Закрыть

Второй закон кирхгофа формула и определение: Законы Кирхгофа, формула и определение первого и второго законов Кирхгофа

Содержание

Закон кирхгофа 1 и 2. Законы Кирхгофа простыми словами: определение для электрической цепи

История

Пополнил ряды немецких ученых Кирхгоф в девятнадцатом столетии, когда в стране, находившаяся на пороге революции индустриальной, требовались новейших технологии. Ученые занимались поиском решений, которые могли бы ускорить развитие промышленности.

Активно занимались исследованиями в области электричества, поскольку понимали, что в будущем оно будет широко использоваться. Проблема состояла на тот момент не в том, как составлять электрические цепи из возможных элементов, а в проведении математических вычислений. Тут и появились законы, сформулированные физиком. Они очень помогли.

Алгебраическая сумма приходящих к узлам токов и исходящих из него равна нулю. Эта одновременно вытекает из другого закона — постоянства энергии.

К узлу подходят 2 провода, а отходит один. Значение тока, текущего от узла, такое же, как сумма его, протекающего по двум остальным проводникам, т. е. идущим к нему. Правило Кирхгофа объясняет, что, при ином раскладе, накапливался бы заряд, но такого не бывает. Все знают, что всякую сложную цепь легко разделить на отдельные участки.

Но, при этом непросто определить путь, по которому он проходит. Тем более, что на различных участках сопротивления не одинаковы, поэтому и распределение энергии не будет равномерным.

В соответствие со Вторым правилом Кирхгофа, энергия электронов на каждом из замкнутых участков электрической цепи равняется нулю – нулю равняется всегда в таком контуре суммарное значение напряжений. Если бы нарушилось данное правило, энергия электронов при прохождении определенных участков, уменьшалась бы или увеличивалась. Но, этого не наблюдается.

Соединения проводников

Есть два основных способа соединения проводников друг с другом — это последовательное и параллельное соединения. Различные комбинации последовательного и параллельного соединений приводят к смешанному соединению проводников.

Резисторы и подводящие провода

Проводник, обладающий сопротивлением R, мы называем резистором и изображаем следующим образом (рис. 1):

Рис. 1 Резистор

Напряжение на резисторе — это разность потенциалов стационарного электрического поля между концами резистора. Между какими именно концами? В общем-то, это неважно, но обычно удобно согласовывать разность потенциалов с направлением тока.

Ток в цепи течёт от «плюса» источника к «минусу». В этом направлении потенциал стационарного поля убывает. Напомним ещё раз, почему это так.

Пусть положительный заряд q перемещается по цепи из точки a в точку b, проходя через резистор R (рис. 2):

Рис.2  U = φa – φb

Стационарное поле совершает при этом положительную работу A = q(φa − φb). Так как q > 0 и A > 0, то и φa − φb > 0, т. е. φa > φb.

Поэтому напряжение на резисторе мы вычисляем как разность потенциалов в направлении тока: U = φa − φb.

Сопротивление подводящих проводов обычно пренебрежимо мало; на электрических схемах оно считается равным нулю. Из закона Ома следует тогда, что потенциал не меняется вдоль провода: ведь если φa − φb = IR и R = 0, то φa = φb (рис. 3):

Рис.3   φa = φb

Таким образом, при рассмотрении электрических цепей мы пользуемся идеализацией, которая сильно упрощает их изучение. А именно, мы считаем, что потенциал стационарного поля изменяется лишь при переходе через отдельные элементы цепи, а вдоль каждого соединительного провода остаётся неизменным. В реальных цепях потенциал монотонно убывает при движении от положительной клеммы источника к отрицательной.

Последовательное соединение

При последовательном соединении проводников конец каждого проводника соединяется с началом следующего за ним проводника.

Рассмотрим два резистора R1 и R2, соединённых последовательно и подключённых к источнику постоянного напряжения U (рис. 4). Напомним, что положительная клемма источника обозначается более длинной чертой, так что ток в данной схеме течёт по часовой стрелке.

Сформулируем основные свойства последовательного соединения и проиллюстрируем их на этом простом примере:

  • При последовательном соединении проводников сила тока в них одинакова. В самом деле, через любое поперечное сечение любого проводника за одну секунду будет проходить один и тот же заряд. Ведь заряды нигде не накапливаются, из цепи наружу не уходят и не поступают в цепь извне.
  • Напряжение на участке, состоящем из последовательно соединённых проводников, равно сумме напряжений на каждом проводнике. Действительно, напряжение Uab на участке ab — это работа поля по переносу единичного заряда из точки a в точку b; напряжение Ubc на участке bc — это работа поля по переносу единичного заряда из точки b в точку c. Складываясь, эти две работы дадут работу поля по переносу единичного заряда из точки a в точку c, то есть напряжение U на всём участке: U = Uab + Ubc.

Можно и более формально, без всяких словесных объяснений: U = Uac = φa − φc = (φa − φb) + (φb − φc) = Uab + Ubc.

  • Сопротивление участка, состоящего из последовательно соединённых проводников, равно сумме сопротивлений каждого проводника. Пусть R — сопротивление участка ac. По закону Ома имеем:

что и требовалось.

Можно дать интуитивно понятное объяснение правила сложения сопротивлений на одном частном примере. Пусть последовательно соединены два проводника из одинакового вещества и с одинаковой площадью поперечного сечения S, но с разными длинами l1 и l2.

Сопротивления проводников равны:

Но это, повторяем, лишь частный пример. Сопротивления будут складываться и в самом общем случае — если различны также вещества проводников и их поперечные сечения. Доказательство этого даётся с помощью закона Ома, как показано выше. Наши доказательства свойств последовательного соединения, приведённые для двух проводников, переносятся без существенных изменений на случай произвольного числа проводников.

Параллельное соединение

При параллельном соединении проводников их начала подсоединяются к одной точке цепи, а концы — к другой точке.

Снова рассматриваем два резистора, на сей раз соединённые параллельно (рис. 5).

Резисторы подсоединены к двум точкам: a и b. Эти точки называются узлами или точками разветвления цепи. Параллельные участки называются также ветвями; участок от b к a (по направлению тока) называется неразветвленной частью цепи.

Теперь сформулируем свойства параллельного соединения и докажем их для изображённого выше случая двух резисторов:

  • Напряжение на каждой ветви одинаково и равно напряжению на неразветвленной части цепи. В самом деле, оба напряжения U1 и U2 на резисторах R1 и R2 равны разности потенциалов между точками подключения:

U1 = U2 = φa − φb = U.

Этот факт служит наиболее отчётливым проявлением потенциальности стационарного электрического поля движущихся зарядов.

  • Сила тока в неразветвленной части цепи равна сумме сил токов в каждой ветви. Пусть, например, в точку a за время t из неразветвленного участка поступает заряд q. За это же время t из точки a к резистору R1 уходит заряд q1, а к резистору R2 — заряд q2. Ясно, что q = q1 + q2. В противном случае в точке a накапливался бы заряд, меняя потенциал данной точки, что невозможно (ведь ток постоянный, поле движущихся зарядов стационарно, и потенциал каждой точки цепи не меняется со временем). Тогда имеем:

что и требовалось.

  • Величина, обратная сопротивлению участка параллельного соединения, равна сумме величин, обратных сопротивлениям ветвей. Пусть R — сопротивление разветвлённого участка ab. Напряжение на участке ab равно U; ток, текущий через этот участок, равен I. Поэтому:

Сокращая на U, получим:

1/R = 1/R1 + 1/R2 ,

что и требовалось.

Как и в случае последовательного соединения, можно дать объяснение данного правила на частном примере, не обращаясь к закону Ома.

Пусть параллельно соединены проводники из одного вещества с одинаковыми длинами l, но разными поперечными сечениями S1 и S2. Тогда это соединение можно рассматривать как проводник той же длины l, но с площадью сечения S = S1 + S2. Имеем:

Приведённые доказательства свойств параллельного соединения без существенных изменений переносятся на случай любого числа проводников.

Из соотношения (1) можно найти R:

R = R1R2/(R1 + R2) .

К сожалению, в общем случае n параллельно соединённых проводников компактного аналога формулы (2) не получается, и приходится довольствоваться соотношением

1/R = 1/R1 + 1/R2 + . . . + 1/Rn .

Тем не менее, один полезный вывод из формулы (3) сделать можно. Именно, пусть сопротивления всех n резисторов одинаковы и равны R1. Тогда:

Мы видим, что сопротивление участка из n параллельно соединённых одинаковых проводников в n раз меньше сопротивления одного проводника.

Смешанное соединение

Смешанное соединение проводников, как следует из названия, может являться совокупностью любых комбинаций последовательного и параллельного соединений, причём в состав этих соединений могут входить как отдельные резисторы, так и более сложные составные участки.

Расчёт смешанного соединения опирается на уже известные свойства последовательного и параллельного соединений. Ничего нового тут уже нет: нужно только аккуратно расчленить данную схему на более простые участки, соединённые последовательно или параллельно.

Рассмотрим пример смешанного соединения проводников (рис. 6).

Рис. 6 Смешанное соединение

Пусть U = 14 В, R1 = 2 Ом, R2 = 3 Ом, R3 = 3 Ом, R4 = 5 Ом, R5 = 2 Ом. Найдём силу тока в цепи и в каждом из резисторов.

Наша цепь состоит из двух последовательно соединённых участков ab и bc. Сопротивление участка ab:

Сопротивление цепи: R = Rab + Rbc = 1,2 + 1,6 = 2,8 Ом.

Теперь находим силу тока в цепи:

I = U/R = 14/2,8 = 5 A.

Для нахождения тока в каждом резисторе вычислим напряжения на обоих участках:

Uab = IRab = 5 · 1,2 = 6 B;

Ubc = IRbc = 5 · 1,6 = 8 B.

(Заметим попутно, что сумма этих напряжений равна 14 В, т. е. напряжению в цепи, как и должно быть при последовательном соединении.)

Оба резистора R1 и R2 находятся под напряжением Uab, поэтому:

Стало быть, через резистор R5 течёт ток I5 = I − I3 = 5 − 1 = 4 A

Законы Кирхгофа

Законы Кирхгофа – правила, которые показывают, как соотносятся токи и напряжения в электрических цепях.  Эти правила были сформулированы Густавом Кирхгофом в 1845 году. В литературе часто называют законами Кирхгофа, но это не верно, так как они не являются законами природы, а были выведены из третьего уравнения Максвелла при неизменном магнитном поле. Но все же, первое более привычное для них название, поэтому и мы будет их называть, как это принято в литературе – законы Кирхгофа.

Первый закон Кирхгофа

Первый закон Кирхгофа говорит, что сумма токов в любом узле электрической цепи равна нулю. Существует и другая, аналогичная по смыслу формулировка: сумма значений токов, входящих в узел, равна сумме значений токов, выходящих из узла.

Давайте разберем сказанное более подробно. Узлом называют место соединения трех и более проводников.


Ток, который втекает в узел, обозначается стрелкой, направленной в сторону узла, а выходящий из узла ток – стрелкой, направленной в сторону от узла.

Согласно первому закону Кирхгофа

Условно присвоили знак «+» всем входящим токам, а «-» ‑ все выходящим. Хотя это не принципиально.

1 закон Кирхгофа согласуется с законом сохранения энергии, поскольку электрические заряды не могут накапливаться в узлах, поэтому, поступающие к узлу заряды покидают его.

Убедиться в справедливости 1-го закона Кирхгофа нам поможет простая схема, состоящая из источника питания, напряжением 3 В (две последовательно соединенные батарейки по 1,5 В), три резистора разного номинала: 1 кОм, 2 кОм, 3,2 кОм (можно применять резисторы любых других номиналов). Токи будем измерять мультиметром в местах, обозначенных амперметром.


Если сложить показания трех амперметров с учетом знаков, то, согласно первому закону Кирхгофа, мы должны получить ноль:

I1 – I2 – I3 = 0.

Или показания первого амперметра А1 будет равняться сумме показаний второго А2 и третьего А3 амперметров.

Второй закон Кирхгофа и его определение

В едином замкнутом контуре алгебраическая сумма ЭДС будет равняться на значение, которое суммирует изменения напряжения на всеобщее количество резистивных элементов данного контура.

Второе правило Кирхгофа актуально в сетях с постоянным и/или переменным током. В формулировке закона используется именно понятие алгебраическая сумма, так как она может быть указана со знаком плюс или минус. Точное определение возможно в таком случае только посредством простого, но эффективного алгоритма. Для начала надо подобрать какое-то направление для обхода контура, по/против часовой стрелке, на собственное усмотрение. Само направление тока подбирается только через элементы цепи. После следует определить знаки «+» и «-» для напряжениях и ЭДС. Напряжения нужно записывать с отрицательным знаком, когда ток не соответствует обходу контура в плане направления и с плюсом в случае совпадения. То же самое правило нужно использовать и в том случае, когда необходимо отметить ЭДС.

Значение правил Кирхгофа

Законы Кирхгофа выражают фундаментальные принципы физики. Их формулировки кажутся очень простыми и очевидными. Но на самом деле они представляют собой метод, позволяющий рассчитать электрические параметры сетей очень сложной конфигурации.

С помощью законов Кирхгофа можно составить систему независимых уравнений для расчета параметров электрической цепи. Важно, чтобы их количество было не меньше, чем число параметров, которые необходимо определить.

На приведённом рисунке представлена электроцепь, для которой будет проводиться расчёт. Используя первый закон или правило Кирхгофа, для узла A можно записать:

I = I1 + I2.

В этот узел входят два тока, а выходит один. Далее необходимо применить второе правило. Для этого можно выбрать внешний контур. Видно, что здесь имеется два источника тока и два резистора. Поэтому будут получены уравнения:

Здесь приведены 2 эквивалентные формулы. В левой части равенства учтены электродвижущие силы двух источников тока, в правой — падение напряжения на обоих резисторах с учётом направления токов. Ещё одно уравнение можно получить из 2 закона при обходе по правому внутреннему контуру:

В результате получена система, включающая в себя три уравнения с тремя неизвестными:

Используя конкретные данные, можно подставить в систему уравнений численные значения и найти, чему равна сила тока для каждой ветви, относящейся к узлу A. При расчётах важно понимать, что при достаточно сложной конфигурации электроцепи иногда бывает непросто определить направление силы тока для каждой ветви.

Первый и второй законы Густава Кирхгофа позволяют точно определить не только величину тока, но и его знак. Если в приведённом примере после вычисления искомых значений с помощью представленной системы уравнений окажется, что ток с индексом 2 принимает отрицательное значение, то это означает, что на самом деле он имеет направление, противоположное указанному на рисунке.

Использование закона Кирхгофа о напряжениях в сложной цепи

Закон Кирхгофа о напряжениях можно использовать для определения неизвестного напряжения в сложной цепи, где известны все другие напряжения вдоль определенного «контура». В качестве примера возьмем следующую сложную схему (на самом деле две последовательные цепи, соединенные одним проводом внизу):

Рисунок 10 – Правило напряжений Кирхгофа в сложной цепи

Чтобы упростить задачу, я опустил значения сопротивлений и просто указал падение напряжения на каждом резисторе. Две последовательные цепи имеют между собой общий провод (провод 7-8-9-10), что делает возможными измерения напряжения между этими двумя цепями. Если бы мы хотели определить напряжение между точками 4 и 3, мы могли бы составить уравнение правила напряжений Кирхгофа с напряжением между этими точками как неизвестным:

E4-3 + E9-4 + E8-9 + E3-8 = 0

E4-3 + 12 + 0 + 20 = 0

E4-3 + 32 = 0

E4-3 = -32 В

Рисунок 11 – Правило напряжений Кирхгофа в сложной цепи. Напряжение между точками 4 и 3Рисунок 12 – Правило напряжений Кирхгофа в сложной цепи. Напряжение между точками 9 и 4Рисунок 13 – Правило напряжений Кирхгофа в сложной цепи. Напряжение между точками 8 и 9Рисунок 14 – Правило напряжений Кирхгофа в сложной цепи. Напряжение между точками 3 и 8

Обойдя контур 3-4-9-8-3, мы записываем значения падений напряжения так, как их регистрировал бы цифровой вольтметр, измеряя с красным измерительным проводом в точке впереди и черным измерительным проводом на точке позади, когда мы продвигаемся вперед по контуру. Следовательно, напряжение в точке 9 относительно точки 4 является положительным (+) 12 вольт, потому что «красный провод» находится в точке 9, а «черный провод» – в точке 4.

Напряжение в точке 3 относительно точки 8 составляет положительные (+) 20 вольт, потому что «красный провод» находится в точке 3, а «черный провод» – в точке 8. Напряжение в точке 8 относительно точки 9, конечно, равно нулю, потому что эти две точки электрически общие.

Наш окончательный ответ для напряжения в точке 4 относительно точки 3 – это отрицательные (-) 32 вольта, говорящие нам, что точка 3 на самом деле положительна относительно точки 4, именно это цифровой вольтметр показал бы при красном проводе в точке 4 и черном проводе в точке 3:

Рисунок 15 – Правило напряжений Кирхгофа в сложной цепи. Напряжение между точками 4 и 3

Другими словами, первоначальное размещение наших «измерительных щупов» в этой задаче правила напряжений Кирхгофа было «обратным». Если бы мы сформировали наше уравнение второго закона Кирхгофа, начиная с E3-4, вместо E4-3, обходя тот же контур с противоположной ориентацией измерительных проводов, окончательный ответ был бы E3-4 = +32 вольта:

Рисунок 16 – Правило напряжений Кирхгофа в сложной цепи. Напряжение между точками 3 и 4

Важно понимать, что ни один из подходов не является «неправильным». В обоих случаях мы приходим к правильной оценке напряжения между двумя точками 3 и 4: точка 3 положительна по отношению к точке 4, а напряжение между ними составляет 32 вольта.

Правило Кирхгофа применительно к синусоидальным токам

Правила для синусоидального, такие же, как для тока постоянного. Правда, учитываются величины напряжений с комплексными токами.

Первое звучит: «в электрической цепи нулю равна сумма алгебраическая комплексных токов в узле».

Второе правило выглядит так: «алгебраическая сумма ЭДС комплексных в контуре замкнутом равняется сумме алгебраической значений комплексных напряжений, имеющихся на пассивных составляющих данного контура.

Источники

  • https://motocarrello. ru/jelektrotehnologii/1510-zakon-kirhgofa-dlja-jelektricheskoj-cepi.html
  • http://razmishlyajem.ru/o-raznom-vsyakom/prochee/dlya-studentov/zakony-kirxgofa
  • https://faultan.ru/simulation/toe/kirchhoffs_laws/
  • https://Zaochnik.com/spravochnik/fizika/postojannyj-elektricheskij-tok/pravila-kirhgofa-dlja-razvetvlennyh-tsepej/
  • https://diodov.net/zakony-kirhgofa-prostymi-slovami/
  • https://reshit.ru/vtoroj-zakon-kirxgofa
  • https://ProFazu.ru/knowledge/electrical/zakon-kirhgofa.html
  • https://radioprog.ru/post/1005

 

 

Как вам статья?

Павел

Бакалавр «210400 Радиотехника» – ТУСУР. Томский государственный университет систем управления и радиоэлектроники

Написать

Пишите свои рекомендации и задавайте вопросы

Правила (законы) Кирхгофа простыми словами: формулировки и расчеты

На практике часто встречаются задачи по расчётам параметров токов и напряжений в различных разветвлённых цепях. В качестве инструмента для расчётов используют правила Кирхгофа (в некоторой литературе их называют еще законами, хотя это не совсем корректно) – одни из фундаментальных правил, которые совместно с законами Ома позволяет определять параметры независимых контуров в самых сложных цепях.

Учёный Густав Киргхоф сформулировал два правила [1], для понимания которых введено понятие узла, ветви, контура. В нашей ситуации ветвью будем называть участок, по которому протекает один и тот же ток. Точки соединения ветвей образуют узлы. Ветви вместе с узлами образуют контуры – замкнутые пути, по которым течёт ток.

Первое правило Кирхгофа

Первое правило Густава Кирхгофа сформулировано исходя из закона сохранения заряда. Физик понимал, что заряд не может задерживаться в узле, а распределяется по ветвям контура, образующим это соединение.

Кирхгоф предположил, а впоследствии обосновал на основании экспериментов, что количество зарядов зашедших в узел такое же, как и количество тока вытекающего из него.

На рисунке 1 изображена простая схема, состоящая из контуров. Точками A, B, C, D обозначены узлы контура в центре схемы.

Рис. 1. Схема контура

Ток I1 входит в узел A, образованный ветвями контура. На схеме электрический  заряд распределяется в двух направлениях – по ветвям AB и AD. Согласно правилу Кирхгофа, входящий ток равен сумме выходящих: I1 = I2 + I3.

На рисунке 2 представлен абстрактный узел, по ветвям которого течёт ток в разных направлениях. Если сложить векторы i1, i2, i3, i4 то, согласно первому правилу Кирхгофа, векторная сумма будет равняться 0: i1 + i2 + i3 + i4 = 0. Ветвей может быть сколько угодно много, но равенство всегда будет справедливым, с учётом направления векторов.

Рис. 2. Абстрактный узел

Запишем наши выводы в алгебраической форме, для общего случая:

Для использования этой формулы, требуется учитывать знаки. Для этого необходимо выбрать направление одного из векторов тока (не важно, какого) и обозначить его знаком «плюс». При этом знаки всех других величин определить, исходя от их направления, по отношению к выбранному вектору.

Чтобы избежать путаницы, ток, направленный в точку узла, принято считать положительным, а векторы, направленные от узла – отрицательными.

Изложим первое правило Кирхгофа, выраженное приведённой выше формулой: «Алгебраическая сумма сходящихся в определённом узле токов, равна нулю, если считать входящие токи положительными, а отходящими – отрицательными».

Первое правило дополняет второе правило, сформулированное Кирхгофом. Перейдём к его рассмотрению.

Второе правило Киргхофа

Из третьего уравнения Максвелла вытекает правило Кирхгофа для напряжений. Его ещё называют вторым законом.

Это правило гласит, что в замкнутом контуре, на резистивных элементах, алгебраическая сумма напряжений (включая внутренние), равна сумме ЭДС, присутствующих в этом же замкнутом контуре.

При этом токи и ЭДС, векторы которых совпадают с направлением (выбирается произвольно) обхода контура, считаются положительными, а встречные к обходу токи – отрицательными.

Рис. 4. Иллюстрация второго правила Кирхгофа

Формулы, которые изображены на рисунке применяются в частных случаях для вычисления параметров простых схем.

Формулировки уравнений общего характера:

, где где Lk и Ck – это индуктивности и ёмкости, соответственно.

Линейные уравнения справедливы как для линейных, так и для нелинейных линеаризованных цепей. Они применяются при любом характере временных изменений токов и напряжений, для разных источников ЭДС. При этом законы Кирхгофа справедливы и для магнитных цепей. Это позволяет выполнять вычисления для поиска соответствующие параметров.

Закон Кирхгофа для магнитной цепи

Применение независимых уравнений возможно и при расчётах магнитных цепей. Сформулированные выше правила Кирхгофа справедливы и для вычисления параметров магнитных потоков и намагничивающих сил.

Рис. 4. Магнитные контуры цепей

В частности: ∑Ф=0.

То есть, для магнитных потоков первое правило Кирхгофа можно выразить словами: «Алгебраическая сумма всевозможных магнитных потоков относительно узла магнитной цепи равняется нулю.

Сформулируем второе правило для намагничивающих сил F: «В замкнутом магнитном контуре алгебраическая сумма намагничивающих сил приравнивается к сумме магнитных напряжений». Данное утверждение выражается формулой: ∑F=∑U или ∑Iω = ∑НL, где ω – количество витков, H – напряжённость магнитного поля, символ L обозначает длину средней линии магнитопровода. ( Условно принимается, что каждая точка этой линии совпадает с линиями магнитной индукции).

Второе правило, применяемое для вычисления магнитных цепей, есть не что иное, как альтернативная форма представления закона полного тока.

Примечание: Составляя уравнения с использованием формул, вытекающих из правил Кирхгофа, надо прежде определиться с положительным направлением потоков, функционирующих в ветвях, сопоставив их с направлением обходов существующих контуров.

При совпадении векторов магнитного потока с направлениями обхода (на некоторых участках), падение напряжения на этих ветвях берём со знаком « + », а встречные ему – со знаком « – ».

Примеры расчета цепей

Рассмотрим ещё раз рисунок 3. На нём изображено 4 разнонаправленных вектора: i1, i2, i3, i4. Из них –  два входящие ( i2, i3) и два исходящие из узла (i1, i4). Положительными будем считать те векторы, которые направлены в точку соединения ветвей, а остальные – отрицательными.

Тогда, по формуле Кирхгофа, составим уравнение и запишем его в следующем виде: – i1 + i2 + i3 – i4 = 0.

На практике такие узлы являются частью контуров, обходя которые можно составить ещё несколько линейных уравнений с этими же неизвестными. Количество уравнений всегда достаточно для решения задачи.

Рассмотрим алгоритм решения на примере рис. 5.

Рис. 5. Пример для расчёта

Схема содержит 3 ветви и два узла, которые образуют три пары по два независимых контура:

  1. 1 и 2.
  2. 1 и 3.
  3. 2 и 3.

Запишем независимое уравнение, выполняющееся, например, в точке а. Из первого правила Кирхгофа вытекает: I1 +  I2 –  I3 = 0.

Воспользуемся вторым правилом Кирхгофа. Для составления уравнений можно выбрать любой из контуров, но нам необходимы контуры с узлом а, так как для него мы уже составили уравнение. Это будут контуры 1 и 2.

Пишем уравнения:

  • I1R1 +  I3 R3 = E1;
  • I2R2 +  I3R3 = E2.

Решаем систему уравнений:

Так как значения R и E известны (см. рисунок 5), мы придём к системе уравнений:

Решая эту систему, получим:

  1. I1 = 1,36 (значения в миллиамперах).
  2. I2 = 2,19 мА.;
  3. I3 = 3,55 мА.

Потенциал узла а равен: Ua = I3*R3 = 3,55 × 3 = 10,65 В. Чтобы убедиться в верности наших расчётов, проверим выполнение второго правила по отношению к контуру 3:

E1 – E2 + I1R1+ I2R2 = 12 – 15 + 1,36 – 4,38 = – 0,02 ≈ 0 (с учётом погрешностей, связанных с округлениями чисел при вычислениях).

Если проверка выполнения второго правила успешно завершена, то расчёты сделаны правильно, а полученные данные являются достоверными.

Применяя правила (законы) Кирхгофа можно вычислять параметры электрической энергии для магнитных цепей.

Закон напряжения Кирхгофа (второй закон) » Electronics Notes

Закон Кирхгофа о напряжении — это его второй закон анализа цепей, который гласит, что напряжение вокруг контура в сумме равно нулю, т. Е. Генерация потенциала равна рассеиваемому потенциалу.


Законы Кирхгофа Включает:
Основы законов Кирхгофа Текущий закон Кирхгофа (первый закон) Закон напряжения Кирхгофа (второй закон)


Закон напряжения Кирхгофа, также известный как второй закон Кирхгофа, является одним из ключевых инструментов, используемых при анализе электрических и электронных цепей.

Закон о напряжении используется в различных областях, где проводится анализ электрических и электронных цепей. Это один из ключевых методов, используемых в различных программных инструментах для анализа цепей.

Используя закон, можно получить представление об анализе цепи, что было бы невозможно другими способами. Во многих отношениях основа закона: сохранение энергии и сохранение заряда проста, но она дает новый взгляд на электрические и электронные цепи, который невозможен при использовании прежних представлений о цепях.

Определение закона напряжения Кирхгофа

Для того, чтобы лучше понять закон Кирхгофа о напряжении, первым делом нужно взглянуть на определение закона напряжения. Сделав это, объяснения могут быть предприняты более легко.

Определение закона напряжения Кирхгофа:

Закон напряжения гласит, что алгебраическая сумма напряжений на любом замкнутом пути электрической или электронной сети в любом отдельном направлении равна нулю.

В терминах электрических и электронных схем это означает, что в любой петле в цепи сумма всех потенциалов, созданных источником или сброшенных или рассеянных электронным компонентом, должна равняться нулю.

Это можно выразить математически:

При суммировании всех напряжений вокруг контура это означает, что необходимо учитывать полярность, при этом источники добавляют напряжение, а другие электронные компоненты, такие как резисторы, понижают напряжение.

Закон Кирхгофа о напряжении подчиняется принципу сохранения энергии. Если пробник перемещается по петле цепи, будут различные источники и падения потенциала. В сумме они должны равняться нулю, потому что, когда зонд возвращается в исходную точку, он должен иметь тот же потенциал, что и в начале.

Объяснение закона Кирхгофа о напряжении

Возможно, лучший способ объяснить закон Кирхгофа о напряжении — привести простой пример. возьмите простую электронную схему ниже, состоящую из батареи (источника напряжения) и трех резисторов, все в контуре.

Этот простой пример можно использовать для первого взгляда на то, как закон работает в реальном сценарии.

Простая петля цепи, показывающая источник напряжения и три резистора

Чтобы проиллюстрировать, как второй закон Кирхгофа работает в этой цепи, мы взяли простую замкнутую петлю с тремя резисторами и источником напряжения. Используемые цифры были выбраны для облегчения расчетов и наглядности примера.

Можно измерить напряжения на каждом компоненте цепи, а затем сложить их. В каждом случае счетчик применяется с полярностью счетчика в том же смысле, в соответствии с направлением вращения.

Измерение напряжения в простой цепи для закона Кирхгофа о напряжении
Обратите внимание, что отрицательный провод измерительного прибора всегда измеряет крайнюю против часовой стрелки точку вокруг компонента

Для дальнейшего изучения схемы необходимо определить полное сопротивление . Этого легко добиться, поскольку общее сопротивление последовательно соединенных резисторов равно сумме сопротивлений отдельных резисторов. Это означает, что общее сопротивление составляет 1000 Ом.

Согласно закону Ома, сила тока равна V / R = 100 / 1000 = 0,1 А. Затем можно рассчитать напряжения на отдельных резисторах по закону Ома, используя тот факт, что ток через каждый резистор составляет 0,1 А.

Важно правильно принять знак падения напряжения. Можно видеть, что способ, которым измеритель измеряет напряжение, с положительным выводом измерителя в направлении против часовой стрелки, напряжение для батареи будет положительным, но падение напряжения на резисторах будет отрицательным.

Напряжения и полярности для простой цепи для демонстрации закона Кирхгофа о напряжении

. Можно свести в таблицу напряжения вокруг контура цепи и просуммировать их, чтобы увидеть общий эффект.

Суммарное напряжение вокруг контура цепи
 
Компонент цепи Вклад напряжения
Батарея 100 В +100В
Резистор 500R -50В
Резистор 300 Ом
-30 В
Резистор 200 Ом -20 В
   
Итого 0 В

Хотя это может показаться довольно простым в своей концепции, использование закона Ома для расчета напряжений вокруг контура цепи подтверждает, что закон Кирхгофа о напряжении для этой цепи.

Закон напряжения Кирхгофа в больших цепях

Приведенная выше демонстрация очень простыми словами показывает, что закон Кирхгофа о напряжении применим к простой петлевой цепи. Однако те же принципы могут быть применены к гораздо более сложным цепям, состоящим из нескольких контуров и т. д.

Именно в более сложных цепях закон Кирхгофа проявляет себя и становится чрезвычайно полезным. Здесь он может позволить детально анализировать схемы и обеспечивает основу для многих пакетов программного обеспечения для анализа электронных схем.

Стоит рассмотреть типичный пример системы с двумя контурами. Это дает пример реальной формы руды, где часто бывает несколько циклов. Те же самые основные методы, которые используются для решения этого более простого примера, могут быть расширены для большего количества циклов.

Простая двухконтурная схема для анализа

Видно, что электронная схема состоит из двух батарей с двумя резисторами, включенными последовательно с каждой батареей, а затем один резистор, соединенный с соединением двух других резисторов с землей. Несмотря на то, что количество электронных компонентов ограничено, для примера расчеты могут быть упрощены, но при этом будут показаны основные используемые принципы.

В частности, при использовании нескольких шлейфов важно убедиться в том, что условные обозначения для разных шлейфов будут суммировать напряжения. При условии, что каждая петля суммирована правильно, общие уравнения будут работать, но неправильные знаки могут вызвать проблемы.

В приведенной ниже электронной схеме выбраны направления, и напряжения могут быть соответственно суммированы.

Направления напряжения выбраны

В контуре 1 ток, протекающий от батареи, принимается равным I 1 и аналогично, ток от батареи в контуре 2 равен I 1 .

Можно создать два одновременных уравнения для двух контуров:

100-(500I1)+400(I1+I2)=0

50-(300I2)+400(I1+I2)=0

Выделив различные переменные и затем подставив их в другое уравнение, можно рассчитать токи следующим образом:

I1=547=0,106 А

I2=194=0,011 А

Совместные уравнения не всегда дают очень простые вычисления, но видно, что можно рассчитать два уровня тока в цепях, учитывая, что в резисторе R 2 текущий является сложением I

1 и I 1 .

Несмотря на то, что расчеты могут затянуться, это очень мощный метод анализа электронных схем. Даже если количество петель увеличивается, в каждой петле остается только одна неизвестная. Используя компьютерные методы, можно выполнить анализ цепи на некоторых больших электронных схемах.

Соответственно, закон напряжения Кирхгофа является ключевым инструментом в наборе инструментов для проектирования электронных схем. Хотя они не могут использоваться в своей элементарной форме, они, вероятно, будут включены в пакеты программного обеспечения для анализа электронных схем.


Дополнительные основные понятия и руководства по электронике:
Напряжение Текущий Сила Сопротивление Емкость Индуктивность Трансформеры Децибел, дБ Законы Кирхгофа Q, добротность РЧ-шум Сигналы

    Вернуться в меню основных понятий электроники . . .

Второе правило Кирхгофа (правило напряжения или правило петли)

Оно утверждает, что в замкнутой цепи алгебраическая сумма произведений тока и сопротивления каждой части цепи равна полной ЭДС, включенной в цепь.

Второе правило Кирхгофа (Напряжение правило или правило цикла)

В нем говорится, что в замкнутая цепь алгебраическая сумма произведений тока и сопротивления каждой части цепи равна полной ЭДС, включенной в цепь. Это правило следует из закона сохранения энергии для изолированной системы (Энергия, подводимая источниками ЭДС, равна сумме энергии подается на все резисторы). Произведение тока и сопротивления принимается как положительна, если соблюдается направление тока. Предположим, если направление тока противоположно направлению петли, то произведение ток и напряжение на резисторе отрицательны. Он показан на рис. 2.24. (а) и (б). ЭДС считается положительной, если исходить из отрицательной к положительному выводу клетки. Он показан на рис. 2.24 (в) и (г).


Правило напряжения Кирхгофа должен применяться только тогда, когда все токи в цепи достигают устойчивого состояния состояние (ток в различных ветвях постоянен).

 

ПРИМЕР 2.21

Следующий рисунок показывает сложную сеть проводников, которую можно разделить на два замкнутых петли, такие как ACE и ABC. Примените правило напряжения Кирхгофа.


Решение

Таким образом, применяя второй закон Кирхоффа к замкнутой петле EACE

I 1 R 1 + I 2 + I 2

+ I 2 + I 2 + I 2 + I 2 + I 2 + I 2 . 3 R 3 = ξ 

and for the closed loop ABCA

I 4 R 4 + I 5 R 5 I 2 R 2 = 0

 

EXAMPLE 2.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *