин, иначе она подлежит замене;
  5. Если есть термореле, надо проконтролировать правильность выставленной установки.

Когда пользователю требуется смонтировать устройство для пуска двигателя, особенно с возможностью реверса, необходимо установить магнитный пускатель, исходя из потребляемых токов. Для коммутирования других нагрузок вполне подойдут контакторы.

Видео

Оцените статью:

Магнитный пускатель — ElectrikTop.ru

Пускатель электромагнитный применяется для коммутации мощных потребителей электроэнергии в основном на производстве. В этой статье пойдет речь о том, для чего нужен магнитный пускатель, каков принцип работы магнитного пускателя и устройство магнитного пускателя. Устройство и принцип пускателя, как для цепей 380В так и для 220В, одинаковы давно и хорошо отработаны конструкторами.

Назначение пускателей

Как уже было сказано, это коммутационный аппарат, проще говоря, выключатель, таково его назначение. Контакты пускателей рассчитаны на большой ток, протекающий через нагревательные приборы и мощные электродвигатели. Эти силовые контакты приводятся в действие электромагнитным способом, поэтому управлять пускателями можно дистанционно при помощи сравнительно маломощных цепей. Поэтому маленькой кнопкой или концевым выключателем можно производить подключение мощных электродвигателей и другой нагрузки. Реверсивный пускатель обеспечивает включение асинхронных моторов в любую сторону – по часовой стрелке или против, по выбору оператора или системы управления.

Принцип работы

Принцип действия магнитного пускателя фактически совпадает с реле. Для работы пускателя от кнопок без фиксации используется самоблокировка от контактов, параллельных кнопке. Для отключения используется нормально замкнутая кнопка, включенная последовательно в цепь управления. При размыкании контактов пускатель отключается и готов к повторному включению сразу после замыкания контактов стоповой кнопки.

«Кнопочный» вариант управления пускателями является подавляющим для ручных операций. В цепях автоматики пускатели обычно удерживаются во включенном состоянии непрерывным сигналом, подаваемым с дискретного выхода контроллера на промежуточное реле.

Существуют различные виды пускателей, среди которых есть и реверсивные магнитные пускатели («головная боль» новичков-электромонтеров, пытающихся понять как работает непривычная цепь и не привыкших мыслить электрическими схемами). Фактически это два пускателя, работающие строго поочередно: если включается один, то другой должен быть обязательно отключен, иначе будет короткое замыкание между фазами.

Его принцип таков: если в одном включенном положении последовательность фаз A, B, C, то в другом положении должно быть, например, A, C, B, то есть, две фазы должны поменяться местами.

Это позволяет изменять направление вращающегося поля в асинхронных моторах и запускать их в различном направлении либо по часовой стрелке, либо против.

Устройство магнитного пускателя

Все виды магнитных пускателей объединяют такие элементы конструкции, как электромагнит переменного тока, система подвижных и неподвижных силовых и вспомогательных контактов. Несущей частью является корпус из термостойких и негорючих пластиков. Эти пластмассы должны быть механически прочными и не деформироваться при повышенной температуре. Любой пускатель, как правило, трехфазный.

  1. Контактные пружины, обеспечивающие плавность пуска
  2. Подвижные контакты (мостики)
  3. Неподвижные контакты (пластины)
  4. Пластмассовая траверса
  5. Якорь
  6. Катушка пускателя
  7. Ш-образная часть магнитопровода
  8. Дополнительные контакты

Классификация магнитных пускателей делается по нескольким признакам, среди которых обычно главной является величина пускателя.

Под величиной подразумеваются не габариты или вес пускателя, а то, какой ток он может коммутировать и насколько он устойчив к дуге в цепях с индуктивностями (при отключении электродвигателя). Основой является нереверсивный магнитный пускатель, так как реверсивные собираются из последних. Работа магнитных пускателей протекает в разных условиях, поэтому их также классифицируют по степени защищенности: открытое, защищенное, пылебрызгонепроницаемое.

Работа магнитного пускателя очень часто требует наличия теплового реле. Все типы магнитных пускателей имеют конструктивно совместимые тепловые реле. Часто их выпускает один и тот же производитель. Особенно важными применениями тепловых реле является защита  электродвигателей от перегрева. Тепловое реле состоит из двухфазных биметаллических проводников (проводников с разными коэффициентами теплового расширения) – по одному на каждую фазу.

С электрической точки зрения, они являются резисторами с очень малым сопротивлением, и, таким образом, служат датчиками тока. Когда через фазы (или одну из них) протекает слишком большой ток, биметаллическая пластина изгибается и размыкает магнитные контакты, то есть контакты в цепи катушки пускателя. Подключение тепловых реле выполняется между пускателем и нагрузкой.

Все больше распространяются модульные пускатели. Это пускатели, монтируемые на DIN-рейку. Это металлическая профильная полоса, закрепляемая в шкафах на щите. Простота и легкость монтажа – исключительные. Рядом с пускателем (контактором) можно прикрепить тепловые реле, автоматы, УЗО (устройство защитного отключения), микропроцессорные контроллеры и многое другое. Модульные устройства очень легко собираются в схемы, благодаря каналам для проводов, проложенным между DIN-рейками. Монтаж выполняется зачищенными проводами необходимого сечения, обжатыми наконечниками. Наконечники вставляют в отверстия клемм приборов согласно принципиальной схеме и зажимают винтами.

На верхнюю сторону пускателей наносится маркировка, необходимая при монтаже и ремонте. Там есть обозначение типа, схема контактов и в некоторых случаях производители оставляют место для наклейки или подписи потребительских данных.

Большие успехи в силовой электронике, достигнутые за последние десятилетия, привели к тому, что большинство основных производителей теперь предлагают потребителям бесконтактные пускатели, содержащие мощные полупроводниковые ключи. У них есть определенные преимущества. Они работают бесшумно, не искрят, имеют высокую частоту переключений.

Некоторые модели благодаря ШИМ-контроллерам позволяют плавно пускать электродвигатели, а для автоматизации предусмотрены даже сетевые интерфейсы. К недостаткам можно отнести высокую цену, высокую квалификацию ремонтного персонала и небезопасную гальваническую связь с сетью, что может угрожать электрикам-ремонтникам.

Заключение

Несмотря на внедрение электронных ключей: уже устаревающие тиристоры и симисторы, мощные полевые транзисторы, и перспективные IGBT-транзисторы, магнитные пускатели сохраняют свое значение. Именно они надежно разрывают цепи, без каких-либо опасных для персонала или оборудования остаточных токов и утечек. Фактически это тот самый бессмертный “рубильник” который с гарантией обесточивает электроустановку. качественные пускатели никогда не заклинивают и приобретать нужно именно такие.

устройство и принцип работы + схема подключения на 220В и 380В

В домашнем хозяйстве практически не используются электроприборы, работающие под током более десятка ампер и потребляющие электрическую мощность более нескольких киловатт. Они включаются и выключаются с помощью обыкновенных ручных включателей. При таком подключении небольших нагрузок между контактами проходит не очень большая искра, которая практически не может повредить выключатель.

В промышленности при подключении больших мощностей основной проблемой являются большие электрические токи. Они вызывают сильное искрение при замыкании или размыкании сети. Ранее для подключения больших нагрузок широко применялись ручные рубильники, но они обладают рядом недостатков. Они требуют ручного управления и не предназначены для частого включения.


Для повышения долговечности и удобства пользования электроприборами используются различные контакторы. Они позволяют проводить дистанционную коммутацию. Их основным назначением является быстрое, практически мгновенное замыкание или размыкание сети при получении соответствующего сигнала.

Неудивительно, что некоторые модификации этих приборов называют также контакторами. Этот обзор посвящен описанию принципа работы магнитных пускателей, их назначению, характеристикам, параметрам выбора.

Краткое содержимое статьи:

Области применения

В первую очередь эти устройства используются для работы с асинхронными электродвигателями, которые широко используются в промышленности и лифтовом оборудовании. Поэтому их и называют пускателями. Они могут не только включать и выключать двигатель, но и менять направление его вращения.

Их применяют также для включения линий освещения на улицах или в помещениях. Например, для автоматического включения уличного освещения можно использовать фотореле, которое не рассчитано на включение большой нагрузки, но его можно использовать для этого вместе с контактором.


Такие устройства идеально подходят для управления мощными электронагревателями и различными технологическими процессами на производстве. Выпускаются различные типы магнитных пускателей, выбор необходимого определяется техническим заданием на стадии проектирования.

Немаловажным является то, что эти устройства отделяют большие напряжения под которыми работает сеть от органов управления. Благодаря этому персонал более защищен от вредных воздействий.

Принцип работы

Они работают по очень простому принципу. В нем одна группа контактов является неподвижной, а вторая группа может менять своё положение. Они располагаются в камере в которой гасится электрическая дуга.

Движением контактов управляют специальные катушки. На катушки магнитного пускателя подается управляющее напряжение. В зависимости от конструкции оно может быть разной величины. Благодаря проходящему через них току срабатывает электромагнит и якорь с силой размыкает или замыкает сеть.

При снятии разности потенциалов с управляющих катушек контакты либо замыкаются, либо размыкаются с помощью возвратной пружины. По этому принципу различают нормально разомкнутые и нормально замкнутые устройства. Первые при его отсутствии находятся с разомкнутыми контактами, а вторые с замкнутыми.

Характеристики

Магнитные пускатели имеют ряд характеристик, которые нужно учитывать при проектировании и замене оборудования. Давайте рассмотрим их основные рабочие параметры.


По типу корпуса они могут быть открытого и закрытого вида. Тип устройства легко определить по фото магнитного пускателя. Открытые устройства предназначены для установки в электрических шкафах, в которых естественно мало содержание пыли и грязи.

Закрытые приборы устанавливаются на открытой поверхности и защищены от внешних воздействий. На корпусе могут быть расположены кнопки управления двигателем. Это может быть необходимо при ручном управлении устройством. Их различают на два класса просто закрытого исполнения и защищенного от пыли и брызг.

Основное назначение различных контакторов состоит в управлении электрическими трехфазными двигателями. Для этих целей они должны иметь тройную группу подключения и выполнять основные функции по пуску, остановке и изменению направления вращения. Для этого используют реверсивные магнитные пускатели.

Соответственно выпускаются различные конструкции, одни из которых могут только выполнять замыкание и размыкание одной или нескольких точек подключения, а другие могут выполнять более сложные функции по управлению электродвигателем. Выбор необходимой конфигурации необходимо сделать при проектировании.

Во многих случаях необходимо контролировать не превышение нагрузки двигателя по току. Опасные режимы работы двигателя могут возникнуть при перегрузке или обрыве одной из фаз. При этом сильно увеличится электрический ток. Его опасное превышение контролирует тепловое реле, оно устанавливается на линии между нагрузкой и контактором и при срабатывании отключает не силовую линию, а подает управляющий сигнал на катушку. Этим оно отличается от обычного предохранителя.


Это дополнительное устройство может быть интегрировано в приобретаемый прибор и находиться в одном корпусе, либо подключаться дополнительно. Стоит отметить, что тепловое реле может далеко не сразу сработать при эксплуатации при пониженной зимней температуре.

Выпускаются контакторы для работы с различными параметрами сети. Они могут управлять токами от нескольких десятков до тысяч ампер. При проектировании нужно учесть, что при пуске электродвигателя они могут быть существенно выше номинальных.

Вторым немаловажным параметром является величина подключаемого напряжения. Наиболее часто используется напряжение 380 вольт, но выпускается оборудование, предназначенное для работы с напряжениями 600 вольт и более.

Немаловажным фактором является напряжение под которым работают управляющие катушки. Зачастую они работают под тем же напряжением, что управляемая сеть. В производственной автоматике используется пониженное напряжение управляющих катушек. Оно может составлять очень малую величину в несколько десятков вольт.

Монтаж

При монтаже требуется ознакомиться с инструкцией и проработать схему подключения магнитного пускателя. Оборудование устанавливается на ровной поверхности. При монтаже надо учесть, что мощное оборудование при включении может создавать сильную вибрацию, которая может помешать правильной работе устройства.

Тепловое реле должно быть расположено вдали от нагревающихся элементов, чтобы избежать ложного срабатывания. Концы медных проводов требуется вначале залудить, а алюминиевые провода необходимо зачистить надфилем или шкуркой. Перед пробным включением необходимо сверить правильность подключения со схемой.

Эксплуатация

При использовании контакторов нужно контролировать их температуру. Повышение температуры и их разогревание свидетельствуют о наличии замыканий в витках катушки. Это поломка требует срочной замены катушек.

Разогрев может появится также из-за больших нагрузок и износа контактов. Чтобы этого избежать лучше применять оборудование с небольшим запасом по рабочей нагрузке. Нужно смотреть за чистотой оборудования и не допускать попадания внутрь грязи и пыли. Она может привести к неплотному прилеганию якоря к сердечнику и это может стать причиной сильного шума.

Загрязнения могут испортить контакты и потребуется их замена. Конструкция магнитных пускатели и контакторов достаточно проста. Для долгой службы необходимо поддерживать их чистоту, проверять качество контактов и зажимного механизма, не подвергать их нагрузкам выше номинальных.

Фото магнитных пускателей

Что такое магнетизм? | Магнитные поля и магнитная сила

Магнетизм — это один из аспектов комбинированной электромагнитной силы. Это относится к физическим явлениям, возникающим из-за силы, вызванной магнитами, объектами, которые создают поля, которые притягивают или отталкивают другие объекты.

Согласно веб-сайту HyperPhysics Университета штата Джорджия, магнитное поле воздействует на частицы в поле за счет силы Лоренца. Движение электрически заряженных частиц порождает магнетизм.Сила, действующая на электрически заряженную частицу в магнитном поле, зависит от величины заряда, скорости частицы и силы магнитного поля.

Все материалы обладают магнетизмом, некоторые сильнее других. Постоянные магниты, сделанные из таких материалов, как железо, испытывают сильнейшее воздействие, известное как ферромагнетизм. За редким исключением, это единственная форма магнетизма, достаточно сильная, чтобы ее могли почувствовать люди.

Противоположности притягиваются

Магнитные поля генерируются вращающимися электрическими зарядами, согласно HyperPhysics.Все электроны обладают свойством углового момента или спина. Большинство электронов имеют тенденцию образовывать пары, в которых один из них имеет «спин вверх», а другой — «спин вниз», в соответствии с принципом исключения Паули, который гласит, что два электрона не могут находиться в одном и том же энергетическом состоянии одновременно. В этом случае их магнитные поля направлены в противоположные стороны, поэтому они компенсируют друг друга. Однако некоторые атомы содержат один или несколько неспаренных электронов, спин которых может создавать направленное магнитное поле. Направление их вращения определяет направление магнитного поля, согласно Ресурсному центру неразрушающего контроля (NDT).Когда значительное большинство неспаренных электронов выровнены со своими спинами в одном направлении, они объединяются, чтобы произвести магнитное поле, достаточно сильное, чтобы его можно было почувствовать в макроскопическом масштабе.

Источники магнитного поля биполярные, с северным и южным магнитными полюсами. По словам Джозефа Беккера из Университета Сан-Хосе, противоположные полюса (северный и южный) притягиваются, а аналогичные полюса (северный и северный, или южный и южный) отталкиваются. Это создает тороидальное поле или поле в форме пончика, поскольку направление поля распространяется наружу от северного полюса и входит через южный полюс.

Земля сама по себе является гигантским магнитом. Согласно HyperPhysics, планета получает свое магнитное поле от циркулирующих электрических токов внутри расплавленного металлического ядра. Компас указывает на север, потому что маленькая магнитная стрелка в нем подвешена, так что он может свободно вращаться внутри корпуса, выравниваясь с магнитным полем планеты. Парадоксально, но то, что мы называем Северным магнитным полюсом, на самом деле является южным магнитным полюсом, потому что он притягивает северные магнитные полюса стрелок компаса.

Ферромагнетизм

Если выравнивание неспаренных электронов продолжается без приложения внешнего магнитного поля или электрического тока, образуется постоянный магнит. Постоянные магниты — результат ферромагнетизма. Приставка «ферро» относится к железу, потому что постоянный магнетизм впервые наблюдался в форме естественной железной руды, называемой магнетитом, Fe 3 O 4 . Кусочки магнетита можно найти разбросанными на поверхности земли или рядом с ней, и иногда они намагничиваются.Эти встречающиеся в природе магниты называются магнитными камнями. «Мы до сих пор не уверены в их происхождении, но большинство ученых считают, что магнитный камень — это магнетит, пораженный молнией», — говорится в сообщении Университета Аризоны.

Вскоре люди узнали, что они могут намагнитить железную иглу, поглаживая ее магнитом, в результате чего большинство неспаренных электронов в игле выстраиваются в одном направлении. По данным НАСА, примерно в 1000 году нашей эры китайцы обнаружили, что магнит, плавающий в чаше с водой, всегда выстраивается в направлении север-юг.Таким образом, магнитный компас стал огромным помощником в навигации, особенно днем ​​и ночью, когда звезды были скрыты облаками.

Было обнаружено, что другие металлы, помимо железа, обладают ферромагнитными свойствами. К ним относятся никель, кобальт и некоторые редкоземельные металлы, такие как самарий или неодим, которые используются для создания сверхпрочных постоянных магнитов.

Другие формы магнетизма

Магнетизм принимает множество других форм, но, за исключением ферромагнетизма, они обычно слишком слабы, чтобы их можно было наблюдать за исключением чувствительных лабораторных приборов или при очень низких температурах.Диамагнетизм был впервые открыт в 1778 году Антоном Бругнамсом, который использовал постоянные магниты в поисках материалов, содержащих железо. По словам Джеральда Кюстлера, широко публикуемого независимого немецкого исследователя и изобретателя, в его статье «Диамагнитная левитация — исторические вехи», опубликованной в Румынском журнале технических наук, Бругнамс заметил: «Только темный и почти фиолетовый висмут проявлял конкретное явление в исследовании; когда я положил его кусок на круглый лист бумаги, плавающий на воде, он оттолкнулся обоими полюсами магнита.

Было установлено, что висмут обладает самым сильным диамагнетизмом среди всех элементов, но, как обнаружил Майкл Фарадей в 1845 году, это свойство всей материи отталкиваться магнитным полем.

Диамагнетизм вызван орбитальным движением электронов, создающих крошечные токовые петли, которые создают слабые магнитные поля, согласно HyperPhysics. Когда к материалу прикладывается внешнее магнитное поле, эти токовые петли имеют тенденцию выравниваться таким образом, чтобы противостоять приложенному полю.Это приводит к тому, что все материалы отталкиваются постоянным магнитом; однако результирующая сила обычно слишком мала, чтобы быть заметной. Однако есть некоторые заметные исключения.

Пиролитический углерод, вещество, похожее на графит, демонстрирует даже более сильный диамагнетизм, чем висмут, хотя и только вдоль одной оси, и фактически может подниматься над сверхсильным редкоземельным магнитом. Некоторые сверхпроводящие материалы демонстрируют еще более сильный диамагнетизм ниже своей критической температуры, поэтому над ними можно левитировать редкоземельные магниты.(Теоретически из-за их взаимного отталкивания один может левитировать над другим.)

Парамагнетизм возникает, когда материал временно становится магнитным, когда помещен в магнитное поле, и возвращается в свое немагнитное состояние, как только внешнее поле удаляется. При приложении магнитного поля некоторые из неспаренных электронных спинов выравниваются с полем и преодолевают противоположную силу, создаваемую диамагнетизмом. Однако, по словам Дэниела Марша, профессора физики Южного государственного университета штата Миссури, эффект заметен только при очень низких температурах.

Другие, более сложные формы включают антиферромагнетизм, при котором магнитные поля атомов или молекул выстраиваются рядом друг с другом; и поведение спинового стекла, которое включает как ферромагнитные, так и антиферромагнитные взаимодействия. Кроме того, ферримагнетизм можно рассматривать как комбинацию ферромагнетизма и антиферромагнетизма из-за многих общих черт между ними, но, по данным Калифорнийского университета в Дэвисе, он все же имеет свою уникальность.

Электромагнетизм

Когда провод перемещается в магнитном поле, поле индуцирует в проводе ток.И наоборот, магнитное поле создается движущимся электрическим зарядом. Это соответствует закону индукции Фарадея, который лежит в основе электромагнитов, электродвигателей и генераторов. Заряд, движущийся по прямой линии, как по прямому проводу, создает магнитное поле, которое вращается вокруг провода по спирали. Когда этот провод превращается в петлю, поле приобретает форму пончика или тора. Согласно Руководству по магнитной записи (Springer, 1998) Marvin Cameras, это магнитное поле можно значительно усилить, поместив ферромагнитный металлический сердечник внутрь катушки.

В некоторых приложениях постоянный ток используется для создания постоянного поля в одном направлении, которое можно включать и выключать вместе с током. Это поле может затем отклонить подвижный железный рычаг, вызывая слышимый щелчок. Это основа для телеграфа, изобретенного в 1830-х годах Сэмюэлем Ф. Б. Морзе, который позволял осуществлять связь на большие расстояния по проводам с использованием двоичного кода, основанного на импульсах большой и малой длительности. Импульсы посылались опытными операторами, которые быстро включали и выключали ток с помощью подпружиненного переключателя с мгновенным контактом или ключа.Другой оператор на принимающей стороне затем переводил слышимые щелчки обратно в буквы и слова.

Катушку вокруг магнита также можно заставить двигаться по шаблону с изменяющейся частотой и амплитудой, чтобы индуцировать ток в катушке. Это основа для ряда устройств, в первую очередь для микрофона. Звук заставляет диафрагму двигаться внутрь и наружу с волнами переменного давления. Если диафрагма соединена с подвижной магнитной катушкой вокруг магнитопровода, она будет производить переменный ток, аналогичный падающим звуковым волнам.Затем этот электрический сигнал может быть усилен, записан или передан по желанию. Крошечные сверхсильные магниты из редкоземельных металлов теперь используются для изготовления миниатюрных микрофонов для сотовых телефонов, сообщил Марш Live Science.

Когда этот модулированный электрический сигнал подается на катушку, он создает колеблющееся магнитное поле, которое заставляет катушку входить и выходить по магнитному сердечнику по той же схеме. Затем катушка прикрепляется к подвижному диффузору динамика, чтобы он мог воспроизводить звуковые волны в воздухе.Первым практическим применением микрофона и динамика был телефон, запатентованный Александром Грэмом Беллом в 1876 году. Хотя эта технология была усовершенствована и усовершенствована, она все еще является основой для записи и воспроизведения звука.

Применение электромагнитов практически бесчисленное множество. Закон индукции Фарадея составляет основу многих аспектов нашего современного общества, включая не только электродвигатели и генераторы, но и электромагниты всех размеров. Тот же принцип, который используется гигантским краном для подъема старых автомобилей на свалку металлолома, также используется для выравнивания микроскопических магнитных частиц на жестком диске компьютера для хранения двоичных данных, и каждый день разрабатываются новые приложения.

Штатный писатель Таня Льюис внесла свой вклад в этот отчет.

Дополнительные ресурсы

магнетизм | Определение, примеры, физика и факты

Магнетизм , явление, связанное с магнитными полями, возникающими в результате движения электрических зарядов. Это движение может принимать разные формы. Это может быть электрический ток в проводнике или заряженные частицы, движущиеся в пространстве, или это может быть движение электрона по атомной орбитали.Магнетизм также связан с элементарными частицами, такими как электрон, которые обладают свойством, называемым спином.

Основы

В основе магнетизма лежат магнитные поля и их влияние на материю, как, например, отклонение движущихся зарядов и крутящих моментов на другие магнитные объекты. Свидетельством наличия магнитного поля является магнитная сила, действующая на заряды, движущиеся в этом поле; сила направлена ​​под прямым углом как к полю, так и к скорости заряда. Эта сила отклоняет частицы, не меняя их скорости.Отклонение можно наблюдать в крутящем моменте стрелки компаса, который выравнивает стрелку с магнитным полем Земли. Игла представляет собой тонкий кусок железа, намагниченный, то есть небольшой стержневой магнит. Один конец магнита называется северным полюсом, а другой — южным. Сила между северным и южным полюсами притягательна, тогда как сила между такими же полюсами отталкивает. Магнитное поле иногда называют магнитной индукцией или плотностью магнитного потока; он всегда обозначается как B .Магнитные поля измеряются в единицах тесла (Тл). (Другой единицей измерения, обычно используемой для B , является гаусс, хотя он больше не считается стандартной единицей измерения. Один гаусс равен 10 −4 тесла.)

Основным свойством магнитного поля является то, что его поток через любую замкнутую поверхность равен нулю. (Замкнутая поверхность — это поверхность, которая полностью окружает объем.) Это выражается математически как div B = 0 и может быть понято физически в терминах силовых линий, представляющих B .Эти линии всегда замыкаются сами по себе, поэтому, если они в какой-то момент входят в определенный объем, они также должны покинуть этот объем. В этом отношении магнитное поле сильно отличается от электрического поля. Силовые линии электрического поля могут начинаться и заканчиваться на заряде, но, несмотря на многочисленные поиски так называемых магнитных монополей, не было найдено эквивалентного магнитного заряда.

Наиболее распространенным источником магнитных полей является электрическая петля. Это может быть электрический ток в круглом проводнике или движение вращающегося электрона в атоме.С обоими этими типами токовых петель связан магнитный дипольный момент, значение которого составляет i A , произведение тока i на площадь контура A . Кроме того, электроны, протоны и нейтроны в атомах имеют магнитный дипольный момент, связанный с их собственным спином; такие магнитные дипольные моменты представляют собой еще один важный источник магнитных полей. Частицу с магнитным дипольным моментом часто называют магнитным диполем.(Магнитный диполь можно представить как крошечный стержневой магнит. Он имеет такое же магнитное поле, что и такой магнит, и ведет себя таким же образом во внешних магнитных полях.) При помещении во внешнее магнитное поле магнитный диполь может подвергаться воздействию крутящий момент, который стремится выровнять его с полем; если внешнее поле неоднородно, на диполь также может действовать сила.

Получите эксклюзивный доступ к контенту из нашего первого издания 1768 с вашей подпиской. Подпишитесь сегодня

Все вещества в той или иной степени проявляют магнитные свойства.При помещении в неоднородное поле материя либо притягивается, либо отталкивается в направлении градиента поля. Это свойство описывается магнитной восприимчивостью вещества и зависит от степени намагниченности вещества в поле. Намагниченность зависит от размера дипольных моментов атомов в веществе и степени выравнивания дипольных моментов относительно друг друга. Некоторые материалы, такие как железо, демонстрируют очень сильные магнитные свойства из-за выравнивания магнитных моментов их атомов в определенных небольших областях, называемых доменами.В нормальных условиях различные домены имеют компенсирующие поля, но их можно выровнять друг с другом для создания чрезвычайно сильных магнитных полей. Различные сплавы, такие как NdFeB (сплав неодима, железа и бора), поддерживают выравнивание своих доменов и используются для изготовления постоянных магнитов. Сильное магнитное поле, создаваемое типичным магнитом из этого материала толщиной три миллиметра, сравнимо с электромагнитом, сделанным из медной петли, по которой течет ток в несколько тысяч ампер. Для сравнения, ток в обычной лампочке равен 0.5 ампер. Поскольку выравнивание доменов материала создает магнит, нарушение упорядоченного выравнивания разрушает магнитные свойства материала. Тепловое перемешивание, возникающее в результате нагрева магнита до высокой температуры, разрушает его магнитные свойства.

Магнитные поля сильно различаются по силе. Некоторые типичные значения приведены в таблице.

Типичные магнитные поля
внутри атомных ядер 10 11 т
в сверхпроводящих соленоидах 20 т
в циклотроне со сверхпроводящей катушкой 5 т
возле небольшого керамического магнита 0.1 т
Поле Земли на экваторе 4 (10 −5 ) т
в межзвездном пространстве 2 (10 −10 ) т

магнетизм | Определение, примеры, физика и факты

Магнетизм , явление, связанное с магнитными полями, возникающими в результате движения электрических зарядов. Это движение может принимать разные формы. Это может быть электрический ток в проводнике или заряженные частицы, движущиеся в пространстве, или это может быть движение электрона по атомной орбитали.Магнетизм также связан с элементарными частицами, такими как электрон, которые обладают свойством, называемым спином.

Основы

В основе магнетизма лежат магнитные поля и их влияние на материю, как, например, отклонение движущихся зарядов и крутящих моментов на другие магнитные объекты. Свидетельством наличия магнитного поля является магнитная сила, действующая на заряды, движущиеся в этом поле; сила направлена ​​под прямым углом как к полю, так и к скорости заряда. Эта сила отклоняет частицы, не меняя их скорости.Отклонение можно наблюдать в крутящем моменте стрелки компаса, который выравнивает стрелку с магнитным полем Земли. Игла представляет собой тонкий кусок железа, намагниченный, то есть небольшой стержневой магнит. Один конец магнита называется северным полюсом, а другой — южным. Сила между северным и южным полюсами притягательна, тогда как сила между такими же полюсами отталкивает. Магнитное поле иногда называют магнитной индукцией или плотностью магнитного потока; он всегда обозначается как B .Магнитные поля измеряются в единицах тесла (Тл). (Другой единицей измерения, обычно используемой для B , является гаусс, хотя он больше не считается стандартной единицей измерения. Один гаусс равен 10 −4 тесла.)

Основным свойством магнитного поля является то, что его поток через любую замкнутую поверхность равен нулю. (Замкнутая поверхность — это поверхность, которая полностью окружает объем.) Это выражается математически как div B = 0 и может быть понято физически в терминах силовых линий, представляющих B .Эти линии всегда замыкаются сами по себе, поэтому, если они в какой-то момент входят в определенный объем, они также должны покинуть этот объем. В этом отношении магнитное поле сильно отличается от электрического поля. Силовые линии электрического поля могут начинаться и заканчиваться на заряде, но, несмотря на многочисленные поиски так называемых магнитных монополей, не было найдено эквивалентного магнитного заряда.

Наиболее распространенным источником магнитных полей является электрическая петля. Это может быть электрический ток в круглом проводнике или движение вращающегося электрона в атоме.С обоими этими типами токовых петель связан магнитный дипольный момент, значение которого составляет i A , произведение тока i на площадь контура A . Кроме того, электроны, протоны и нейтроны в атомах имеют магнитный дипольный момент, связанный с их собственным спином; такие магнитные дипольные моменты представляют собой еще один важный источник магнитных полей. Частицу с магнитным дипольным моментом часто называют магнитным диполем.(Магнитный диполь можно представить как крошечный стержневой магнит. Он имеет такое же магнитное поле, что и такой магнит, и ведет себя таким же образом во внешних магнитных полях.) При помещении во внешнее магнитное поле магнитный диполь может подвергаться воздействию крутящий момент, который стремится выровнять его с полем; если внешнее поле неоднородно, на диполь также может действовать сила.

Получите эксклюзивный доступ к контенту из нашего первого издания 1768 с вашей подпиской. Подпишитесь сегодня

Все вещества в той или иной степени проявляют магнитные свойства.При помещении в неоднородное поле материя либо притягивается, либо отталкивается в направлении градиента поля. Это свойство описывается магнитной восприимчивостью вещества и зависит от степени намагниченности вещества в поле. Намагниченность зависит от размера дипольных моментов атомов в веществе и степени выравнивания дипольных моментов относительно друг друга. Некоторые материалы, такие как железо, демонстрируют очень сильные магнитные свойства из-за выравнивания магнитных моментов их атомов в определенных небольших областях, называемых доменами.В нормальных условиях различные домены имеют компенсирующие поля, но их можно выровнять друг с другом для создания чрезвычайно сильных магнитных полей. Различные сплавы, такие как NdFeB (сплав неодима, железа и бора), поддерживают выравнивание своих доменов и используются для изготовления постоянных магнитов. Сильное магнитное поле, создаваемое типичным магнитом из этого материала толщиной три миллиметра, сравнимо с электромагнитом, сделанным из медной петли, по которой течет ток в несколько тысяч ампер. Для сравнения, ток в обычной лампочке равен 0.5 ампер. Поскольку выравнивание доменов материала создает магнит, нарушение упорядоченного выравнивания разрушает магнитные свойства материала. Тепловое перемешивание, возникающее в результате нагрева магнита до высокой температуры, разрушает его магнитные свойства.

Магнитные поля сильно различаются по силе. Некоторые типичные значения приведены в таблице.

Типичные магнитные поля
внутри атомных ядер 10 11 т
в сверхпроводящих соленоидах 20 т
в циклотроне со сверхпроводящей катушкой 5 т
возле небольшого керамического магнита 0.1 т
Поле Земли на экваторе 4 (10 −5 ) т
в межзвездном пространстве 2 (10 −10 ) т

Магнитные пускатели по лучшим ценам — Лучшие предложения на магнитные пускатели от мировых продавцов магнитных пускателей

Отличные новости !!! Вы попали в нужное место для магнитных пускателей. К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress.У нас буквально тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

AliExpress никогда не уступит по выбору, качеству и цене. Каждый день вы найдете новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку эти лучшие магнитные пускатели в кратчайшие сроки станут одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что приобрели магнитные пускатели на AliExpress.Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

Если вы все еще не уверены в магнитных пускателях и думаете о выборе аналогичного товара, AliExpress — отличное место для сравнения цен и продавцов. Мы поможем вам решить, стоит ли доплачивать за высококачественную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь.А если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе. Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца.Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.

А если вы новичок на AliExpress, мы откроем вам секрет.Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести Магнитный пускатель по самой выгодной цене.

У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы.На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните лучший опыт покупок прямо здесь.

Последние достижения в понимании магнитных наночастиц в магнитных полях переменного тока и оптимальном дизайне для направленной гипертермии

Целенаправленное лечение гипертермии с использованием магнитных наночастиц является многообещающей терапией рака, которая позволяет избирательно нагревать скрытые микроканальные ткани.В этом обзоре я описываю современное состояние химического синтеза таких магнитных наночастиц. Затем дается обзор последних достижений в понимании их механизмов рассеивания тепла в сильных магнитных полях. В этом обзоре рассматриваются недавно предсказанные новые явления: петли магнитного гистерезиса суперпарамагнитных состояний и установившиеся ориентации легких осей в направлениях, параллельных, перпендикулярных или наклонных к переменному магнитному полю. Наконец, этот обзор заканчивается перспективами на будущее с точки зрения оптимального дизайна для эффективности с низким профилем побочных эффектов.

1. Введение

Гиппократ сказал: «Те болезни, которые лекарствами не излечить, лечит нож; те, которые не вылечить ножом, лечит огнем; те, которые не излечивает огонь, должны считаться неизлечимыми ». В одном отношении медицина со временем не изменилась; даже сегодня несколько методов лечения используются в сочетании для лечения болезней, для которых не существует установленного эффективного протокола лечения, наиболее ярким примером которого является рак. Текущие стандартные методы лечения рака включают хирургическое вмешательство, химиотерапию и лучевую терапию.Помимо этих методов лечения, проводится множество исследований для создания нескольких новых вариантов лечения, таких как иммунотерапия и современный эквивалент «огня» Гиппократа: термотерапия. Термотерапия — это метод лечения, который использует пониженную термостойкость раковых тканей по сравнению с нормальными тканями. В раковых тканях происходит гибель клеток даже при температурах в диапазоне от 42 до 43 ° C, что делает термотерапию перспективным вариантом для снижения бремени болезни у пациента [1].

Чтобы уменьшить повреждение нормальных тканей с помощью стандартных методов лечения, были разработаны эндо- / лапароскопические хирургические методы как современный эквивалент «ножа» Гиппократа. Что касается химиотерапии, то много усилий было сосредоточено на доставке лекарств для селективной транспортировки противоопухолевых агентов к опухолевым тканям с использованием реакций антиген-антитело. Такие системы доставки лекарств также используются для концентрирования соединений бора в опухолевых тканях. При лечении, известном как борная нейтронно-захватная терапия, пациента излучают надтепловыми нейтронами, которые избирательно вызывают распад ядер бора, сконцентрированных внутри скрытых опухолей, таким образом, специфически разрушая раковые клетки.В том же духе, может ли термотерапия также использовать технологию доставки лекарств для специальной доставки термических семян к раковым клеткам в неизвестных местах? Например, если бы можно было разработать миниатюрные сковороды с индукционным нагревом и выборочно направлять их к скрытым опухолям, то привело бы это к избирательному нагреву тканей опухоли в организме человека на плите с индукционным нагревом? В отличие от микроволновой печи, мы знаем, что если положить руку на плиту с индукционным нагревом, это не сразу приведет к ожогу.(Обычно мы не можем подтвердить эту функцию, используя коммерческую плиту IH, потому что она автоматически перестает работать, когда мы снимаем с нее металлическую сковороду.) Этот опыт показывает, что магнитное поле переменного тока радиоволнового диапазона, генерируемое в плите, может легко проникнуть глубоко внутрь. ткани, в которые может быть встроена опухоль. Поэтому мы считаем, что упомянутая здесь простая идея — направленная гипертермия с использованием магнитных наночастиц — может избирательно разрушать раковые клетки, скрытые глубоко в организме [2–8].

Конечно, есть много вопросов по поводу этой концепции, которые необходимо решить. Насколько безопасно помещать магнитные наночастицы в тело? Могут ли магнитные наночастицы действительно концентрироваться в скрытых тканях опухоли? Могут ли магнитные наночастицы нагреваться внутри тела? Чтобы ответить на эти вопросы, ДеНардо и др. вводили наночастицы оксида железа, конъюгированные с моноклональными антителами, в хвосты мыши и обнаружили, что они накапливаются в концентрации приблизительно 0,3 кг / м 3 (0.3 мг / см 3 ) в опухолях [9]. (Побочные эффекты наночастиц оксида железа в качестве контрастного агента для МРТ были ранее изучены и одобрены для внутривенных инъекций.) Wust et al. показали, что введение высоких концентраций (кг / м 3 ) магнитных наночастиц непосредственно в опухоли в известных местах и ​​облучение их магнитным полем переменного тока привело к повышению температуры опухолей до 43 ° C [10]. Таким образом, известно, что наночастицы оксида железа безопасны, могут до некоторой степени избирательно накапливаться в скрытых опухолях и могут адекватно нагреваться при наличии в высоких концентрациях.Тем не менее, проблемы с направленной гипертермией с использованием магнитных наночастиц все еще очевидны. Увеличивается ли плотность магнитных наночастиц, доставляемых к опухолям, как при их непосредственном введении в опухоль? Если нет, можно ли компенсировать более низкую плотность магнитных наночастиц за счет максимального их рассеивания тепла? Первая проблема является в первую очередь биохимической, поэтому исследователи материалов в первую очередь сосредоточили свое внимание на улучшении характеристик нагрева магнитных наночастиц [11–30].Последующий прогресс в технологии химического синтеза привел к созданию магнитных наночастиц заданного размера, формы и структуры. Что касается физических механизмов нагрева, была раскрыта природа нелинейного отклика и неравновесной диссипации в магнитных полях переменного тока магнитных наночастиц, которые отличаются от свойств кастрюль. В данном обзоре этот прогресс рассматривается следующим образом. В разделе 2 представлены традиционные модели, которые являются основой традиционного дизайна лечения гипертермией.В разделе 3 описаны достижения в синтезе магнитных наночастиц и рассмотрены ограничения в традиционных моделях, когда монодисперсные наночастицы используются в реальной термотерапии. В разделе 4 объясняются последние достижения в знаниях механизмов нагрева, полученные с помощью численного моделирования. Наконец, мы резюмируем оптимальный дизайн магнитных наночастиц для лечения гипертермии и обсуждаем их потенциал в качестве эффективной и безопасной версии «огня» Гиппократа в Разделе 5.

2. Традиционные модели для магнитного ответа на магнитные поля переменного тока [31–34]

Основное преимущество лечения гипертермией с использованием магнитных наночастиц состоит в том, что наночастицы могут напрямую достигать раковой ткани, перемещаясь через субмикрометровые пространства между клетками крови стены. Следовательно, для практического использования наночастицы не должны образовывать длинные цепочки или большие кластеры. Несмотря на то, что многочастичные эффекты, вызванные диполь-дипольным взаимодействием, до конца не изучены [35–38], известно, что дисперсия становится нестабильной, если между ближайшими наночастицами более чем в пять раз превышает тепловую энергию [35, 38].В этих условиях минимально допустимое расстояние между наночастицами железа диаметром 12 нм составляет примерно 27 нм, а между наночастицами феррита диаметром 25 нм — почти 40 нм. Напротив, эксперименты по малоугловому рассеянию нейтронов показали, что толщина поглощенного слоя обычно составляет несколько нанометров [39]. Следовательно, верхний предел оценивается примерно в 12 нм для железа и 25 нм для феррита. Эти значения могут служить ориентирами для рассмотрения критериев легкой доставки наночастиц, хотя агломерация, агрегация или флокуляция могут происходить в зависимости от поверхностного заряда биофункциональных наночастиц или от взаимодействия между нацеленными на опухоль лигандами.Заметим, что эти значения меньше критических диаметров для перехода в однодоменную конфигурацию и для когерентного обращения всех спинов [40]. Поэтому считалось, что магнитная наночастица, используемая при лечении гипертермией, имеет только один магнитный момент, где — спонтанная намагниченность, а — объем магнитного ядра наночастицы. Такие магнитные наночастицы обычно классифицируются как «ферромагнитные» или «суперпарамагнитные» в зависимости от того, колеблется ли направление термических колебаний или нет.

Во-первых, рассматривается ферромагнитная наночастица с одноосной магнитной анизотропией, константой анизотропии, которая достаточно велика, чтобы ее барьер магнитной анизотропии с высотой блокировал тепловые флуктуации; соответственно, остаточное состояние оказывается постоянным [41]. Если магнитное поле приложено в направлении, противоположном параллельному, состояние становится метастабильным, как показано на рисунке 1 (а). Затем обращается, когда барьер исчезает в поле анизотропии; следовательно, зеемановская энергия падает с до и энергия, соответствующая разности, рассеивается, где — проницаемость вакуума.В этом случае работа, совершаемая за один цикл переменного магнитного поля, равна 0 для и для. Такой тип рассеивания тепла получил название «гистерезисных потерь». Вкратце, рассеяние тепла от наночастиц с единичным весом в течение единицы времени, также называемое удельной мощностью потерь, резко увеличивается от нуля до момента, когда становится больше, чем, где и — это вес и плотность магнитного ядра наночастиц, соответственно. Затем выравнивается, даже если дополнительно усиливается. Согласно этому аргументу, руководящий принцип для максимизации ферромагнитных наночастиц заключается в том, что они регулируются и количество циклов увеличивается.


(a) Потери на гистерезис
(b) Потери на релаксацию
(a) Потери на гистерезис
(b) Потери на релаксацию

Далее мы переходим к меньшим суперпарамагнитным наночастицам с термически флуктуирующим изменением направления [42]. Вероятность обращения в нулевом магнитном поле выражается как где — время релаксации Нееля, — частота попыток, — постоянная Больцмана, — температура. Мы также должны учитывать броуновское вращение наночастиц, если они диспергированы в жидкой фазе.В этом случае характерное время вращения, время броуновской релаксации, в нулевом магнитном поле определяется выражением

% PDF-1.4 % 1214 0 объект > endobj xref 1214 85 0000000016 00000 н. 0000006662 00000 н. 0000006787 00000 н. 0000007691 00000 п. 0000007840 00000 п. 0000007939 00000 п. 0000008286 00000 п. 0000008641 00000 п. 0000009370 00000 п. 0000009513 00000 н. 0000010110 00000 п. 0000010615 00000 п. 0000010700 00000 п. 0000011354 00000 п. 0000011440 00000 п. 0000012018 00000 п. 0000012515 00000 п. 0000012977 00000 п. 0000013328 00000 п. 0000013418 00000 п. 0000013533 00000 п. 0000013646 00000 п. 0000014194 00000 п. 0000014403 00000 п. 0000015031 00000 п. 0000015619 00000 п. 0000016039 00000 п. 0000016114 00000 п. 0000018052 00000 п. 0000018373 00000 п. 0000018545 00000 п. 0000018829 00000 п. 0000019087 00000 п. 0000019253 00000 п. 0000019421 00000 п. 0000019778 00000 п. 0000020359 00000 п. 0000021917 00000 п. 0000023382 00000 п. 0000023497 00000 п. 0000024771 00000 п. 0000026689 00000 п. 0000026946 00000 п. 0000027323 00000 н. 0000029515 00000 п. 0000031538 00000 п. 0000033191 00000 п. 0000033317 00000 п. 0000036882 00000 п. 0000036939 00000 п. 0000037044 00000 п. 0000037128 00000 п. 0000037829 00000 п. 0000045117 00000 п. 0000050372 00000 п. 0000050616 00000 п. 0000051008 00000 п. 0000055176 00000 п. 0000060454 00000 п. 0000086638 00000 п. 0000086763 00000 п. 0000086799 00000 н. 0000086878 00000 п. 0000120493 00000 н. 0000120822 00000 н. 0000120891 00000 н. 0000121009 00000 н. 0000154941 00000 н. 0000221361 00000 н. 0000284422 00000 н. 0000320687 00000 н. 0000376822 00000 н. 0000376901 00000 н. 0000377541 00000 н. 0000377838 00000 н.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *