Закрыть

Все законы ома: Закон Ома определение. Закон Ома для участка цепи

Про закон Ома в популярном изложении

Электрический ток и опасное напряжение невозможно услышать (за исключением гудящих высоковольтных линий и электроустановок). Токоведущие части, находящиеся под напряжением, ничем не отличаются по внешнему виду.

Невозможно узнать их и по запаху, и повышенной температурой в штатных режимах работы они не отличаются. Но включаем в безмолвную и тихую розетку пылесос, щелкаем выключателем – и энергия словно берется из ниоткуда, сама по себе, материализуясь в виде шума и компрессии внутри бытового прибора.

Опять же, если мы воткнем в разъемы розетки два гвоздя и возьмемся за них, то буквально всем своим телом ощутим реальность и объективность существования электрического тока. Делать это, конечно, настоятельно не рекомендуется.

Но примеры с пылесосом и гвоздями наглядно демонстрируют нам, что изучение и понимание основных законов электротехники способствует безопасности при обращении с бытовым электричеством, а также устранению суеверных предубеждений, связанных с электрическим током и напряжением.

Итак, рассмотрим один, самый ценный закон электротехники, который полезно знать. И попытаемся сделать это в как можно более популярной форме.

Содержание статьи

Открытие закона Ома

Дифференциальная форма записи закона Ома

Интегральная форма записи закона Ома для участка цепи

Закон Ома для переменного тока

Интегральная форма записи для полной цепи

Интегральная форма записи закона Ома для участка цепи, содержащего источник ЭДС

В каких случаях не выполняется закон Ома

Открытие закона Ома

В 1827 г. немецкий физик Георг Симон Ом сформулировал закон, связывающий величины электрического тока, электродвижущей силы батареи и сопротивления простой электрической цепи, составленной из батареи и соединяющих ее полюса последовательно включенных разнородных проводников. Кроме того, он обнаружил, что различные вещества оказывают электрическому току различное сопротивление.

Ом экспериментально установил, что в последовательной цепи, составленной из нескольких участков с проводниками разного сопротивления, ток во всех участках одинаков, различна только разность потенциалов на проводниках, которую Ом назвал «падением напряжения».

В нормальном, несверхпроводящем металлическом проводнике имеет место закон Ома. Для участка проводника, не содержащего источника электродвижущей силы (гальванического элемента, аккумулятора, генератора, термопары, источника фотоэдс и т. д.), закон Ома заключается в том, что сила тока пропорциональна разности потенциалов на концах участка. Коэффициент пропорциональности называют сопротивлением.

Первая запись о законе Ома в лабораторной книге Георга Симона Ома сегодня хранится в архивах Немецкого музея в Мюнхене:

Открытие закона Ома было очень важным этапом исследований электрических и магнитных явлений, имевших большое практическое значение. Закон Ома и открытые в дальнейшем законы  Кирхгофа впервые дали возможность производить расчеты электрических цепей и легли в основу зародившейся электротехники.

Виды законов Ома

1. Дифференциальная форма записи закона Ома

Самый главный закон электротехники – это, конечно, закон Ома. О его существовании знают даже люди, не имеющие отношения к электротехнике. Но между тем вопрос «А знаешь ли ты закон Ома?» в технических ВУЗах является ловушкой для зарвавшихся и самонадеянных школяров. Товарищ, разумеется, отвечает, что закон Ома знает отлично, и тогда к нему обращаются с просьбой привести этот закон в дифференциальной форме. Тут-то и выясняется, что школяру или первокурснику еще учиться и учиться.

Однако дифференциальная форма записи закона Ома на практике почти неприменима. Она отражает зависимость между плотностью тока и напряженностью поля:

j=G*E,

где G – это проводимость цепи; Е – напряженность электрического тока.

Все это – попытки выразить электрический ток, принимая во внимание только физические свойства материала проводника, без учета его геометрических параметров (длина, диаметр и тому подобное). Дифференциальная форма записи закона Ома – это чистая теория, знание ее в быту совершенно не требуется.

2. Интегральная форма записи закона Ома для участка цепи

Иное дело – интегральная форма записи. Она тоже имеет несколько разновидностей. Самой популярной из них является закон Ома для участка цепи: I=U/R

Говоря по-другому, ток в участке цепи всегда тем выше, чем больше приложенное к этому участку напряжение и чем меньше сопротивление этого участка.

Вот этот «вид» закона Ома просто обязателен к запоминанию для всех, кому хоть иногда приходится иметь дело с электричеством. Благо, и зависимость-то совсем простая. Ведь напряжение в сети можно считать неизменным.

Для розетки оно равно 220 вольт. Поэтому получается, что ток в цепи зависит только от сопротивления цепи, подключаемой к розетке. Отсюда простая мораль: за этим сопротивлением надо следить.

Короткие замыкания, которые у всех на слуху, случаются именно по причине низкого сопротивления внешней цепи. Предположим, что из-за неправильного соединения проводов в ответвительной коробке фазный и нулевой провода оказались напрямую соединены между собой. Тогда сопротивление участка цепи резко снизится практически до нуля, а ток так же резко возрастет до очень большой величины.

Если электропроводка выполнена правильно, то сработает автоматический выключатель, а если его нет, или он неисправен или подобран неправильно, то провод не справится с возросшим током, нагреется, расплавится и, возможно, вызовет пожар.

Но бывает, что приборы, включенные в розетку и отработавшие уже далеко не один час, становятся причиной короткого замыкания. Типичный случай – вентилятор, обмотки двигателя которого подверглись перегреву из-за заклинивания лопастей.

Изоляция обмоток двигателя не рассчитана на серьезный нагрев, она быстро приходит в негодность. В результате появляются межвитковые короткие замыкания, которые снижают сопротивление и, в соответствии с законом Ома, также ведут к увеличению тока.

Повышенный ток, в свою очередь, приводит изоляцию обмоток в полную негодность, и наступает уже не межвитковое, а самое настоящее, полноценное короткое замыкание. Ток идет помимо обмоток, сразу из фазного в нулевой провод. Правда, все сказанное может случиться только с совсем простым и дешевым вентилятором, не оборудованным тепловой защитой.

Шпаргалка по закону Ома для участка цепи:

Закон Ома для переменного тока

Надо отметить, что приведенная запись закона Ома описывает участок цепи с постоянным напряжением. В сетях переменного напряжения существует дополнительное реактивное сопротивление, а полное сопротивление приобретает значение квадратного корня из суммы квадратов активного и реактивного сопротивления.

Закон Ома для участка цепи переменного тока принимает вид: I=U/Z,

где Z – полное сопротивление цепи.

Но большое реактивное сопротивление свойственно, прежде всего, мощным электрическим машинам и силовой преобразовательной технике. Внутреннее электрическое сопротивление бытовых приборов и светильников практически полностью является активным. Поэтому в быту для расчетов можно пользоваться самой простой формой записи закона Ома: I=U/R.

3. Интегральная форма записи для полной цепи

Раз есть форма записи закона для участка цепи, то существует и закон Ома для полной цепи: I=E/(r+R).

Здесь r – внутреннее сопротивление источника ЭДС сети, а R – полное сопротивление самой цепи.

За физической моделью для иллюстрации этого подвида закона Ома далеко ходить не надо – это бортовая электрическая сеть автомобиля, аккумулятор в которой является источником ЭДС.

Нельзя считать, что сопротивление аккумулятора равно абсолютному нулю, поэтому даже при прямом замыкании между его клеммами (отсутствии сопротивления R) ток вырастет не до бесконечности, а просто до высокого значения.

Однако этого высокого значения, конечно, хватит для того, чтобы вызвать расплавление проводов и возгорание обшивки авто. Поэтому электрические цепи автомобилей защищают от короткого замыкания при помощи предохранителей.

Такой защиты может оказаться недостаточно, если замыкание произойдет до блока предохранителей относительно аккумулятора, или если вовсе один из предохранителей заменен на кусок медной проволоки. Тогда спасение только в одном – необходимо как можно быстрее разорвать цепь полностью, откинув «массу», то есть минусовую клемму.

4. Интегральная форма записи закона Ома для участка цепи, содержащего источник ЭДС

Следует упомянуть и о том, что есть и еще одна разновидность закона Ома – для участка цепи, содержащего источник ЭДС:

I=(U+E)/(r+R)

или

I=(U-E)/(r+R)

Здесь U – это разность потенциалов в начале и в окончании рассматриваемого участка цепи. Знак перед величиной ЭДС зависит от направленности ее относительно напряжения.

Воспользоваться законом Ома для участка цепи нередко приходится при определении параметров цепи, когда часть схемы недоступна для детального изучения и не интересует нас.

Допустим, она скрыта неразъемными деталями корпуса. В оставшейся схеме имеется источник ЭДС и элементы с известным сопротивлением. Тогда, замерив напряжение на входе неизвестной части схемы, можно вычислить ток, а после этого – и сопротивление неизвестного элемента.

В каких случаях не выполняется закон Ома

Закон Ома не является универсальной связью между током и напряжением. Для металлов (в несверхпроводящем состоянии) закон Ома имеет место вплоть до весьма больших плотностей тока. Для полупроводников и газов пропорциональность между током и напряжением наблюдается лишь при малых напряжениях.

Термоэлектронный ток в вакууме не подчиняется закону Ома даже при малых напряжениях — в этом случае сила тока пропорциональна U3/2. В вольтовой дуге с увеличением тока напряжение падает (падающая вольтамперная характеристика), так что не может быть и речи о выполнении закона Ома.

Выражение I=U/R, однако, записывают даже в случае, когда закон Ома не выполняется. Тогда оно служит определением сопротивления R = U/I. Если сопротивление не зависит от величины тока, закон Ома имеет место. Если сопротивление само меняется с изменением тока (как, например, сопротивление газа при газовом разряде), то никакой пропорциональности между напряжением и током нет, а значит, нет и закона Ома.

Выводы

Таким образом, мы можем увидеть, что «простой» закон Ома далеко не так прост, как кому-то, возможно, казалось. Зная все формы интегральной записи законов Ома, можно понять и легко запомнить многие требования электробезопасности, а также приобрести уверенность в обращении с электричеством.

Андрей Повный

Источник: http://electrik.info

Закон Ома — schip.com.ua

Закон Ома, основанный на опытах, представляет собой в электротехнике основной закон, который устанавливает связь силы электрического тока с сопротивлением и напряжением.

Появление смартфонов, гаджетов, бытовых приборов и прочей электротехники коренным образом изменило облик современного человека. Приложены огромные усилия, направленные на исследование физических закономерностей для улучшения старой и создания новой техники. Одной из таких зависимостей является закон Ома.

Георг Симон Ом

Закон Ома – полученный экспериментальным путём (эмпирический) закон, который устанавливает связь силы тока в проводнике с напряжением на концах проводника и его сопротивлением, был открыт в 1826 году немецким физиком-экспериментатором Георгом Омом.

Строгая формулировка закона Ома может быть записана так: сила тока в проводнике прямо пропорциональна напряжению на его концах (разности потенциалов) и обратно пропорциональна сопротивлению этого проводника.

 

Формула закона Ома записывается в следующем виде:

где

I – сила тока в проводнике, единица измерения силы тока — ампер [А];

U – электрическое напряжение (разность потенциалов), единица измерения напряжения- вольт [В];

R – электрическое сопротивление проводника, единица измерения электрического сопротивления — ом [Ом].

Согласно закону Ома, увеличение напряжения, например, в два раза при фиксированном сопротивлении проводника, приведёт к увеличению силы тока также в два раза

И напротив, уменьшение тока в два раза при фиксированном напряжении будет означать, что сопротивление увеличилось в два раза.

Рассмотрим простейший случай применения закона Ома. Пусть дан некоторый проводник сопротивлением 3 Ом под напряжением 12 В. Тогда, по определению закона Ома, по данному проводнику течет ток равный:

Существует мнемоническое правило для запоминания этого закона, которое можно назвать треугольник Ома. Изобразим все три характеристики (напряжение, сила тока и сопротивление) в виде треугольника. В вершине которого находится напряжение, в нижней левой части – сила тока, а в правой – сопротивление.

Правило работы такое: закрываем пальцем величину в треугольнике, которую нужно найти, тогда две оставшиеся дадут верную формулу для поиска закрытой.

Где и когда можно применять закон Ома?

Закон Ома в упомянутой форме справедлив в достаточно широких пределах для металлов. Он выполняется до тех пор, пока металл не начнет плавиться. Менее широкий диапазон применения у растворов (расплавов) электролитов и в сильно ионизированных газах (плазме).

Работая с электрическими схемами, иногда требуется определять падение напряжения на определенном элементе. Если это будет резистор с известной величиной сопротивления (она проставляется на корпусе), а также известен проходящий через него ток, узнать напряжение можно с помощью формулы Ома, не подключая вольтметр.

Значение Закона Ома

Закон Ома определяет силу тока в электрической цепи при заданном напряжении и известном сопротивлении.

Он позволяет рассчитать тепловые, химические и магнитные действия тока, так как они зависят от силы тока.

Закон Ома является чрезвычайно полезным в технике(электронной/электрической), поскольку он касается трех основных электрических величин: тока, напряжения и сопротивления. Он показывает, как эти три величины являются взаимозависимыми на макроскопическом уровне.

Если бы было можно охарактеризовать закон Ома простыми словами, то наглядно это выглядело бы так:

Из закона Ома вытекает, что замыкать обычную осветительную сеть проводником малого сопротивления опасно. Сила тока окажется настолько большой, что это может иметь тяжелые последствия.

Георг Симон ОМ (1787 — 1854) — биография.

Замечательный немецкий физик Георг Симон Ом, чье имя носит знаменитый закон электротехники и единица электрического сопротивления, родился 16марта 1789 г. в Эрлангене (федеральная земля Бавария). Его отец был известным в городе мастером-механиком. Мальчик Ом помогал отцу в мастерской и многому у него научился.

Отец Георга — Иоганн Вольфганг Ом, был потомственным слесарем, много времени уделявшим вопросам самообразования. Он женился на дочери эрлангенского кузнеца Марии Елизавете Беккин. Из 7 рожденных ею детей в живых осталось только трое, а сама она в 1799 умерла при родах. Иоганн Ом так и не оправился до конца жизни от потери «лучшей и нежнейшей из матерей», как он о ней говорил. Тогда его сыну Георгу было 10, Мартину -7, а дочери Барбаре — всего 5 лет. Воспитанием детей занимался отец, уделяя большое внимание их образованию.

Чтобы обеспечить семью, он ежедневно с утра до вечера занимался выполнением кузнечных и слесарных заказов, а каждую свободную минуту он посвящал детям. О том бесконечно многом, чем они обязаны отцу, впоследствии говорили оба сына слесаря Иоганна, ставшие профессорами: Георг — физиком, а Мартин — математиком. Даже на памятнике Ому в Мюнхене он изображен возле отца, крупного мужчины в рабочем фартуке, который, обняв за плечи восторженно внимающего ему сына, серьезно и нежно о чем-то рассказывает мальчику.

Учитель начальной школы подготовил Георга к поступлению в городскую гимназию В этом учебном заведении основное внимание уделялось изучению латыни и греческого языка. Что касается математики и особенно физики, то лишь занятия, которые проводил вместе с сыновьями дома Иоганн Ом, позволили им продвинуться в изучении этих наук. Из довольно ограниченных средств семьи всегда выделялись деньги для покупки книг по математике (они преобладали), но также по истории, географии, философии, педагогике, равно как и руководства по обработке металлов. Неудивительно, что у преклонявшегося перед наукой кузнеца появились знакомые (ставшие вскоре его друзьям), преподаватели университета. Они охотно занимались и с его одаренными сыновьями.

В 1805 Георг Симон Ом сам стал студентом Эрлангенского университета. При той подготовке, которая у него была, учиться в университете Георгу Ому было легко. Может быть, и по этой причине он с азартом окунулся в спорт (стал, в частности, лучшим бильярдистом и конькобежцем в университете), увлекся танцами. Отца такая перемена в сыне не могла не обеспокоить. Назревал первый и единственный раз в их жизни «конфликт отцов и детей». В результате Георг, проучившись в университете всего полтора года, покинул родительский дом, чтобы в швейцарском городке Готтштадте занять место преподавателя математики в частной школе. Так началась педагогическая деятельность Георга Ома.

Швейцария очаровала Георга. Ее природа, ее люди, в том числе его коллеги и ученики, крохотный городок, в котором самым большим зданием был старинный замок, в котором располагалась школа, наконец, хорошая зарплата — все это вызывало у него чувство восхищения, которым наполнены его письма домой. Огорчало лишь отсутствие ответных писем от отца, который был так глубоко травмирован размолвкой с сыном, что почти год не только не писал ему, но даже и отказывался читать его письма: Иоганну Ому казалось, что рухнули все надежды, которые он связывал со своим даровитым сыном. Время — лучший целитель. Постепенно переписка восстановилась, и отец, как и прежде, старался поддерживать Георга вниманием и советами.

Ом в 1911 все же вернулся в Эрланген, то уже в том же году сумел закончить университет, защитить диссертацию и получить ученую степень доктора философии. Более того, ему тут же была предложена в университете должность приват-доцента кафедры математики. Это было прекрасно, но всего через три семестра Георг Ом вынужден был по материальным соображениям искать другое место. Эти поиски были мучительными и долгое время безуспешными. Наконец пришло приглашение занять место учителя физики и математики в иезуитской коллегии Кельна. 37-летний Ом немедленно направился в Кельн.

Первым делом Георг проводит обследование всего парка приборов. Здесь обнаруживается, что многие приборы требуют ремонта, а то и замены. Но Ом не зря был прилежным учеником своего отца, который остается его первым советчиком. Тщательность работы, стремление как можно детальнее продумывать постановку экспериментов и готовить для них аппаратуру стало основой будущих успехов. Ом, который прежде уделял основное внимание математике, решительно и воодушевленно переключился на физику. Ома увлекли проблемы, связанные с протеканием электрических токов по проводникам.

Для характеристики проводников Ом в1820 г. ввел понятие «сопротивление», ему казалось, что проводник сопротивляется току. По-английски и по-французски сопротивление называется resistance, поэтому современный схемный элемент называется резистором, а первая буква R с легкой руки Ома до сих пор используется как обозначение резистора в схемах.
Школьникам наших дней, изучающим закон Ома, может показаться, что это — один из простейших законов физики: сила тока в проводнике прямо пропорциональна падению напряжения в нем и обратно пропорциональна сопротивлению. Но попробуйте мысленно перенестись в двадцатые годы 19 века!

Путь, по которому пошел Георг Ом, определялся ясным пониманием того, что первым делом нужно научиться количественно исследовать физическое явление. Для измерения тока уже раньше пытались использовать тот факт, что он вызывает нагревание проводника. Однако Г. Ом избрал для измерения тока не тепловое, а именно его магнитное действие, открытое Эрстедом. В приборе Ома ток, протекавший по проводнику, вызывал поворот магнитной стрелки, подвешенной на упругой расплющенной золотой проволочке. Экспериментатор, поворачивая микрометрический винт, к которому крепился верхний конец проволочки, добивался компенсации поворота, вызванного магнитным воздействием, и угол поворота этого винта и являлся мерилом тока.

Установка была смонтирована со всей возможной тщательностью и обеспечивала достаточную стабильность тока. Только после этого Ом устранил все первоначально имевшиеся источники неточностей и получил надежные результаты, касающиеся влияния на ток как геометрической формы проводников (их длины и сечения), так и их химического состава.

В 1826 в «Журнале физики и химии» появилась обширная статья Георга Ома «Определение закона, по которому металлы проводят контактное электричество, вместе с наброском теории вольтаического аппарата мультипликатора Швейггера» (так Ом называл применявшийся им гальванометр), в которой излагались основные результаты его исследований.

Публикация результатов опытов Ома в первое время не вызвала почти никаких отзывов. Узнав о работах Ома, сам великий Майкл Фарадей заинтересовался ими и выразил сожаление, что из-за незнания немецкого языка не может изучить их обстоятельнее. Что же касается немецких коллег Ома, то, когда, наконец, был опубликован пространный отзыв одного из них, его автор счел, что исследования Ома «не внушают серьезного уважения».

Тем не менее, хлопоты Ома о предоставлении ему годичного освобождения от учебных занятий ради возможности посвятить себя полностью научным исследованиям были в 1826 удовлетворены (правда, с сохранением лишь половинного оклада).
Георг Ом переезжает в Берлин, где живет и работает его брат Мартин, и ровно через год выходит обширная, содержащая 245 страниц, монография «Теоретическое исследование электрических цепей». Противники Ома не только отрицали его заслуги, но и активно мешали ему работать. Все хлопоты о месте, где можно было бы работать, оставались тщетными. Даже выступать в печати со своими доводами Ому было не просто.

«Нет пророка в своем отечестве!» Георг Ом в полной мере испытал это. Понимая важность полученных им научных результатов, он тщетно хлопотал о предоставлении ему той должности, которой он по праву заслуживал. Хотя срок его командировки в Берлин истекал, он считал невозможным оставить этот научный центр. В конце концов, ему предложили работу в Военной школе Берлина, но почти с символической нагрузкой — 3 часа в неделю (и с соответствующей оплатой). Ом, которого поддерживал брат, принял и такое предложение. Он продолжал упорно работать. В 1829 в «Журнале физики и химии» вышла еще одна его работа. В ней фактически закладывались принципиальные основы работы электроизмерительных приборов. В частности, был предложен используемый и сегодня эталон электрического сопротивления.

Только в 1833, через 6 лет после выхода основного труда Ома, ему предложили место профессора физики во вновь организованной политехнической школе Нюрнберга. Ом немедленно перебрался в Нюрнберг. Вскоре его назначили инспектором по методике преподавания и поручили заведование кафедрой математики. В 1839 к этому добавились и обязанности ректора школы. Тогда же наметился и его переход на новую научную тематику: Ома привлекла акустика. В 1843 он показал, что простейшее слуховое ощущение вызывается гармоническими колебаниями, на которое ухо разлагает сложные звуки (акустический закон Ома).

Наметилось и международное признание. В 1841 работы Ома были переведены на английский язык, в 1847 — на итальянский, в 1860 — на французский. (Хотя перевода трудов Ома на русский язык не было, но именно работавшие в России Э. Х. Ленц и Б. С. Якоби первыми привлекли внимание широкой научной общественности к трудам Ома). В 1842 произошло событие, которое явилось первым важным знаком признания научных заслуг Георга Ома: он явился вторым немецким ученым, которого Лондонское Королевское общество наградило золотой медалью и избрало своим членом.

Наконец, через 20 лет ожидания, Георг Ом получил признание и на родине. В 1845 его избрали в Баварскую Академию Наук, а через четыре года пригласили в Мюнхен на должность экстраординарного профессора. Тогда же по королевскому указу он назначается хранителем государственного собрания физико-математических приборов и референтом по телеграфному ведомству при физико-техническом отделе Министерства государственной торговли. Одновременно он продолжает читать лекции по физике и по математике. Вся жизнь Георга Ома была отдана науке и поэтому семьи он не создал.

В 1852 исполнилось давнишнее желание Ома — он получил должность ординарного профессора. Но здоровье его уже пошатнулось. В 1854 он перенес серьезный сердечный приступ. 28 июня 1854 король Максимилиан издал указ об освобождении его от обязательного чтения лекций. Но до конца жизни ему оставалось всего 12 дней. Георг Ом скончался 6 июля 1854 года в половине одиннадцатого утра. Он был похоронен на старом южном кладбище города Мюнхена.

Исследования Георга Ома вызвали к жизни новые идеи, развитие которых вывело вперед учение об электричестве. В 1881 году на электротехническом съезде в Париже ученые единогласно утвердили название единицы сопротивления — 1 Ом. Этот факт — дань уважения коллег, международное признание заслуг ученого.

Использование закона Ома | LEARN.PARALLAX.COM

Знаете ли вы?

Различные формы уравнений закона Ома используются по-разному. В этом разделе вы увидите:

  • Быстрый математический трюк, чтобы вам нужно было запомнить только одну версию уравнения
  • Пример использования в электронной конструкции
  • Как он определяет соотношение единиц измерения В, А и Ом

Уловка для запоминания уравнения закона Ома

Хотя существует множество уловок для запоминания версий, которые решают I и R, вы также можете просто запомнить V = I x R, а затем разделить на обе части, чтобы выделить I или R. Другими словами, если вы решаете для I, разделите R на обе части V = I x R, и результат будет I = V / R. Или, если вы решаете для R, разделите обе части на I для R = В / И.

(Показать в полном размере: ol-solve-for-i-or-r.mp4)


Закон Ома: «Ток в проводнике между двумя точками прямо пропорционален напряжению в двух точках. ”  
Это напрямую переводится как I = V / R, где (1 / R) — «прямо пропорциональная» константа, которую можно умножить на напряжение для расчета тока. Закон Ома использует термин «две точки», чтобы сделать его более общим. Конечно, точка на каждом выводе резистора — это две точки, но это также может относиться к точкам на длинных проводах. Длинный провод, как и линия электропередач, имеет очень малое сопротивление на единицу длины. Чем длиннее провод, тем больше сопротивление.

Рассчитайте сопротивление, чтобы получить максимальный ток

Ранее вы экспериментировали с заменой резисторов, чтобы сделать свет тусклее или ярче. Меньшие резисторы позволяют большему току течь по цепи, делая свет ярче. Одна из целей прототипа или проекта может состоять в том, чтобы сделать свет настолько ярким, насколько это возможно. Это можно сделать, проверив ограничения по току, а затем выбрав резистор, который заставит цепь проводить наибольший ток в пределах этих ограничений.

В соответствии с распиновкой Edge Connector и micro:bit питание 3,3 В модуля V2 может обеспечивать ток до 270 мА. Но максимальный ток светодиода составляет 20 мА, так что это ограничивающий фактор. Итак, если вы проектируете устройство и вам нужен максимально яркий свет, вот как вы использовали бы закон Ома для расчета наименьшего резистора, который вы можете безопасно использовать (без повреждения светодиода из-за превышения его спецификации тока).

Светодиоды имеют свойство, называемое прямым напряжением, и оно немного меняется с током, но незначительно. Итак, давайте предположим, что падение напряжения на нем при 20 мА все равно будет около 2,1 В, как мы тестировали в разделе «Измерение напряжения». Это означает, что напряжение на резисторе по-прежнему будет составлять около 1,2 В, потому что они должны в сумме составлять 3,3 В. Опять же, это потому, что закон Кирхгофа о напряжении (KVL) говорит, что напряжения на компонентах должны в сумме равняться напряжению питания.

R = V / I
  = 1,2 В / 0,020 A
  = 60 Ом

.   Штырь ввода-вывода micro:bit не может даже подавать 5 мА на схему светодиода с сопротивлением 220 Ом без падения напряжения. быть слишком близкими к их максимумам или минимумам спецификации. Например, вы можете в конечном итоге повторить расчет резистора, используя 15 мА, чтобы быть в безопасности.


Равенства единиц из закона Ома

Поскольку единицей измерения напряжения является В, единицей тока является А, а единицей измерения сопротивления является Ом, закон Ома также говорит нам, как соотносятся В, А и Ом:

1 А = 1 В/Ом
1 В = 1 А x Ом
1 Ом = 1 В/А


Ваша очередь
  • Используйте полученные знания для создания сценария, вычисляющего сопротивление по току и напряжению.
  • Используйте калькулятор, чтобы проверить результаты вашего скрипта.
  • Обязательно назовите сценарий calculate_r_from_v_and_i и сохраните его.
  • Не беспокойтесь об отображении омега Ом для единиц измерения. Вместо этого используйте «омы».

 

Закон Ома • Закон Ома

Закон Ома объясняет взаимосвязь между напряжением и током, протекающим через резисторы.

Закон Ома : Ток, протекающий через любой резистор, прямо пропорционален приложенному к его концам напряжению.

Математически закон Ома определяется как V = IR
Где

В = напряжение,

I = ток,

R = сопротивление

Закон Ома широко используется в электротехнике для решения схем. Цепь представляет собой комбинацию источника напряжения и резисторов, образующих замкнутый контур (как показано выше).

Формулировка закона Ома является экспериментально полученной формулировкой. Джордж провел различные эксперименты с резистором сопротивлением 1 кОм и, наконец, опубликовал трактат в 1827 году. 0005

  • Формулировка закона Ома
  • Эксперимент по закону Ома
  • Колесо Ома
  • Калькулятор закона Ома
  • Формула закона Ома
  • Закон Ома для детей
  • Лабораторный отчет по закону Ома
  • Проверка лабораторного эксперимента с теорией
  • 5 Практическое применение в повседневной жизни
  • Примеры по закону
  • Принципиальная схема с 5 различными примерами
  • Викторина по закону Ома
  • Закон Ома в последовательных цепях
  • 5 Источники ошибок в эксперименте по закону Ома

Основы закона Ома: напряжение, ток и сопротивление

Закон Ома связывает три основных электрических свойства: напряжение, ток и сопротивление. Давайте разберемся с ними по отдельности.

Напряжение: Все мы знаем о магните, который притягивает к себе железо. Магнит делает это потому, что его магнитное поле сильнее в непосредственной близости и ослабевает с увеличением расстояния. Подобно магнитному полю, аналогичное электрическое поле существует в природе. Технически это электрическое поле называется электрическим потенциалом. Напряжение или разность потенциалов — это измерение напряженности электрического поля между двумя точками.

Ток: Металлический проводник имеет большое количество свободных валентных электронов, которые непрерывно движутся внутри него. Источник напряжения, подключенный к проводнику, заставляет эти электроны течь от отрицательной клеммы батареи к положительной клемме. Электрический ток является мерой потока заряда.

Сопротивление: Хотя электрический проводник несет большое количество свободных электронов, он также содержит атомы и другие связанные электроны. При своем движении свободные электроны также сталкиваются со связанными электронами и атомами. При этом они теряют свою энергию. Сопротивление является мерой этого сопротивления, благодаря которому связанные электроны и атомы сопротивляются движению свободных электронов.

Зачем нужен закон Ома?

Поскольку мы практически изучаем закон, важно ответить на ПОЧЕМУ. Мы уже знаем, что ток, напряжение и сопротивление являются тремя основными электрическими свойствами. Давайте посмотрим, как мы можем применить соотношение Ома (V = IR) в реальной жизни.

Электрический нагреватель

Рассмотрим нагреватель, подключенный к настенной розетке 220 В переменного тока с сопротивлением 20 Ом. Если мы хотим узнать ток, протекающий через нагреватель, мы можем легко сделать это, используя уравнение: V = IR,

I = V / R = 220 В переменного тока / 50 Ом = 4,4 А

Чтобы найти неизвестный резистор

Рассмотрим неизвестный резистор, на который подается напряжение 120 вольт. Ток равен 6 А. Опять же, изменив исходное уравнение, мы можем рассчитать неизвестное сопротивление, то есть

R = V / I = 120 В / 12 А = 10 Ом

Чтобы найти, какое входное напряжение обеспечивается

Рассмотрим третий случай, когда резистивный элемент 35 Ом подключен к неизвестному источнику напряжения. В то время как ток, протекающий через цепь, составляет 10 А, мы заинтересованы в нахождении вольт, связанных с входным источником. К счастью, мы можем использовать исходное утверждение, чтобы найти это: V = IR = 10 А * 35 Ом = 350 В

Роль метрических префиксов в законе Ома

Метрические префиксы — это буквы, которые используются вместе с цифрами. В настоящее время на практике используется 21 метрический префикс (примерно). Каждый префикс представляет определенное число. Существование метрических префиксов избавляет нас от необходимости выражать очень маленькие и очень большие числа. Давайте сначала посмотрим на префиксы метрик:

  1. yocto = 10 -24  = 0, 000 000 000 000 000 000 000 001
  2. .
  3. zepto = 10 -21  = 0, 000 000 000 000 000 000 001
  4. atto = 10 -18  = 0, 000 000 000 000 000 001
  5. фемто = 10 -15  = 0, 000 000 000 000 001
  6. пико = 10 -12  = 0, 000 000 000 001
  7. нано = 10 -9  = 0, 000 000 001
  8. микро = 10 -6  = 0,000 001
  9. милли = 10 -3  = 0,001
  10. санти = 10 -2  = 0,01
  11. деци = 10 -1  = 0,1
  12. единица = 10  = 1
  13. дека = 10 1  = 1 0
  14. гекто = 10 2  = 1 00
  15. кг = 10 3  = 1 000
  16. мега = 10 6  = 1 000 000
  17. гига = 10 9 = 1 000 000 000
  18. тера = 10 12 = 1 000 000 000 000
  19. пета = 10 15 = 1 000 000 000 000 000
  20. экза = 10 18  = 1 000 000 000 000 000 000
  21. дзета = 10 21  = 1 000 000 000 000 000 000 000
  22. йотта = 10 24  = 1 000 000 000 000 000 000 000 000

Допустим, вы измеряете ток, имеющий значение 0, 000 001 А. Написание такого числа — утомительная задача, а упоминать кому-то 0 — еще более утомительно. Здесь пригодится знание метрического префикса, и вы можете просто выразить 0,000 001 1 микроампер. Из всех 21 строк есть несколько значений, которые вы должны держать под рукой:

Почему они важны?

  1. Часто 9Резисторы 0132 имеют номинал кОм (кОм) и мегаом (МОм) .
  2. Ток измеряется в миллиамперах (мА) и микроамперах (мкА) .
Как мы их используем в наших омических схемах?

Рассмотрим резистор 5 кОм (5000 Ом), подключенный к источнику 12 В. Давайте воспользуемся нашим уравнением I = V/R, чтобы найти ток, протекающий по цепи.

I = V / R = 12 В / 5000 Ом = 0,0024 А = 2,4 * 10-3 А = 20,4 мА

Приведенные выше расчеты довольно утомительны. Для сложных расчетов это может оказаться проблематичным.

Существует альтернативный способ работы с префиксами. Хотя мА представляет 0,001, это значение обратно пропорционально кА. 1 мА = (1/кА). Мы можем использовать эту обратную технику:

  • милли = 1/килограмм
  • .
  • микро = 1/мега
  • нано = 1/Гига

Применим это правило к предыдущему случаю:

I = V / R = 12 В / 5 кОм = (12 В / 5 Ом) m = 20,4 мА

Новичок может запутаться в этих вычислениях. Тем не менее, вы можете освоить их после некоторой практики.

Закон Ома и мощность

В то время как напряжение, ток и сопротивление являются тремя основными электрическими свойствами, четвертым игроком является мощность.

Как мы можем связать мощность с тремя другими свойствами? На него отвечает первый закон Джоуля.

Джеймс Прескотт Джоуль провел различные эксперименты с проводниками и обнаружил, что количество выделяемого в проводниках тепла прямо пропорционально квадрату силы тока, умноженному на сопротивление.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *