Закрыть

Законы кирхгофа решение задач: Примеры решения задач на законы Кирхгофа

Законы Кирхгофа: решение задач

Прочитав статейки про первый и второй законы Кирхгофа, уважаемый  читатель может сказать: «Хорошо, MyElectronix, ты рассказал мне, конечно, интересные штуки, но что мне дальше с ними делать? Пока по твоим словам я заключил, что если я соберу ручками схему, то я смогу в каждом ее узле и в каждом контуре намерить вот такие вот зависимости. Это здорово, но я хотел бы рассчитывать схемы, а не просто наблюдать зависимости!»

Господа, все эти замечания абсолютно верные и в ответ на них можно лишь рассказать о расчете электрических схем с помощью законов Кирхгофа. Без лишних слов перейдем сразу к делу!

Начнем с самого простейшего случая. Он изображен на рисунке 1. Допустим, ЭДС источника питания равна Е1=5 В, а сопротивления R1=100 Ом, R2=510 Ом, R3=10 кОм. Требуется рассчитать напряжения на резисторах и ток через каждый резистор.

Господа, замечу сразу, эту задачу можно решить гораздо более простым способом, чем с применением законов Кирхгофа.

Однако сейчас наша задача не искать оптимальные способы решения, а на наглядном примере рассмотреть методику применения законов Кирхгофа при расчете схем.

Рисунок 1 – Простая схема

В этой схеме мы можем видеть три контура. Если возник вопрос – а почему три, то рекомендую посмотреть статью про второй закон Кирхгофа. В той статье имеется практически такая же схема с наглядным пояснением методики расчета числа контуров.

Господа, хочу отметить один тонкий момент. Хоть контура и три, независимых из них только два. Третий контур включает в себя все остальные и не может считаться независимым. И вообще всегда при всех расчетах мы должны использовать только независимые контура. Не поддавайтесь искушению записать еще одно уравнение за счет этого общего контура, ничего хорошего не выйдет .

Итак, будем использовать два независимых контура. Для этого зададимся в каждом контуре направлением обхода

контура. Как мы уже говорили, это некоторое направление в контуре, которое мы принимаем за положительное. Можно в какой-то степени назвать это аналогом осей координат в математике. Направление обхода каждого контура нарисуем синей стрелкой.

Далее зададимся направлением токов в ветвях: просто проставим его наугад. Не важно, угадаем мы сейчас направление или нет. Если угадали, то в конце расчета мы получим ток со знаком плюс, а если ошиблись – со знаком минус. Итак, обозначим токи в ветвях черными стрелочками с подписями I1, I2, I3.

Мы видим, что в контуре №1 направление токов I1 и I3, а также направление источника питания совпадают с направлением обхода, поэтому будем считать их со знаком плюс. В контуре №2 ток I2 совпадет с направлением обхода, поэтому будет со знаком плюс, а ток I

3 направлен в другую сторону, поэтому будет со знаком минус. Запишем второй закон Кирхгофа для контура №1:

А теперь запишем этот же закон для контура №2:

Видим, что в контуре №2 нет источников питания, поэтому в левой части (где у нас согласно второму закону Кирхгофа стоит сумма ЭДС) у нас нолик. Итак, у нас есть два уравнения, а неизвестных-то у нас три (I1, I2, I3). А нам известно, что для нахождения трех неизвестных нужна система с тремя независимыми уравнениями. Где же взять третье недостающее уравнение? А, например, из первого закона Кирхгофа! Согласно этому закону мы можем записать

Господа, теперь полный порядок, у нас есть три уравнения и три неизвестных и нам остается только решить вот такую вот систему уравнений

Подставим конкретные числа. Все расчеты будем вести в кошерной системе СИ. Рекомендую всегда считать только в ней. Не поддавайтесь искушению подставлять куда-то миллиметры, мили, килоамперы и прочее. Возможно возникновение путаницы.

Решение таких систем рассматривается чуть ли не в начальной школе и, полагаю, не должно вызывать трудностей . Если что, есть куча математических пакетов, которые сделают это за вас, если вам лень самим ручками считай. Поэтому мы опустим процесс решения, а сразу приведем результат

Видим, что все токи получились у нас со знаком плюс. Это значит, что мы верно угадали их направление. Да, то есть токи в схеме текут именно в том направлении, как мы нарисовали стрелочки на рисунке 1. Однако из условия задачи необходимо найти не только токи через резисторы, но и падение напряжения на них. Как это сделать? Например, с помощью уже изученного нами закона Ома. Как мы помним, закон Ома связывает между собой ток, напряжение и сопротивление. Если нам известны любые две из этих величин, мы легко можем найти третью. В данном случае мы знаем сопротивление и ток, который течет через это сопротивление. Поэтому, используя вот эту формулу

находим напряжение на каждом резисторе

Заметим, господа, что напряжения на резисторах R2 и R3 равны между собой. Это и логично, поскольку они соединены между собой параллельно. Однако пока не будем на этом акцентировать большое внимание, рассмотрим это лучше в другой раз.

Итак, господа, мы решили эту простую задачку с помощью двух законов Кирхгофа и закона Ома. Но это был совсем простой пример. Давайте попробуем решить более сложную задачу. Взгляните на рисунок 2.

Рисунок 2 – Схема посложнее

Схема выглядит внушительно, не правда ли? Возможно, вам даже не верится, что эту схему можно легко рассчитать. Однако, господа, уверяю вас, вы обладаете всеми необходимыми знаниями для расчета этой схемы, если уже изучили мои предыдущие статьи. Сейчас вы в этом убедитесь.

Для начала зададимся конкретными цифрами значений сопротивлений резисторов и напряжений источников.

Пусть Е1=15 В, Е2=24 В, R1= 10 Ом, R2 = 51 Ом, R3=100 Ом, R4=1 кОм, R5=10 Ом, R6=18 Ом, R7=10 кОм.

Найти, как и в прошлой задаче, требуется все токи в схеме и напряжения на всех резисторах.

В этой схеме мы можем видеть три независимых контура. Обозначим их римскими цифрами I, II, III. В каждом контуре зададимся направлением обхода.

Они показаны синими стрелками.

Дальше как и в прошлый раз наугад расставим направления токов во всех ветвях и подпишем где какой ток. Видно, что всего у нас 6 ветвей и, соответственно, 6 разных токов (I1…I6).

Теперь запишем второй закон Кирхгофа для всех трех независимых контуров.

Второй закон Кирхгофа для контура I:

Второй закон Кирхгофа для контура II:

Второй закон Кирхгофа для контура III:

У нас есть три уравнения, однако неизвестных токов аж 6. Как и в прошлой задаче для получения недостающих уравнений запишем первые законы Кирхгофа для узлов.

Первый закон Кирхгофа для узла А:

Первый закон Кирхгофа для узла В:

Первый закон Кирхгофа для узла С:

Собственно, у нас теперь есть система из 6 уравнений с 6 неизвестными. Остается только решить эту систему

 

Подставляя числа, заданные в условии, получаем

 

Опуская решения за пределами статьи, приведем итоговый результат

 

Господа, мы видим, что почти все токи, кроме I4 получились у нас со знаками «минус». Это значит, что мы не угадали их направление, когда рисовали стрелочки на рисунке 2 . То есть все токи, кроме тока I4 на самом деле текут в противоположные стороны. А ток I4 течет так, как мы нарисовали. Хотя бы с ним мы угадали верно.

Теперь все по тому же закону Ома ровно как в прошлом примере рассчитаем напряжения на резисторах:

Вот и все, господа: схема рассчитана, а задачка решена. Таким образом, вы теперь обладаете весьма мощным инструментом по расчету электрических схем. С помощью двух законов Кирхгофа и закона Ома вы сможете рассчитать весьма непростые схемы, найти величины токов и их направления, а также напряжения на всех нагрузках цепи. Более того, зная токи и напряжения вы легко сможете рассчитать  и мощности, которые на этих резисторах выделяются, если воспользуетесь рекомендациями из моей предыдущей статьи. 

На этом на сегодня все господа. Огромной вам всем удачи и успешных расчетов!

Вступайте в нашу группу Вконтакте

Вопросы и предложения админу: This email address is being protected from spambots. You need JavaScript enabled to view it.

Social button for Joomla


Решение задач на закон Ома и законы Кирхгофа

 Методы анализа, основанные на законах Ома и законах Кирхгофа

Закон Ома устанавливает зависимость между напряжением и током на пассивной ветви, а также позволяет определить ток по известным потенциалам на концах ветви с источником напряжения.

Законы Кирхгофа применяют для нахождения токов в ветвях линейных и нелинейных схем при любом законе изменения во времени токов и напряжений.

Метод эквивалентных преобразований. При эквивалентных преобразований отдельные участки электрической цепи заменяются более простыми. Эквивалентность преобразования состоит в том, что токи и напряжения в непреобразованной части схемы не изменяются.

Последовательное упрощение схемы продолжается до ее преобразования в одноконтурную схему, после чего для расчета используется закон Ома.

Метод эквивалентных преобразований используется для нахождения внутреннего сопротивления эквивалентного генератора.

При помощи метода эквивалентных преобразований облегчают расчет расчет нелинейной цепи, упростив линейную часть цепи эквивалентными преобразованиями.


Принято пользоваться приведенным ниже алгоритмом метода законов Кирхгофа.

1. Произвольно выбирают положительные направления токов в ветвях и обозначают их на схеме.

2. Составляют уравнения по первому закону Кирхгофа: на одно уравнение меньше числа узлов (для последнего узла уравнение будет зависимым от предыдущих уравнений).

3. Выбирают независимые (главные) контуры и направление их обхода. Удобно для всех контуров выбрать одинаковое направление обхода.

4. Записывают уравнения по второму закону Кирхгофа для выбранных контуров.

5. Решая полученную систему уравнений, определяют искомые токи.

 

Задача 1.1. Определить эквивалентное сопротивление цепи между зажимами a и b при разомкнутом и замкнутом ключе К методом эквивалентных преобразований (рис. 1.1, a).

Рис. 1.1

Решение. Сохраняя топологию схемы, трансформируем ее к виду, удобному для анализа (отправная точка – потенциалы узлов c и d равны между собой).

Из рис. 1.1, б следует:

1. При разомкнутом ключе К

Rab=R1⋅R3R1+R3+(R47+R5+R6)⋅R2(R47+R5+R6)+R2.» role=»presentation»>Rab=R1⋅R3R1+R3+(R47+R5+R6)⋅R2(R47+R5+R6)+R2.Rab=R1⋅R3R1+R3+(R47+R5+R6)⋅R2(R47+R5+R6)+R2.

2. При замкнутом ключе К

R47=R1⋅R3R1+R3+R47⋅R2R47+R2,» role=»presentation»>R47=R1⋅R3R1+R3+R47⋅R2R47+R2,R47=R1⋅R3R1+R3+R47⋅R2R47+R2,

где

R47=R4⋅R7R4+R7.» role=»presentation»>R47=R4⋅R7R4+R7.R47=R4⋅R7R4+R7.


Задача 1.2. Определить методом эквивалентных преобразований сопротивление цепи между зажимами a и b при разомкнутом и замкнутом ключе К для схемы, изображенной на рис. 1.2.

Рис. 1.2

Решение. Совершим поворот части схемы относительно зажимов c и d. В результате получим (рис. 1.3):

Рис. 1.3

1. При разомкнутом ключе К

Rab=(R1+R3)⋅(R2+R4)(R1+R3)+(R2+R4).» role=»presentation»>Rab=(R1+R3)⋅(R2+R4)(R1+R3)+(R2+R4).Rab=(R1+R3)⋅(R2+R4)(R1+R3)+(R2+R4).

2. При замкнутом ключе К

Rab=R1⋅R4R1+R4+R2⋅R3R2+R3.» role=»presentation»>Rab=R1⋅R4R1+R4+R2⋅R3R2+R3.Rab=R1⋅R4R1+R4+R2⋅R3R2+R3.

Задача 1.3. Найти сопротивление между зажимами a и b для схемы, изображенной на рис. 1.4.

Рис. 1.4

Решение. К точке 2 подходят условные «начало» сопротивления R2 и  «концы» сопротивлений Rlи R3.

К точке 3 подходят «начала» сопротивлений R1 и R3 и  «конец» сопротивления R2.

Но тогда, все «начала» сопротивлений и все их «концы» соединяются соответственно в одни точки. А значит, по определению, имеем параллельное соединение приемников (рис. 1.5).

Рис. 1.5

Таким образом, сопротивление между зажимами a и b:

Rab=1Yab=11R1+1R2+1R3.» role=»presentation»>Rab=1Yab=11R1+1R2+1R3.Rab=1Yab=11R1+1R2+1R3.


Задача 1.4. Найти сопротивление R13R14R17 между различными парами вершин куба, ребра которого имеют заданное сопротивление R (рис. 1.6).

Рис. 1.6

Решение. Задачу проще всего решить методом амперметра и вольтметра. Суть метода заключается в следующем. Если к фиксированным точкам схемы a и b подвести условно известное напряжение Uab и определить ток I во внешней цепи, то искомое сопротивление Rab = Uab/I. При этом напряжение Uab (показание вольтметра) в соответствии с законами Кирхгофаопределяется как функция тока I (показание амперметра).

1. Расчетная схема для определения сопротивления R13 имеет вид, представленный на рис. 1.7.

Рис. 1.7

В силу симметрии потенциалы точек 2 и 6 (4 и 8) равны между собой. Поэтому токи в ребрах. 2 – 6 и 4 – 8 отсутствуют.

Перераспределение токов I1 и I2 легко находится из первого закона Кирхгофа и соответствует рисунку 1.7.

Соотношение между токами найдем из второго закона Кирхгофа:

U14=U15+U58+U84;I1⋅R=I2⋅R+12I2⋅R+0=32I2⋅R.» role=»presentation»>U14=U15+U58+U84;I1⋅R=I2⋅R+12I2⋅R+0=32I2⋅R.U14=U15+U58+U84;I1⋅R=I2⋅R+12I2⋅R+0=32I2⋅R.

Откуда:

I1=32I2;  I2=23I1.» role=»presentation»>I1=32I2;  I2=23I1.I1=32I2;  I2=23I1.

А значит, общий ток

I=2I1+I2=2I1+23I1=83I1.» role=»presentation»>I=2I1+I2=2I1+23I1=83I1.I=2I1+I2=2I1+23I1=83I1.

Но

U13=I⋅R13=83I1⋅R13=U12+U23=2I1⋅R. » role=»presentation»>U13=I⋅R13=83I1⋅R13=U12+U23=2I1⋅R.U13=I⋅R13=83I1⋅R13=U12+U23=2I1⋅R.

Откуда, сокращая на I1, имеем 8/3·R13 = 2R. Или, что-то          же, искомое R13 = 3/4·R.

2. Расчетная схема для определения сопротивления R14 имеет вид, представленный на рис. 1.8.

Рис. 1.8

В силу симметрии токи в ребрах 1 – 2, 1 – 4, 2 – 3 и 4 – 3 равны между собой. А значит, в соответствии с первым законом Кирхгофа, токи в ребрах 2 – 6 и 4 – 8 отсутствуют.

Перераспределение неизвестных токов I1I2I3I4 находится из первого закона Кирхгофа (и симметрии цепи) и соответствует рис. 1.8.

Поскольку падение напряжения

U23=U26+U67+U73;I4⋅R=I3⋅R+2I3⋅R+I3⋅R=4I3⋅R,» role=»presentation»>U23=U26+U67+U73;I4⋅R=I3⋅R+2I3⋅R+I3⋅R=4I3⋅R,U23=U26+U67+U73;I4⋅R=I3⋅R+2I3⋅R+I3⋅R=4I3⋅R,

то, сокращая на R, имеем:

I4=4I3″ role=»presentation»>I4=4I3I4=4I3

или

I3=14I4. » role=»presentation»>I3=14I4.I3=14I4.

Ток

I2=I3+I4=14I4+I4=54I4″ role=»presentation»>I2=I3+I4=14I4+I4=54I4I2=I3+I4=14I4+I4=54I4

или

I4=45I2.» role=»presentation»>I4=45I2.I4=45I2.

Но

U14=U15+U58+U84;I1⋅R=I2⋅R+I4⋅R+I2⋅R=I2⋅R+54I2⋅R+I2⋅R=145I2⋅R.» role=»presentation»>U14=U15+U58+U84;I1⋅R=I2⋅R+I4⋅R+I2⋅R=I2⋅R+54I2⋅R+I2⋅R=145I2⋅R.U14=U15+U58+U84;I1⋅R=I2⋅R+I4⋅R+I2⋅R=I2⋅R+54I2⋅R+I2⋅R=145I2⋅R.

Откуда, сокращая на R, имеем:

I1=145I2″ role=»presentation»>I1=145I2I1=145I2

или

I2=514I1.» role=»presentation»>I2=514I1.I2=514I1.

Но

U14=I⋅R14=(I1+2I2)⋅R14=(I1+1014I1)⋅R14=2414I1⋅R14=I1⋅R.» role=»presentation»>U14=I⋅R14=(I1+2I2)⋅R14=(I1+1014I1)⋅R14=2414I1⋅R14=I1⋅R.U14=I⋅R14=(I1+2I2)⋅R14=(I1+1014I1)⋅R14=2414I1⋅R14=I1⋅R.

Или, что то же, искомое R14 = 14/24·R = 7/12·R.

3. Расчетная схема для определения сопротивления R17 имеет вид, представленный на рис. 1.9.

Рис. 1.9

В силу диагональной симметрии схемы полный ток I = 3I1.

Падение напряжения

U17=U14+U43+U37;I⋅R17=I1⋅R+12I1⋅R+I1⋅R=52I1⋅R.» role=»presentation»>U17=U14+U43+U37;I⋅R17=I1⋅R+12I1⋅R+I1⋅R=52I1⋅R.U17=U14+U43+U37;I⋅R17=I1⋅R+12I1⋅R+I1⋅R=52I1⋅R.

Откуда искомое сопротивление R17 = 5/6·R.


Задача 1.5. Определить методом эквивалентных преобразований токи в ветвях цепи (рис. 1 10,а) и показание вольтметра, включенного между точками c и d, считая, что его сопротивление во много раз превышает сопротивление каждого из элементов цепи.

Чему равно показание амперметра, включенного между точками c и d, сопротивление которого считать равным нулю?

Рис. 1.10

Сопротивления элементов цепи: R1 =10 Ом, R2 = R3 = R5 = 25 Ом и R4 = 50 Ом, а приложенное к ней напряжение U = 120 В.

Решение. Расчет показания вольтметра. Из условия вытекает, что его включение не оказывает влияния на распределение токов в цепи. Для расчета токов сначала определяем эквивалентное сопротивление всей цепи (рис. 1.10, а):

R=R1+(R2+R4)⋅(R3+R5)(R2+R4)+(R3+R5)=10+75⋅50125=40   Ом.» role=»presentation»>R=R1+(R2+R4)⋅(R3+R5)(R2+R4)+(R3+R5)=10+75⋅50125=40   Ом.R=R1+(R2+R4)⋅(R3+R5)(R2+R4)+(R3+R5)=10+75⋅50125=40   Ом.

В неразветвленной части цепи протекает ток

I1=UR=12040=3  A.» role=»presentation»>I1=UR=12040=3  A.I1=UR=12040=3  A.

Токи, протекающие через сопротивления (R2 + R4) и (R3 + R5) можно найти различными способами.

1. В параллельных ветвях токи распределяются обратно пропорционально их сопротивлениям (формула разброса токов):

I2=I1⋅R3+R5(R2+R4)+(R3+R5)=3⋅50125=1,2  A;I3=I1⋅R2+R4(R2+R4)+(R3+R5)=3⋅75125=1,8  A.» role=»presentation»>I2=I1⋅R3+R5(R2+R4)+(R3+R5)=3⋅50125=1,2  A;I3=I1⋅R2+R4(R2+R4)+(R3+R5)=3⋅75125=1,8  A.I2=I1⋅R3+R5(R2+R4)+(R3+R5)=3⋅50125=1,2  A;I3=I1⋅R2+R4(R2+R4)+(R3+R5)=3⋅75125=1,8  A.

2. Найдем напряжение на зажимах параллельных ветвей:

Uab=I1⋅(R2+R4)⋅(R3+R5)(R2+R4)+(R3+R5)=3⋅75⋅50125=90   B.» role=»presentation»>Uab=I1⋅(R2+R4)⋅(R3+R5)(R2+R4)+(R3+R5)=3⋅75⋅50125=90   B.Uab=I1⋅(R2+R4)⋅(R3+R5)(R2+R4)+(R3+R5)=3⋅75⋅50125=90   B.

Токи в ветвях с сопротивлениями R2 + R4 и R3 + R5 равны:

I2=UabR2+R4=9075=1,2  A;  I3=UabR3+R5=9050=1,8  A. » role=»presentation»>I2=UabR2+R4=9075=1,2  A;  I3=UabR3+R5=9050=1,8  A.I2=UabR2+R4=9075=1,2  A;  I3=UabR3+R5=9050=1,8  A.

Напряжение на зажимах параллельных ветвей может быть найдено как разность между приложенным напряжением и падением напряжения на сопротивлении R1Uab = U – R1·I1.

Найдем показание вольтметра, равное напряжению между точками с и d:

UV=Ucd=−I2⋅R2+I3⋅R3=−1,2⋅25+1,8⋅25=15  B.» role=»presentation»>UV=Ucd=−I2⋅R2+I3⋅R3=−1,2⋅25+1,8⋅25=15  B.UV=Ucd=−I2⋅R2+I3⋅R3=−1,2⋅25+1,8⋅25=15  B.

Наконец, вычислим ток, проходящий через амперметр; он равен току короткого замыкания Icd (рис. 1.10, б). Для его нахождения вычислим токи:

I′1=UR1+R2⋅R3R2+R3+R4⋅R5R4+R5=14447  A;I′2=I′1⋅R3R2+R3=7247  A;  I′4=I′1⋅R5R4+R5=4847  A. » role=»presentation»>I′1=UR1+R2⋅R3R2+R3+R4⋅R5R4+R5=14447  A;I′2=I′1⋅R3R2+R3=7247  A;  I′4=I′1⋅R5R4+R5=4847  A.I′1=UR1+R2⋅R3R2+R3+R4⋅R5R4+R5=14447  A;I′2=I′1⋅R3R2+R3=7247  A;  I′4=I′1⋅R5R4+R5=4847  A.

Искомый ток, проходящий через амперметр,

IA=I′cd=I′2−I′4=2447=0,51  A.» role=»presentation»>IA=I′cd=I′2−I′4=2447=0,51  A.IA=I′cd=I′2−I′4=2447=0,51  A.


Задача 1.6. В схеме рис. 1.11 заданы сопротивления приемников, величины ЭДС и источника тока отдельных ветвей. Рассчитать неизвестные токи, ЭДС E2 и сопротивление R5, пользуясь законами Кирхгофа.

Рис. 1.11

Правильность решения проверить по балансу мощностей. Для наружного контура построить потенциальную диаграмму и определить показание вольтметра.

Решение

1. Всего в схеме пять ветвей, неизвестных токов I1I2I5 – три, неизвестных величин E2 и R5 – две, для нахождения которых составам три уравнения по первому закону Кирхгофа и два – по второму закону Кирхгофа:

для узла  b:   J=I4+I5;для узла  d:   −I5−I3+I1=0;для контура  I:   I5R5−I4R4=E3+E4;для контура  II:   I1R1+I2R2=E1+E2−E3. » role=»presentation»>для узла  b:   J=I4+I5;для узла  d:   −I5−I3+I1=0;для контура  I:   I5R5−I4R4=E3+E4;для контура  II:   I1R1+I2R2=E1+E2−E3.для узла  b:   J=I4+I5;для узла  d:   −I5−I3+I1=0;для контура  I:   I5R5−I4R4=E3+E4;для контура  II:   I1R1+I2R2=E1+E2−E3.

Из первых трех уравнений находим токи:

I5=J−I4=4−2=2  A;I1=I5+I3=2+3=5  A;I2=−J+I1=−4+5=1  A.» role=»presentation»>I5=J−I4=4−2=2  A;I1=I5+I3=2+3=5  A;I2=−J+I1=−4+5=1  A.I5=J−I4=4−2=2  A;I1=I5+I3=2+3=5  A;I2=−J+I1=−4+5=1  A.

из четвертого уравнения

R5=E3+E4+I4⋅R4I5=10+6+142=15  Ом.» role=»presentation»>R5=E3+E4+I4⋅R4I5=10+6+142=15  Ом.R5=E3+E4+I4⋅R4I5=10+6+142=15  Ом.

Величину E2 определяем из последнего уравнения:

E2=I1⋅R1+I2⋅R2−E1+E3=5⋅10+10⋅1−100+10=−30  B. » role=»presentation»>E2=I1⋅R1+I2⋅R2−E1+E3=5⋅10+10⋅1−100+10=−30  B.E2=I1⋅R1+I2⋅R2−E1+E3=5⋅10+10⋅1−100+10=−30  B.

2. Для построения потенциальной диаграммы найдем потенциалы всех точек контура abcdea, приняв исходный потенциал точки a равным нулю:

φe=φa−I1⋅R1=0+5⋅10=50  B;φd=φe−E1=50−100=−50  B;φb=φd+I5⋅R5=−50+2⋅15=−20  B.» role=»presentation»>φe=φa−I1⋅R1=0+5⋅10=50  B;φd=φe−E1=50−100=−50  B;φb=φd+I5⋅R5=−50+2⋅15=−20  B.φe=φa−I1⋅R1=0+5⋅10=50  B;φd=φe−E1=50−100=−50  B;φb=φd+I5⋅R5=−50+2⋅15=−20  B.

3. По найденным потенциалам строим потенциальную диаграмму, откладывая по оси ординат потенциалы точек, а по оси абсцисс – сопротивления участков (рис. 1.12).

Рис. 1.12

3. Из потенциальной диаграммы легко определить разность потенциалов между точками b и c Ubc = 70 В, что и будет показывать вольтметр.

4. Произведем проверку баланса мощностей:

Pисточников=E1⋅I1+E2⋅I2+E3⋅(−I3)+E4⋅(−I4)+Uba⋅J;Pпотребителей=I12⋅R1+I22⋅R2+I42⋅R4+I52⋅R5.» role=»presentation»>Pисточников=E1⋅I1+E2⋅I2+E3⋅(−I3)+E4⋅(−I4)+Uba⋅J;Pпотребителей=I21⋅R1+I22⋅R2+I24⋅R4+I25⋅R5.Pисточников=E1⋅I1+E2⋅I2+E3⋅(−I3)+E4⋅(−I4)+Uba⋅J;Pпотребителей=I12⋅R1+I22⋅R2+I42⋅R4+I52⋅R5.

В этом уравнении нам неизвестно напряжение на зажимах источника тока Uba, которое легко найти из потенциальной диаграммы: Uba = –20 В. С учетом этого

Pисточников=100⋅5+(−30)⋅1+10⋅(−3)+6⋅(−2)+(−20)⋅4=348  Вт;Pпотребителей=52⋅10+12⋅10+32⋅0+22⋅7+22⋅15=348  Вт;Pисточников=Pпотребителей=348  Вт. » role=»presentation»>Pисточников=100⋅5+(−30)⋅1+10⋅(−3)+6⋅(−2)+(−20)⋅4=348  Вт;Pпотребителей=52⋅10+12⋅10+32⋅0+22⋅7+22⋅15=348  Вт;Pисточников=Pпотребителей=348  Вт.Pисточников=100⋅5+(−30)⋅1+10⋅(−3)+6⋅(−2)+(−20)⋅4=348  Вт;Pпотребителей=52⋅10+12⋅10+32⋅0+22⋅7+22⋅15=348  Вт;Pисточников=Pпотребителей=348  Вт.

 

21.3 Правила Кирхгофа – Колледж физики, главы 1-17

21 Цепи и приборы постоянного тока

Резюме

  • Проанализируйте сложную схему, используя правила Кирхгофа, используя соглашения для определения правильных знаков различных термов.

Многие сложные схемы, такие как схема на рис. 1, не могут быть проанализированы с помощью последовательно-параллельных методов, разработанных в главе 21.1 Резисторы в последовательном и параллельном соединении и главе 21.2 Электродвижущая сила: напряжение на клеммах. Однако есть два правила анализа цепей, которые можно использовать для анализа любой схемы, простой или сложной. Эти правила являются частными случаями законов сохранения заряда и сохранения энергии. Правила известны как Правила Кирхгофа , в честь их изобретателя Густава Кирхгофа (1824–1887).

Рисунок 1. Эту схему нельзя свести к комбинации последовательного и параллельного соединений. Для его анализа можно использовать правила Кирхгофа, специальные приложения законов сохранения заряда и энергии. (Примечание: буква E на рисунке обозначает электродвижущую силу, эдс.)

Правила Кирхгофа

  • Первое правило Кирхгофа — правило пересечения. Сумма всех токов, входящих в соединение, должна равняться сумме всех токов, выходящих из соединения.
  • Второе правило Кирхгофа — правило петли. Алгебраическая сумма изменений потенциала вокруг любой замкнутой цепи (петли) должна быть равна нулю.

Теперь будут даны объяснения двух правил, за которыми следуют советы по решению проблем для применения правил Кирхгофа и рабочий пример, который их использует.

Первое правило Кирхгофа (правило соединения ) представляет собой применение закона сохранения заряда к соединению; это показано на рис. 2. Ток — это поток заряда, а заряд сохраняется; таким образом, любой заряд, втекающий в соединение, должен вытекать наружу. Первое правило Кирхгофа требует, чтобы [латекс]\boldsymbol{I_1 = I_2 + I_3}[/латекс] (см. рисунок). Подобные уравнения могут и будут использоваться для анализа схем и решения схемных задач.

Установление соединений: законы сохранения

Правила Кирхгофа для анализа цепей представляют собой применение законов сохранения к цепям. Первое правило — применение закона сохранения заряда, а второе правило — применение закона сохранения энергии. Законы сохранения, даже используемые в конкретных приложениях, таких как анализ цепей, настолько просты, что составляют основу этого приложения.

Рисунок 2. Правило соединения. На диаграмме показан пример первого правила Кирхгофа, в котором сумма токов, поступающих в соединение, равна сумме токов, выходящих из соединения. В этом случае ток, входящий в переход, разделяется и выходит в виде двух токов, так что I 1 = I 2 + I 3 . Здесь I 1 должно быть 11 А, так как I 2 равно 7 А, а I 3 4 равно 9 А.

Второе правило Кирхгофа ( петлевое правило ) является применением закона сохранения энергии. Правило цикла сформулировано с точки зрения потенциала, [латекс]\boldsymbol{V}[/латекс], а не потенциальной энергии, но они связаны, поскольку [латекс]\boldsymbol{\textbf{PE}_{\textbf{ elec}} = qV}[/latex]. Напомним, что ЭДС — это разность потенциалов источника при отсутствии тока. В замкнутом контуре любая энергия, поставляемая ЭДС, должна быть переведена в другие формы устройствами в контуре, поскольку нет других способов передачи энергии в контур или из него. На рис. 3 показаны изменения потенциала в простой последовательной цепи.

Второе правило Кирхгофа требует [латекс]\жирныйсимвол{\текстбф{ЭДС} — Ir — IR_1 — IR_2 = 0}[/латекс]. В перестановке это [латекс]\boldsymbol{\textbf{ЭДС} = Ir + IR_1 + IR_2}[/latex], что означает, что ЭДС равна сумме [латекс]\boldsymbol{IR}[/латекс] (напряжение ) попадает в петлю.

Рисунок 3. Правило цикла. Пример второго правила Кирхгофа, согласно которому сумма изменений потенциала вокруг замкнутого контура должна быть равна нулю. (a) На этой стандартной схеме простой последовательной цепи ЭДС подает напряжение 18 В, которое сводится к нулю сопротивлениями, с 1 В на внутреннем сопротивлении и 12 В и 5 В на двух сопротивлениях нагрузки, для всего 18 В. (b) Этот вид в перспективе представляет потенциал как что-то вроде американских горок, где потенциал повышается за счет ЭДС и снижается за счет сопротивления. (Обратите внимание, что буква E означает emf.)

Применяя правила Кирхгофа, мы получаем уравнения, позволяющие находить неизвестные в цепях. Неизвестными могут быть токи, ЭДС или сопротивления. Каждый раз, когда применяется правило, создается уравнение. Если независимых уравнений столько же, сколько неизвестных, то задача решаема. При применении правил Кирхгофа вы должны принять два решения. Эти решения определяют знаки различных величин в уравнениях, которые вы получаете, применяя правила.

  1. Применяя первое правило Кирхгофа, правило соединения, вы должны пометить ток в каждой ветви и решить, в каком направлении он течет. Например, на рис. 1, рис. 2 и рис. 3 токи помечены [латекс]\boldsymbol{I_1}[/латекс], [латекс]\boldsymbol{I_2}[/латекс], [латекс]\boldsymbol{I_3 }[/latex] и [latex]\boldsymbol{I}[/latex], а стрелки указывают их направления. Здесь нет никакого риска, потому что, если вы выберете неправильное направление, ток будет правильной величины, но отрицательным.
  2. Применяя второе правило Кирхгофа, правило петли, вы должны определить замкнутую петлю и решить, в каком направлении ее обойти, по часовой или против часовой стрелки. Например, на рис. 3 петля была пройдена в том же направлении, что и ток (по часовой стрелке). Опять же, нет никакого риска; Обход цепи в противоположном направлении меняет знак каждого члена в уравнении, что похоже на умножение обеих частей уравнения на -1.

Рисунок 4 и следующие пункты помогут вам правильно расставить знаки «плюс» или «минус» при применении правила цикла. Обратите внимание, что резисторы и ЭДС пересекаются при переходе от a к b. Во многих схемах будет необходимо построить более одного контура. При обходе каждой петли необходимо следить за знаком изменения потенциала. (См. пример 1.)

Рисунок 4. Каждый из этих резисторов и источников напряжения проходит от a до b. Возможные изменения показаны под каждым элементом и пояснены в тексте. (Обратите внимание, что буква E означает ЭДС.)
  • Когда резистор перемещается в том же направлении, что и ток, изменение потенциала составляет [латекс]\жирный символ{-IR}[/латекс]. (См. рис. 4.)
  • Когда резистор перемещается в направлении, противоположном току, изменение потенциала составляет [латекс]\boldsymbol{+IR}[/латекс]. (См. рис. 4.)
  • Когда ЭДС перемещается от – к + (в том же направлении, что и положительный заряд), изменение потенциала составляет +ЭДС. (См. рис. 4.)
  • Когда ЭДС перемещается от + к – (противоположно направлению движения положительного заряда), изменение потенциала равно −ЭДС. (См. рис. 4.)

Пример 1. Расчет тока: использование правил Кирхгофа

Найдите токи, протекающие в цепи на рисунке 5.

Рисунок 5. Эта цепь аналогична схеме на рисунке 1, но указаны сопротивления и ЭДС. (Каждая ЭДС обозначена буквой E.) Токи в каждой ветви помечены и предполагается, что они движутся в показанных направлениях. В этом примере для нахождения токов используются правила Кирхгофа.

Стратегия

Эта схема настолько сложна, что токи нельзя найти с помощью закона Ома и последовательно-параллельных методов — необходимо использовать правила Кирхгофа. На рисунке токи обозначены как [латекс]\boldsymbol{I_1}[/latex], [латекс]\boldsymbol{I_2}[/latex] и [латекс]\boldsymbol{I_3}[/latex]. сделал о своих направлениях. Места на схеме обозначены буквами от a до h. В решении мы будем применять правила соединения и петли, ища три независимых уравнения, которые позволят нам найти три неизвестных тока.

Решение

Начнем с применения первого правила Кирхгофа или правила соединения в точке а. Это дает

[латекс]\boldsymbol{I_1 = I_2 + I_3} ,[/latex]

, так как [латекс]\boldsymbol{I_1}[/latex] впадает в соединение, а [латекс]\boldsymbol{I_2} [/latex] и [latex]\boldsymbol{I_3}[/latex] вытекают наружу. Применение правила соединения в точке e дает точно такое же уравнение, так что никакой новой информации не получается. Это одно уравнение с тремя неизвестными — нужны три независимых уравнения, поэтому необходимо применить правило цикла.

Теперь рассмотрим цикл abcdea. Переходя от a к b, мы пересекаем [латекс]\boldsymbol{R_2}[/латекс] в том же (предполагаемом) направлении, что и текущий [латекс]\boldsymbol{I_2}[/латекс], поэтому изменение потенциала равно [латекс]\boldsymbol{-I_2R_2}[/латекс]. Затем, переходя от b к c, мы переходим от – к +, так что изменение потенциала составляет [латекс]\boldsymbol{+ \textbf{emf}_1}[/латекс]. Перемещение внутреннего сопротивления [латекс]\boldsymbol{r_1}[/латекс] от c к d дает [латекс]\boldsymbol{-I_2r_1}[/латекс]. Завершение цикла путем перехода от d к a снова пересекает резистор в том же направлении, что и его ток, что дает изменение потенциала [latex]\boldsymbol{-I_1R_1}[/latex].

Правило цикла гласит, что сумма изменений потенциала равна нулю. Таким образом,

[латекс]\boldsymbol{-I_2R_2 + \textbf{emf}_1 — I_2r_1 — I_1R_1 = -I_2(R_2 + r_1) + \textbf{emf}_1 — I_1R_1 = 0}.[/latex]

Подстановка значений сопротивления и ЭДС из принципиальной схемы и отмена единиц измерения ампер дает

[latex]\boldsymbol{-3I_2 + 18 -6I_1 = 0}.[/latex]

Теперь применим правило цикла к aefgha ( мы могли бы выбрать и abcdefgha) аналогично дает

[латекс]\boldsymbol{+I_1R_1 + I_3R_3 + I_3r_2 — \textbf{emf}_2 = +I_1R_1 + I_3(R_3+r_2) — \textbf{emf}_2 = 0} . [/latex]

Обратите внимание, что знаки меняются местами по сравнению с другим циклом, потому что элементы проходятся в противоположном направлении. С введенными значениями это становится

[латекс]\boldsymbol{+6I_1 + 2I_3 — 45 = 0}.[/латекс]

Этих трех уравнений достаточно, чтобы решить для трех неизвестных токов. Сначала решим второе уравнение для [латекс]\boldsymbol{I_2}[/латекс]:

[латекс]\boldsymbol{I_2 = 6 — 2I_1}.[/latex]

Теперь решите третье уравнение для [латекс]\boldsymbol{I_3}[/латекс]:

[латекс]\boldsymbol{I_3 = 22.5 — 3I_1}.[/latex]

Подстановка этих двух новых уравнений в первое позволяет нам найти значение для [latex]\boldsymbol{I_1}[/latex]:

[latex]\boldsymbol{I_1 = I_2 + I_3 = (6 — 2I_1) + (22,5 — 3I_1) = 28,5 — 5I_1}.[/latex]

Объединение терминов дает

[latex]\boldsymbol{6I_1 = 28,5}[/latex] и

[латекс]\boldsymbol{I_1 = 4,75 \;\textbf{A}}.[/latex]

Подстановка этого значения вместо [латекс]\boldsymbol{I_1}[/латекс] обратно в четвертое уравнение дает

[латекс]\boldsymbol{I_2 = 6 — 2I_1 = 6 — 9,50}[/латекс]

[латекс]\boldsymbol{I_2 = -3,50 \;\textbf{A}}. [/latex]

Знак минус означает, что [латекс]\boldsymbol{I_2}[/латекс] течет в направлении, противоположном предполагаемому на рисунке 5.

Наконец, подстановка значения для [латекс]\жирныйсимвол{I_1}[/латекс] в пятое уравнение дает

[латекс]\boldsymbol{I_3 = 22,5 — 3I_1 = 22,5 — 14,25}[/latex]

[латекс]\boldsymbol{I_3 = 8,25 \;\textbf{A}}.[/latex]

Обсуждение

Просто для проверки отметим, что действительно [латекс]\boldsymbol{I_1 = I_2 + I_3}[/latex]. Результаты также можно проверить, введя все значения в уравнение для цикла abcdefgha.

Стратегии решения задач по правилам Кирхгофа

  1. Убедитесь, что имеется четкая принципиальная схема, на которой вы можете отметить все известные и неизвестные сопротивления, ЭДС и токи. Если ток неизвестен, вы должны присвоить ему направление. Это необходимо для определения признаков потенциальных изменений. Если вы зададите направление неправильно, то обнаружится, что ток имеет отрицательное значение — никакого вреда не будет.
  2. Примените правило соединения к любому соединению в цепи. Каждый раз, когда применяется правило соединения, вы должны получать уравнение с током, которого не было в предыдущем приложении — если нет, то уравнение избыточно.
  3. Примените правило цикла к такому количеству циклов, которое необходимо для поиска неизвестных в задаче. (Независимых уравнений должно быть столько же, сколько и неизвестных.) Чтобы применить правило цикла, вы должны выбрать направление обхода цикла. Затем тщательно и последовательно определите знаки потенциальных изменений для каждого элемента, используя четыре маркированных пункта, рассмотренных выше в сочетании с рис. 4.9.0010
  4. Решите уравнения для неизвестных. Это может включать в себя множество алгебраических шагов, требующих тщательной проверки и перепроверки.
  5. Проверьте, разумны ли и последовательны ли ответы. Числа должны быть правильного порядка, ни чрезмерно большими, ни исчезающе малыми. Признаки должны быть разумными — например, отсутствие сопротивления не должно быть отрицательным. Убедитесь, что полученные значения удовлетворяют различным уравнениям, полученным в результате применения правил. Например, токи должны удовлетворять правилу соединения.

Теоретически материал в этом разделе верен. Мы должны быть в состоянии проверить это, произведя измерения тока и напряжения. На самом деле, некоторые из устройств, используемых для проведения таких измерений, представляют собой прямое применение принципов, рассмотренных до сих пор, и рассматриваются в следующих модулях. Как мы увидим, отсюда вытекает очень простой, даже глубокий факт: проведение измерения изменяет измеряемую величину.

  • Правила Кирхгофа можно использовать для анализа любой схемы, простой или сложной.
  • Первое правило Кирхгофа — правило соединения: сумма всех токов, входящих в соединение, должна равняться сумме всех токов, выходящих из соединения.
  • Второе правило Кирхгофа — правило петли: алгебраическая сумма изменений потенциала вокруг любого замкнутого контура (петли) должна быть равна нулю.
  • Два правила основаны соответственно на законах сохранения заряда и энергии.
  • При расчете потенциала и тока по правилам Кирхгофа необходимо соблюдать ряд правил для определения правильных знаков различных членов.
  • Простые ряды и параллельные правила являются частными случаями правил Кирхгофа.
Правила Кирхгофа
набор из двух правил, основанных на сохранении заряда и энергии, регулирующих ток и изменения потенциала в электрической цепи
соединительная линейка
первое правило Кирхгофа, применяющее закон сохранения заряда к соединению; ток — это поток заряда; таким образом, любой заряд, втекающий в соединение, должен вытекать наружу; правило может быть сформулировано [латекс]\boldsymbol{I_1 = I_2 + I_3}[/latex]
правило цикла
Второе правило Кирхгофа, которое гласит, что в замкнутом контуре любая энергия, поставляемая ЭДС, должна быть переведена в другие формы устройствами в контуре, поскольку нет других способов передачи энергии в контур или из него. Таким образом, ЭДС равна сумме [latex]\boldsymbol{IR}[/latex] (напряжения) падений в контуре и может быть сформулирована следующим образом: [latex]\boldsymbol{\textbf{ЭДС} = Ir + IR_1 + IR_2 }[/латекс]
законы сохранения
требуют сохранения энергии и заряда в системе

 

Урок 9 — Решение схем по законам Кирхгофа — Часть 3 | Репетитор по математике DVD

  • домашний
  • 2q — Анализ цепей, Том 1
  • Урок 9 — Решение схем с Киром. . .

В этом уроке мы продолжим использовать закон Кирхгофа о напряжении и закон Кирхгофа о токе для решения проблем со схемой. В этой задаче мы записываем уравнения и используем матричную математику для решения системы.

Это всего в нескольких минутах от многочасового курса.
Просмотрите полный курс и учитесь, решая задачи шаг за шагом!

Стенограмма:

Здравствуйте, и добро пожаловать в этот раздел учебника по анализу цепей. В этом разделе мы собираемся продолжить работу с законом напряжения Кирхгофа и законом тока Кирхгофа для решения цепей. Вот у нас есть схема на плате. С первого взгляда видно, что это немного сложнее, чем то, что мы делали в прошлом. Причина, по которой это сложнее, в основном в том, что повсюду происходит несколько циклов. Из-за этого это означает, что ток будет разветвляться в разных направлениях. Ток идет от источника. Здесь будет разветвление. Некоторые из них пойдут вот так, а все, что попадет сюда, будет разветвляться вот так. Потом у вас будет что-то, и так далее, и тому подобное. Ветвление и рекомбинация тока, происходящие во всех цепях, как только они достигают такого уровня сложности, затрудняют их решение… Если только вы не используете законы Кирхгофа или какой-либо другой метод, который мы буду учиться в будущем.

 

Все резисторы промаркированы. Нам известно напряжение источника. Нам также дается дополнительная информация. Из того, что нам дали, мы знаем, что в этом топовом парне есть один усилитель. Мы знаем это. Мы также знаем, что это помечено … Ток через этот резистор помечен I sub 1. Это нам дано. То, что вы видите здесь, это то, что вам дали бы в вашей работе или на вашем тесте. Здесь течение. Вот ток помечен. Найдите I1. Это единственное, что нас просят найти. Опять же, есть более чем один способ решить проблему. Я собираюсь решить это для вас здесь, чтобы показать вам различные методы, чтобы сделать это. Вы можете посмотреть на эту или следующую задачу, которую мы делаем, и сказать: «Ну, я мог бы просто… я мог бы найти это, и я мог бы найти это. Тогда я получу ответ немного быстрее». Это нормально.

 

Есть несколько способов решить проблему. Имейте в виду, что когда я делаю это, я показываю вам первое, что пришло в голову, когда я решал задачу, но также имейте в виду, что моя цель — показать вам множество разных вещей, о которых можно подумать. Вы можете увидеть что-то немного другое. Это нормально. Пока вы пишете правильные уравнения. Моей первой мыслью было, когда я посмотрел на это, я не увидел ничего, что могло бы меня удивить, кроме быстрого способа решить этого парня. Течение, которое мы хотели, было далеко здесь. Я подумал, что должен начать писать уравнения закона тока Кирхгофа и закона напряжения Кирхгофа. Постарайтесь получить систему уравнений, которая позволила бы мне найти токи на ветвях цепи, которые мне нужны. Прежде чем вы действительно сможете это сделать, вам действительно нужно пометить некоторые вещи. На бумаге вы перерисовывали схему и добавляли метки, или вы могли использовать другой цветной карандаш или что-то еще, чтобы попытаться перерисовать ее. Я хочу обозначить ток здесь, и мне нужно его как-то назвать.

 

I sub 1 уже занят. Я собираюсь назвать это I sub A прямо здесь. Ток, выходящий из этого узла, я назову его I sub B. Хорошо? Затем ток здесь, в этом отрезке, я назову I sub C.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *