Законы Кирхгофа простыми словами, теория и примеры
Два приема, которые применяют для упрощения процесса составления уравнений, необходимых при расчетах сложных разветвленных цепей постоянного тока называют законами (вернее было бы сказать правилами) Кирхгофа. Прежде чем перейти к самим правила Кирхгофа введем два необходимых определения.
Разветвлёнными цепями названы цепи, которые имеют несколько замкнутых контуров, несколько источников электродвижущей силы (ЭДС).
Узлом разветвлённой цепи называют точку, в которой сходятся три или более проводников с токами.
Первый закон (правило) Кирхгофа, простыми словами
Первое правило Кирхгофа называют правилом узлов, так как оно касается сил токов в узах цепи. Словесно первый закон Кирхгофа формулируют следующим образом: Алгебраическая сумма сил токов в узле равна нулю. В виде формулы это правило запишем как:
С каким знаком сила тока будет входить в сумму (1), зависит от произвольного выбора. Но при этом следует считать, что все входящие в узел токи имеют одинаковые знаки, а все исходящие из узла токи имеют противоположные входящим, знаки. Пусть все входящие токи мы примем за положительные, тогда все исходящие их этого узла токи будут отрицательными. Если направления токов изначально не заданы, то их задают произвольно. Если при расчетах получено, что сила тока отрицательна, значит, что верное направление тока является противоположным тому, которое предполагали.
Первый закон Кирхгофа является следствием закона сохранения заряда. Если в цепи текут только постоянные токи, то нет в этой цепи точек, которые накапливали бы заряд. Иначе токи не были бы постоянными.
Первый закон Кирхгофа дает возможность составить независимое уравнение, при наличии в цепи k узлов.
Второй закон (правило) Кирхгофа, простыми словами
Второй закон Кирхгофа относят к замкнутым контурам, поэтому его называют правилом контуров. Согласно этому правилу суммы произведений алгебраических величин сил тока на внешние и внутренние сопротивления всех участков замкнутого контура равны алгебраической сумме величин сторонних ЭДС (), входящих в рассматриваемый контур. В виде формулы второй закон Кирхгофа запишем как:
где величину часто называют падением напряжения; N – число рассматриваемых участков избранного контура. При использовании второго правила Кирхгофа важно помнить о направлении обхода контура. Как это делается? Произвольно выберем направление обхода рассматриваемого в задаче контура (по часовой стрелке или против нее). В случае совпадения направления обхода контура с направлением силы тока в рассматриваемом элементе, величина входит в (2) со знаком плюс. ЭДС войдет в сумму правой части выражения (2) со знаком плюс, если при движении вдоль контура, в соответствии с избранным направлением обхода первым мы встречаем отрицательный полюс источника ЭДС.
Используя второе правило Кирхгофа можно получить независимые уравнения для тех контуров цепи, которые не получены наложением уже описанных контуров. Количестов независимых контуров (n) равно:
где p – количество ветвей в цепи; k – число узлов.
Количество независимых уравнений, которые дадут оба правила Кирхгофа равно (s):
Делаем вывод о том, что число независимых уравнений будет равно числу разных токов в исследуемой цепи.
Второе правило Кирхгофа — следствие закона Ома. В принципе любую цепь можно рассчитать, применяя только закон Ома и закон сохранения заряда. Правила Кирхгофа являются всего лишь упрощающими приемами для решения задач, рассматривающих цепи постоянного тока.
Используя правила Кирхгофа для составления уравнений необходимо внимательно следить за расстановкой знаков токов и ЭДС.
Первое и второе правила Кирхгофа дают метод расчета цепи, то есть используя их можно найти все токи в цепи, если известны все ЭДС и сопротивления, в том числе и внутренние сопротивления источников.
Примеры решения задач
ru.solverbook.com
Закон Кирхгофа простыми словами…
Стоит уточнить, вероятно, Вы имели в виду не закон, а законы Кирхгофа (еще их иногда называют правилами Кирхгофа), так как их два. Давайте начнем с ответа на последний ваш вопрос. Законы Кирхгофа применяют для расчета цепей постоянного тока, которые имеют множественные разветвления. Причем, часто речь идет о нахождении силы тока в каждом из участков цепи, при известных сопротивлениях и приложенных к ним ЭДС. Теперь попробуем сформулировать законы Кирхгофа простыми словами.
Первый закон Кирхгофа. Сумма токов (с учетом их знака) в любом узле цепи равна нулю. Для правильного использования данного правила надо помнить, что узел цепи – это точка, в которой сошлось больше, чем два (три и более) проводника. Кроме того, применяя первый закон Кирхгофа, мы сами для себя определяем, какие токи (входящие или выходящие) будем считать положительными. Допустим, что считаем положительными входящие в узел токи (они у нас при сложении сил токов будут иметь знак плюс). Следовательно, все выходящие из узла токи мы запишем со знаком минус. Число слагаемых токов в сумме (которую мы приравняем к нулю) в узле будет равно числу проводников, которые в этом узле сошлись. Первый закон Кирхгофа еще называют правилом узлов.
Второй закон Кирхгофа. Второй закон Кирхгофа также называют правилом контуров. Смысл этого правила в следующем. Выбираем любой замкнутый контур в исследуемой цепи. После того, как выделен контур, мы должны выбрать направление его обхода (как захотим). При этом токи, которые будут совпадать с направлением обхода, будут положительными. Переписываем все сопротивления, которые входят в этот контур, умножаем их на силы токов, которые в них текут, получаем такие конструкции как: . Теперь суммируем полученные произведения с учетом знака силы тока и приравниваем к сумме ЭДС, которые вошли в выделенный нами контур. Теперь о знаке в сумме ЭДС. ЭДС будем считать большими нуля, если источник тока создает ток, который направлен в сторону, по которой мы обходим контур. Подробнее о законах Кирхгофа и примерах их применения см. раздел «Уравнения Кирхгофа для электрических цепей».
ru.solverbook.com
Закон кирхгофа для электрической цепи для чайников
По каждому проводнику, составляющему электрическую цепь, течет ток. В точке, где проводники сходятся, называемой узлом, справедливо правило: ток суммарный, подтекающий к нему, равняется сумме, оттекающих.
{ ArticleToC: enabled=yes }
Законы кирхгофа
Другими словами – сколько зарядов подтечет к этой точке за единицу времени, столько же оттечет. Если принять, что приходящий будет «+», а оттекающий – «-», то суммарная его величина будет нулевой.
Закон Второй, применим к цепи электрической разветвленной.
Эти универсальные законы Кирхгофа применяют очень широко, поскольку позволяют решить множество задач. Большим их достоинство считают простую и понятную всем формулировку, несложные вычисления.
История
Пополнил ряды немецких ученых Кирхгоф в девятнадцатом столетии, когда в стране, находившаяся на пороге революции индустриальной, требовались новейших технологии. Ученые занимались поиском решений, которые могли бы ускорить развитие промышленности.
Активно занимались исследованиями в области электричества, поскольку понимали, что в будущем оно будет широко использоваться. Проблема состояла на тот момент не в том, как составлять электрические цепи из возможных элементов, а в проведении математических вычислений. Тут и появились законы, сформулированные физиком. Они очень помогли.
Алгебраическая сумма приходящих к узлам токов и исходящих из него равна нулю. Эта одновременно вытекает из другого закона — постоянства энергии.
К узлу подходят 2 провода, а отходит один. Значение тока, текущего от узла, такое же, как сумма его, протекающего по двум остальным проводникам, т.е. идущим к нему. Правило Кирхгофа объясняет, что, при ином раскладе, накапливался бы заряд, но такого не бывает. Все знают, что всякую сложную цепь легко разделить на отдельные участки.
Но, при этом непросто определить путь, по которому он проходит. Тем более, что на различных участках сопротивления не одинаковы, поэтому и распределение энергии не будет равномерным.
В соответствие со Вторым правилом Кирхгофа, энергия электронов на каждом из замкнутых участков электрической цепи равняется нулю – нулю равняется всегда в таком контуре суммарное значение напряжений. Если бы нарушилось данное правило, энергия электронов при прохождении определенных участков, уменьшалась бы или увеличивалась. Но, этого не наблюдается.
Применение
Таким образом, благодаря этим двум, выдвинутым Кирхгофом утверждениям, установлено зависимость токов от напряжений в разветвленных участках.
Формула Первого закона такова:
Для схемы, приведенной ниже, справедливо:
I1 — I2 + I3 — I4 + I5 = 0
Плюсовые — это токи, идущие к точке, а те, что выходят из нее «-».
Записывается это так:
- k — количество ЭДС источников;
- m – ветви замкнутого контура;
- Ii,Ri – их сопротивление i-й и ток.
В данной схеме: Е1 — Е2 + Е3 = I1R1 — I2R2 + I3R3 — I4R4.
- ЭДС принимается «+» при совпадении ее направления с выбранным направлением обхода.
- При совпадении направления тока и обхода на резисторе, с плюсом будет также напряжение.
Расчет цепи
Способ заключается в умении составления систем уравнений, а также решении их, для нахождения токов в каждой ветви (b), а уже, зная их, умении нахождения величины напряжений.
Проще говоря, количество ветвей совпадать должно с неизвестными величинами в системе. Вначале записывают их, исходя из первого правила: число их идентично с количеством узлов.
Но, независимыми будут (y – 1) выражений. Обеспечивается это выбором, а происходит он так, чтобы разнились они (последующий со смежными) минимум одной ветвью.
Далее, составляются уравнения с использованием второго закона: b — (y — 1) = b — y +1.
Независимым считают контур, содержащий одну (или больше) ветвь, которая в другие не входит.
В качестве примера можно рассмотреть такую схему:
Сдержит она:
узлов – 4;
ветвей –6.
По Первому закону записывают три выражения, т.е. y — 1 = 4 – 1=3.
И столько же на основании Второго, поскольку b — y + 1 = 6 — 4 + 1 = 3.
В ветвях выбирают плюсовое направление и путь обхода (у нас — по стрелке часовой).
Получается:
Осталось относительно токов решить получившуюся систему, понимая, что, когда в процессе решения он получается отрицательным, это свидетельствует о том, что направлен он будет в противоположную сторону.
Правило Кирхгофа применительно к синусоидальным токам
Правила для синусоидального, такие же, как для тока постоянного. Правда, учитываются величины напряжений с комплексными токами.
Первое звучит: «в электрической цепи нулю равна сумма алгебраическая комплексных токов в узле».
Второе правило выглядит так: «алгебраическая сумма ЭДС комплексных в контуре замкнутом равняется сумме алгебраической значений комплексных напряжений, имеющихся на пассивных составляющих данного контура.
Видео: Законы Кирхгофа
motocarrello.ru
Законы Кирхгофа — это… Что такое Законы Кирхгофа?
Зако́ны Кирхго́фа (или правила Кирхгофа) — соотношения, которые выполняются между токами и напряжениями на участках любой электрической цепи. Правила Кирхгофа позволяют рассчитывать любые электрические цепи постоянного и квазистационарного тока.[1] Имеют особое значение в электротехнике из-за своей универсальности, так как пригодны для решения многих задач теории электрических цепей. Применение правил Кирхгофа к линейной цепи позволяет получить систему линейных уравнений относительно токов, и соответственно, найти значение токов на всех ветвях цепи. Сформулированы Густавом Кирхгофом в 1845 году.
Формулировка
Для формулировки законов Кирхгофа, в электрической цепи выделяются узлы — точки соединения трёх и более проводников и контуры — замкнутые пути из проводников. При этом каждый проводник может входить в несколько контуров.
В этом случае законы формулируются следующим образом.
Первый закон
Первый закон Кирхгофа (Закон токов Кирхгофа, ЗТК) гласит, что алгебраическая сумма токов в любом узле любой цепи равна нулю (значения вытекающих токов берутся с обратным знаком):
Иными словами, сколько тока втекает в узел, столько из него и вытекает. Данный закон следует из закона сохранения заряда. Если цепь содержит p узлов, то она описывается p − 1 уравнениями токов. Этот закон может применяться и для других физических явлений (к примеру, водяные трубы), где есть закон сохранения величины и поток этой величины.
Второй закон
Второй закон Кирхгофа (Закон напряжений Кирхгофа, ЗНК) гласит, что алгебраическая сумма падений напряжений по любому замкнутому контуру цепи равна алгебраической сумме ЭДС, действующих вдоль этого же контура. Если в контуре нет ЭДС, то суммарное падение напряжений равно нулю:
- для постоянных напряжений
- для переменных напряжений
Иными словами, при обходе цепи по контуру, потенциал, изменяясь, возвращается к исходному значению. Если цепь содержит ветвей, из которых содержат источники тока ветви в количестве , то она описывается уравнениями напряжений. Частным случаем второго правила для цепи, состоящей из одного контура, является закон Ома для этой цепи.
Законы Кирхгофа справедливы для линейных и нелинейных цепей при любом характере изменения во времени токов и напряжений.
- Пример
Например, для приведённой на рисунке цепи, в соответствии с первым законом выполняются следующие соотношения:
Обратите внимание, что для каждого узла должно быть выбрано положительное направление, например здесь, токи, втекающие в узел, считаются положительными, а вытекающие — отрицательными.
В соответствии со вторым законом, справедливы соотношения:
Особенности составления уравнений для расчёта токов
- Законы Кирхгофа, записанные для узлов и контуров цепи, дают полную систему линейных уравнений, которая позволяет найти все токи и напряжения.
- Перед тем, как составить уравнения, нужно произвольно выбрать:
- положительные направления токов в ветвях и обозначить их на схеме;
- положительные направления обхода контуров для составления уравнений по второму закону.
- С целью единообразия рекомендуется для всех контуров положительные направления обхода выбирать одинаковыми (напр.: по часовой стрелке)
- Если направление тока совпадает с направлением обхода контура (которое выбирается произвольно), перепад напряжения считается положительным, в противном случае — отрицательным.
- При записи линейно независимых уравнений по второму закону, стремятся, чтобы в каждый новый контур, для которого составляют уравнение, входила хотя бы одна новая ветвь, не вошедшая в предыдущие контуры, для которых уже записаны уравнения по второму закону (достаточное, но не необходимое условие)
О значении для электротехники
Правила Кирхгофа имеют прикладной характер и позволяют наряду и в сочетании с другими приёмами и способами (метод эквивалентного генератора, метод контурных токов, метод узловых напряжений, принцип суперпозиции, способ составления потенциальной диаграммы) решать задачи электротехники. Правила Кирхгофа нашли широкое применение благодаря простой формулировке уравнений и возможности их решения стандартными способами линейной алгебры (методом Крамера, методом Гаусса и др.).
Существует мнение, согласно которому «Законы Кирхгофа» следует именовать «Правилами Кирхгофа», ибо они не отражают фундаментальных сущностей природы (и не являются обобщением большого количества опытных данных), а могут быть выведены из других положений и предположений.[источник не указан 912 дней]
Закон излучения
Закон излучения Кирхгофа — отношение излучательной способности любого тела к его поглощательной способности одинаково для всех тел при данной температуре для данной частоты для равновесного излучения и не зависит от их формы, химического состава и проч.
Примечания
Литература
- Матвеев А. Н. Электричество и магнетизм — Учебное пособие. — М.: Высшая школа, 1983. — 463 с.
- Калашников С. Г. Электричество — Учебное пособие. — М.: Физматлит, 2003. — 625 с.
- Бессонов Л. А. Теоретические основы электротехники. Электрические цепи — 11-е издание. — М.: Гардарики, 2007.
dic.academic.ru
Каждый закон Кирхгофа прост и понятен :: SYL.ru
Густав-Роберт Киргоф, выдающийся немецкий физик и математик позапрошлого века, открыл и сформулировал два электротехнических закона, названных в его честь.
Открытия Кирхгоффа
При всей видимой простоте и понятности, законы Кирхгофа стали фундаментальными основами современной науки и базой для методов схематических расчетов. Их практическое значение трудно переоценить. Базой для научных изысканий профессора Кирхгофа стали законы сохранения заряда и энергии, открытые ранее. Некоторые специалисты считают, что правильнее называть описанные Кирхгоффом закономерности правилами, чтобы не путать их с другими замечательными открытиями этого физика, касающимися способностей тел излучать и поглощать энергию, а также зависимости скорости протекания химических реакций от температуры. Однако в научной и технической литературе принято все же пользоваться термином «закон Кирхгофа», тем самым подчеркивая заслуги этого великого ученого в области электротехники. Итак, их два.
1. Закон Кирхгофа о токах в узлах
Узлами в электротехнике называют точки соединения проводников в количестве не менее трех. Для того чтобы понять действие Первого закона Киргофа, достаточно представить себе обычный водопроводный тройник. Если в одну из труб подается вода, то в две остальные она вытекает. Возможен и другой вариант, когда отводная труба одна, а приточных две, но в любом случае, сколько воды в тройник затечет, столько же и вытечет. Теперь задачу можно усложнить, допустив, что количество входов и выходов в узле сколь угодно большое. Однако результат будет тот же, количество поступающей и уходящей жидкости будет равным, то есть, говоря языком математики, алгебраическая сумма расходов равна нулю. Первый закон Кирхгофа рассматривает электрические токи в узлах, которые ведут себя так же, как и вода в тройнике. Если есть входящие и выходящие токи, то их сумма с учетом знака будет нулевой. При этом величина входящих токов обозначается положительным знаком «плюс», а выходящих – отрицательным «минус». Математическая формула выглядит примерно так:
∑(I вх., … I вых.) = 0
где I вх. — величины входящих токов со знаком «+»;
I вых. — величины выходящих токов со знаком «-».
2. Закон Кирхгофа о сумме падений напряжений
Второй закон Кирхгофа понять несколько сложнее, у него нет столь прямых и наглядных ассоциаций как у первого, тем не менее, он тоже несложен. Для начала следует представить себе замкнутую простейшую электрическую цепь, состоящую из источника питания и активной нагрузки в виде сопротивления. При замыкании клемм выключателя через резистор пойдет ток, и все подаваемое напряжение на нем же упадет. Задача вновь усложняется, и количество сопротивлений изменяется. Теперь их много, и у всех разная величина. При прохождении через них электрического тока он будет в цепи одинаковым и, согласно закону Ома, равен напряжению источника, поделенному на сумму всех сопротивлений. На каждом из них будет падать его часть. Так вот, Второй закон Кирхгофа гласит, что общая сумма падений напряжений на каждом из участков цепи равна величине напряжения питания. Говоря иными словами, общая алгебраическая сумма вместе с источником равна нулю.
Простейшая математическая формула описывает Второй закон Кирхгофа следующим образом:
∑U ц = 0
где U ц – падения напряжений на разных участках замкнутой электрической цепи (контура).
www.syl.ru
Второе правило Кирхгофа, теория и примеры
Второе правило Кирхгофа – это один из приемов, который применяют для упрощения расчетов параметров сложных разветвленных цепей постоянного тока. Электрические цепи постоянного тока могут иметь в своем составе большое число сопротивлений, источников тока, множество замкнутых контуров и узлов. Параметры цепи постоянного тока любой сложности можно вычислить, если применять законы Ома и законы сохранения заряда. Правила Кирхгофа являются следствиями вышеназванных законов, с их помощью можно значительно упростить процедуру написания уравнений, связывающих силы тока, сопротивления и электродвижущие силы (ЭДС) для рассматриваемой цепи.
Первое правило Кирхгофа называют правилом узлов. Оно предназначено для написания уравнения для токов, которые сходятся в узле цепи.
Второе правило Кирхгофа относится к замкнутым контурам, которые выделяют в разветвленной цепи. Это правило еще называют правилом контуров.
Формулировка второго правила Кирхгофа
Суммы произведений алгебраических величин сил тока на внешние и внутренние сопротивления всех участков замкнутого контура равны алгебраической сумме величин сторонних электродвижущих сил (ЭДС) (), которые входят в рассматриваемый контур. В виде формулы второй закон Кирхгофа записывают как:
Величины называют падениями напряжения. До применения второго закона Кирхгофа выбирают положительное направление обхода контура. Это направление берется произвольно, либо по часовой стрелке, либо против нее. Если направление обхода совпадает с направлением течения тока в рассматриваемом элементе контура, то падение напряжения в формулу второго правила для данного контура входит со знаком плюс. ЭДС считают положительной, если при движении по контуру (в избранном направлении) первым встречается отрицательный полюс источника. Более правильно было бы сказать, что ЭДС считают положительной, если работа сторонних сил по перемещению единичного положительного заряда на рассматриваемом участке цепи в заданном направлении обхода контура является положительной величиной.
Второе правило Кирхгофа — это следствие закона Ома.
Количество независимых уравнений, получаемых при использовании правил Кирхгофа
Применяя второе правило Кирхгофа можно получить независимые уравнения для тех контуров цепи, которые не получены наложением уже рассмотренных контуров. Число независимых контуров () равно:
где – число ветвей в цепи; – количество узлов.
Количество независимых уравнений, которые дадут первое и второе правила Кирхгофа равно ():
Вывод: количество независимых уравнений, полученных с использованием обоих правил Кирхгофа равно числу разных токов в рассматриваемой цепи.
Примеры решения задач
ru.solverbook.com
Законы Ома и Кирхгофа, теория и примеры
Закон Ома является основным законом, который используют при расчетах цепей постоянного тока. Он является фундаментальным и может применяться для любых физических систем, где есть потоки частиц и поля, преодолевается сопротивление.
Законы или правила Кирхгофа являются приложением к закону Ома, используемым для расчета сложных электрических цепей постоянного тока.
Закон Ома
Обобщенный закон Ома для неоднородного участка цепи (участка цепи, содержащего источник ЭДС) имеет вид:
– разность потенциалов на концах участка цепи; – ЭДС источника на рассматриваемом участке цепи; R – внешнее сопротивление цепи; r – внутреннее сопротивление источника ЭДС. Если цепь разомкнута, значит, тока в ней нет (), то из (2) получим:
ЭДС, действующая в незамкнутой цепи, равна разности потенциалов на ее концах. Получается, для нахождения ЭДС источника следует измерить разность потенциалов на его клеммах при незамкнутой цепи.
Закон Ома для замкнутой цепи записывают как:
Величину иногда называют полным сопротивлением цепи. Формула (2) показывает, что электродвижущая сила источника тока, деленная на полное сопротивление равна силе тока в цепи.
Закон Кирхгофа
Пусть имеется произвольная разветвленная сеть проводников. В отдельных участках включены разнообразные источники тока. ЭДС источников постоянны и будем считать известными. При этом токи во всех участках цепи и разности потенциалов на них можно вычислить при помощи закона Ома и закона сохранения заряда.
Для упрощения решения задач по расчетам разветвлённых электрических цепей, имеющих несколько замкнутых контуров, несколько источников ЭДС, используют законы (или правила) Кирхгофа. Правила Кирхгофа служат для того, чтобы составить систему уравнений, из которой находят силы тока в элементах сложной разветвленной цепи.
Первый закон Кирхгофа
Сумма токов в узле цепи с учетом их знаков равна нулю:
Первое правило Кирхгофа является следствием закона сохранения электрического заряда. Алгебраическая сумма токов, сходящихся в любом узле цепи – это заряд, который приходит в узел за единицу времени.
При составлении уравнение используя законы Кирхгофа важно учитывать знаки с которыми силы токов входят в эти уравнения. Следует считать, что токи, идущие к точке разветвления, и исходящие от разветвления имеют противоположные знаки. При этом нужно для себя определить какое направление (к узлу или от узла) считать положительным.
Второй закон Кирхгофа
Произведение алгебраической величины силы тока (I) на сумму вешних и внутренних сопротивлений всех участков замкнутого контура равно сумме алгебраических значений сторонних ЭДС () рассматриваемого контура:
Каждое произведение определяет разность потенциалов, которая существовала бы между концами соответствующего участка, если бы ЭДС в нем была равно нулю. Величину называют падением напряжения, которое вызывается током.
Второй закон Кирхгофа иногда формулируют следующим образом:
Для замкнутого контура сумма падений напряжения есть сума ЭДС в рассматриваемом контуре.
Второе правило (закон) Кирхгофа является следствием обобщенного закона Ома. Так, если в изолированной замкнутой цепи есть один источник ЭДС, то сила тока в цепи будет такой, что сумма падения напряжения на внешнем сопротивлении и внутреннем сопротивлении источника будет равна сторонней ЭДС источника. Если источников ЭДС несколько, то берут их алгебраическую сумму. Знак ЭДС выбирается положительным, если при движении по контуру в положительном направлении первым встречается отрицательный полюс источника. (За положительное направление обхода контура принимают направление обхода цепи либо по часовой стрелке, либо против нее).
Примеры решения задач
ru.solverbook.com