Закрыть

Как обозначается постоянный и переменный ток – Обозначение постоянного и переменного тока на схемах

Содержание

Обозначение постоянного и переменного тока на схемах

Содержание:

  1. Как обозначаются различные токи
  2. Обозначения токов в измерительных приборах
  3. Видео

Каждый домашний мастер и начинающий электрик при выполнении электромонтажных работ пользуется специальными схемами. Для того чтобы правильно прочитать любую из них, необходимо знать все значки и символы, в том числе обозначение постоянного и переменного тока. Эта символика присутствует на корпусах большинства современных измерительных аппаратов, позволяющих определять значение всех основных электрических параметров.

Как обозначаются различные токи

По своим специфическим качествам электрический ток разделяется на два основных типа:

  • Постоянный ток. Обозначается прямой линией (—). Кроме того, используются символы DC – Direct Current, которые переводятся как постоянный ток.
  • Переменный ток. Известен под собственным обозначением в виде змейки (~) и символов АС, означающих Alternating Current.

Отличительной особенностью постоянного тока является его направленность. Он протекает лишь в одном определенном направлении, условно принимаемое от положительного контакта «+» к отрицательному контакту «-». От этого свойства и происходит наименование этого тока DC, который присутствует в солнечных панелях, всех типах сухих батареек и аккумуляторах, предназначенных для питания маломощных потребителей.

В некоторых технологических процессах, таких как дуговая электросварка, электролиз алюминия или электрифицированный железнодорожный транспорт, необходим постоянный ток DC с высоким значением силы. Чтобы его создать, необходимо выпрямить переменный или воспользоваться любым из генераторов постоянного тока.

Переменный ток AC, в отличие от постоянного, способен к изменению своего направления и величины. Существует параметр, известный как мгновенное значение переменного тока, определяемое в конкретный момент времени. Частота, с которой изменяется направление тока, составляет 50 Гц, то есть данная перемена происходит 50 раз в течение одной секунды.

Переменный ток AC может быть однофазным или трехфазным. В первом случае необходимо только два провода: основной и дополнительный, он же обратный. Именно по основному проводнику протекает электрический ток, а обратный считается нулевым проводом.

Трехфазное переменное напряжение вырабатывается соответствующим генератором тока AC. В этом процессе участвуют три обмотки, каждая из которых является своеобразной однофазной электрической цепью. Между собой они сдвинуты по фазе под углом 120 градусов. Благодаря данной системе электроэнергией могут быть обеспечены сразу три сети, независимые друг от друга. Для этого понадобится уже порядка шести проводов – трех прямых и трех обратных.

При необходимости дополнительные провода возможно соединить между собой и получить в итоге общий проводник, называемый нулевым или нейтральным. В этом случае проводники переменного тока на схемах обозначаются символами L1, L2, L3, а нулевой провод – буквой N.

Обозначения токов в измерительных приборах

Общепринятое обозначение постоянного и переменного тока нашло свое отражение в различных измерительных приборах, в том числе и на мультиметре. Вся необходимая символика наносится на лицевую панель того или иного устройства. Это позволяет измерить именно тот параметр, который необходим в данный момент.

Например, если на шкале выставлено положение АС, в этом случае можно проводить измерение значения переменного тока. Как правило, такие приборы предназначены для работы в электросетях с обычными напряжениями 220 или 380 вольт. Существуют модели с рабочими режимами в пределах 600 В и выше.

Если же мультиметр выставлен напротив отметки DC, то рабочий режим аппарата станет соответствовать постоянному току. В этом положении замеряется ток на аккумуляторах, батарейках и других источниках питания, вырабатывающих постоянный ток. В данном режиме требуется непременно соблюдать полярность полюсов. Диапазон измерений обычно составляет от нуля до нескольких тысяч вольт, в зависимости от характеристик конкретной модификации устройства.

electric-220.ru

Как обозначается переменный и постоянный ток

Какой ток в розетке – постоянный или переменный? Стандарты и характеристики розеток.

Несмотря на внешнюю странность, вопрос далеко не праздный, хотя мы и привыкли больше к тому, что в типовых розетках наших домов переменный ток . Именно поэтому на вопрос, какой ток в розетке постоянный или переменный не задумываясь, ответим – конечно, переменный! Ну а мы решили разобраться так ли это и заодно в стандартах розеток, обозначениях постоянного и переменного тока, и некоторых попутных вопросах.

Основные типы и характеристики розеток

На самом деле основные характеристики – это не то, какой в розетке постоянный или переменный ток, главным является уровень защиты и контактная группа, то есть форма вилки (штепселя), а также допустимые силы токов. Давайте, перечислим, что мы должны учитывать, выбирая розетку:

  1. Место монтажа (скрытая установка, внешняя, внутри, снаружи на улице и т.д.).
  2. Собственно форма розетки и вилки, а также защита от детей.
  3. Параметры сети и нагрузки на линию там, где будет работать розетка.

Если Вы располагаете розетку скрытого монтажа в сухом помещении, но невысоко от пола, помните о том, что это риск попадания воды (при мытье полов и пр.). Поэтому такие розетки должны иметь повышенный уровень защиты.

Все эти свойства описывает маркировка, а понимание как её прочитать никогда не будет лишним. Но перед этим для справки приведём условное обозначение розеток и выключателей на чертежах и принципиальных схемах –

Давайте расшифруем, что написано на таких приборах на примере такой аббревиатуры.

По степени защиты розетки отличаются IP-кодом . За IP следуют две цифры. Первая (от 0 до 6) это защита устройства от проникновения внутрь. Пыль, пальцы, предметы и пр. Вторая (от 0 до 8) защита от воды. То есть розетка с маркировкой IP68 защищена от всех воздействий, а IP00 – это фактически голый неизолированный контакт. По типу . розетки маркируются латинскими буквами. Внешний вид можно посмотреть на этом изображении –

В России применяются типы С, без заземления и F с заземлением . Некоторые типы приборов снабжены вилкой другого типа и могут быть использованы в наших сетях при помощи адаптера. Обратим особое внимание на диаметр штекера в вилке. Советские вилки не пролезут в евророзетку, поскольку штыри на вилке толще. Как правило, маркировка диаметра уже давно не наносится на розетках, просто стоит помнить, что это 4 мм, а советский штекер имеет диаметр 4,8 мм.

Обозначение постоянного и переменного тока. Про группу AC/DC многие слышали, и это как раз то самое – постоянный переменный ток. Красивое название. Обозначение постоянного тока встречает реже и стоит понимать, что означают символы:

(—) или DC (Direct Current в переводе постоянный ток). Это значит, что не стоит пытаться включить в такую розетку обычный прибор, требующий переменного тока. На схемах обозначаю стрелкой направления и символами «+» и «-», как полярность. Простейший пример – обычная батарейка.

Переменный ток будет обозначен таким образом: (

) или AC (Alternating Current, то есть переменный ток). Если обдумать, то обозначение постоянного и переменного тока в названии содержат важную информацию – ток постоянного направления, и ток, направление которого изменяется. Это хорошо иллюстрирует эта картинка.

Кроме этой информации на розетке можно обнаружить маркировку в герцах – допустимая частота тока. Это как раз значение, которое говорит сколько раз в секунду «направление» тока меняется. Стандарт это 50 Гц.

А теперь мы подошли к самой важной характеристике, о чем поговорим отдельно, поскольку это более важный вопрос, чем какой ток в розетке постоянный или переменный.

Силовые характеристики и применимость розеток для бытовых целей

Итак, на розетке будет написано, допустим: C (CEE 7/16) (Евророзетка без заземления) или F (CEE 7/4) (евророзетка с заземлением) IP44 (для ванной самое то), AC (

) 220В 50Гц. Например – «IP44 AC 230V CEE7/4 50 Hz». Или «IP44

230В CEE7/4 50 Гц».

На этой же розетке будут ещё два обозначения, точнее три. Одно из них это изображение на принципиальной схеме, которые мы разместили выше. Эта пиктограмма может и отсутствовать, она не обязательна для указания, какой ток в розетке, постоянный или переменный

. и вообще для чего эта розетка, но многие производители (честь им и хвала за это) помогают простым покупателям принять решение.

Ещё на розетке может быть нанесена маркировка «неразъёмного соединения». Или «розетка, вынимаемая с удлинителем» или «съёмная». Не делайте круглые глаза – мы и сами были в шоке. Поясним по порядку – неразъёмное соединение это защита от детей. Особые способы так воткнуть вилку в розетку, что знающий секрет вынет, а дети не смогут. Съёмная розетка, как правило, напольного монтажа (фото в начале статьи), которая может быть закрыта при необходимости, а если нужно вынута из гнезда. Её место займет элемент типа «плинтус» и до следующего раза никто не догадается, что там можно установить розетку.

Розетка, «вынимаемая с удлинителем» – новая модная штучка. Вы втыкаете вилку прибора, поворачиваете гнездо розетки и вытаскиваете её, эдакий удлинитель, скрытый в стене. Неразъёмные розетки снабжены секретками от поворотного гнезда до конструктивных элементов штепселя. Мы не приводим пиктограмм, поскольку пока, собственно говоря, и стандарта нет на такую экзотику.

Но на любой розетке обязательно будет обозначение – 10А. Или 6А, или 16А, или 32А. Это сила тока, допустимая для конечного прибора на этом участке Вашей энергосети. Обозначение постоянного и переменного тока в этом случае не имеет значения, важнее понимать итоговую суммарную мощность приборов, которые могут быть включены в эту розетку. Нам может быть возразит профессионал, что тут нет вопросов, но мы всё-таки повторим – не важно, какой в розетке ток переменный или постоянный, допустимая сила тока – одна из важнейших характеристик .

Какой должна быть суммарная мощность розетки

Оценить суммарную нагрузку в линии, где будет трудиться розетка, можно без знания высшей математики – сложите мощность всех приборов, которые пусть даже гипотетически могут быть включены одновременно. Допустим это 4 киловатта на линию. Не удивляйтесь, утюг и чайник на кухне, включённые одновременно с микроволновкой, это бытовые реалии наших квартир.

На Вашей кухне может быть и два раза по две розетки, но они могут «висеть» на одном автомате, а значит это одна линия. Особенно грешат этим новостройки, в которых проект квартирной сети делается непонятно кем.

Итак, мы берём суммарную мощность и делим её на обозначение постоянного тока. Шутка конечно, но в ней есть доля правды. Делим на вольтаж, получая силу тока. Подробнее про это мы говорили в нашей статье о мощности потребителей в квартире . рекомендуем почитать подробности там. Но мы о розетках, поэтому напомним, что сила тока даже при нормальных потребителях (чайник, СВЧ, утюг и пр.) может значительно меняться при включении прибора. Наиболее сложными для розеток являются СВЧ печи и духовые шкафы большой мощности, посудомоечные и стиральные машины . Мало того, что к таким приборам очень желательно провести отдельную линию, так и розетки должны иметь маркировку не менее 16А, разумеется, с обозначением постоянного или переменного тока и прочими деталями, и уж конечно от надёжного производителя. Отдельное место займёт электрическая плита . Тут потребуется не только отдельная линия, на которой не будет других потребителей, но и розетка с маркировкой не менее 25А, а лучше 32А. Для тех, кто вселяется в квартиру с электроплитой это не проблема, ГОСТ 30988.2.4-2003 не только подробно описывает все розетки бытового и не только назначения, но и предусматривает ответственность за недобросовестный монтаж как раз для токов свыше 16А. Кстати про эту цифру – 16А, стоит помнить всем доморощенным электрикам. А для токов свыше 32А розетки применяются по-настоящему не разборные.

Несколько слов о новых розетках с дополнительными функциями

Рассмотрев детали применения розеток, мы пришли к тому, что если на нашей розетке мы видим маркировку «IP44

230В CEE7/4 50 Гц 16А» . То знаем, эта розетка защищена от попадания посторонних предметов, может выдержать кратковременное поливание водой, европейского стандарта с заземлением, предназначена для сети не выше 230 вольт с частотой 50 герц и рассчитана на силу тока до 16 ампер. Пиктограмма (при наличии) поможет найти её на электрической схеме и понять дополнительные функции.

Как говорят в интернете – теперь Вы знаете всё. Ну, разве что мы не поговорили о розетках с функцией USB питания, встроенными таймерами отключения, переключениями тока (как раз для них обозначение постоянного и переменного тока наиболее актуально). Есть ещё розетки с индикацией нагрузки линии (индикатор, меняющий цвет от зеленого, если всё хорошо до красного, когда всё пропало). Естественной эволюцией таких розеток, стали розетки с встроенными УЗО. Дополнили эту линейку розетки с автоматической блокировкой. Это когда происходит отключение розетки при неверных параметрах токов без отключения автоматов защиты. А также розетки, управляемые через Интернет. Но эта экзотика отдельная история, мы к ней когда-нибудь вернёмся.

Как пользоваться мультиметром

Подробности Категория: Начинающим Опубликовано 13.09.2016 08:48 Автор: Admin Просмотров: 910

Внешний вид прибора показан на фотографии. Как видно, на его передней панели установлен большой переключатель. С его помощью осуществляется выбор параметра, а так же предел измерения. Кроме того, мультиметр имеет жидкокристаллический дисплей, на котором высвечивается результат измерений. О том, как пользоваться мультиметром пойдет речь в этой статье.

Справедливости ради стоит отметить, что необязательно индикация в мультиметре жидкокристаллическая. На рынке до сих пор продается множество устаревших моделей, имеющих стрелочную шкалу. И хотя эти приборы не обладают такой точностью как цифровые, и ими не так удобно пользоваться, многие радиолюбители именно их и предпочитают. И все же, в этой статье речь пойдет именно о приборах с жидкокристаллической индикацией.

Все мультиметры, без исключения, позволяют измерять напряжение ток и сопротивление. Более подробно об этих величинах будет изложено ниже. Кроме того большинство приборов снабжены пробником цепей,в некоторых мультиметрах есть возможность иземерния температуры. Пробник цепи позволяет быстро установить целостность проводника. В том случае, если сопротивление цепи будет менее 30 Ом, раздастся звуковой сигнал. Это очень удобно – нет надобности смотреть на индикацию, а величина сопротивления, при проверке элементарной цепи, не так важна.

Еще одна полезная функция мультиметров – проверка полупроводниковых диодов. Тот, кто работал с ними, знает, что диод пропускает ток в одном направлении. Если проводимость есть и в другом, значит прибор неисправен. Мультиметр анализирует эти параметры и выдает результат на экране. Кроме того, в том случае, когда на корпусе диода нет маркировки, с помощью тестера легко можно установить его полярность. К сожалению, данная функция есть далеко не у всех мультиметров.

Более дорогие и продвинутые модели приборов имеют возможность измерять такие величины как индуктивность катушек и емкость конденсаторов. Но так как это могут только специальные мультиметры, то в этой статье они рассматриваться не будут.

Напряжение, ток, сопротивление

В этом разделе, небольшой ликбез для тех, кто ранее не был знаком с этими величинами. Сразу стоит заметить, что для их измерения придуманы специальные величины. Если провести аналогию с расстоянием, то оно будет измеряться в метрах и обозначаться английской буквой “m”. Точно такие же сокращения придуманы и для электрических величин.

Напряжение это та сила, которая заставляет ток течь по проводнику. Чем выше напряжение, тем быстрее движение электронов. Напряжение принято измерять в вольтах, сокращая до большой буквы «В». Но так как на рынке невозможно найти мультиметр с русифицированной передней панелью, на ней нужно искать английскую “V”.

Интенсивность протекания тока через электрическую цепь определяется его силой. Здесь уместно употребить сантехническою аналогию представить электрическую цепь в виде трубы заполненной водой. Высокое давление в этой трубе, еще не повод для того, чтобы вода по ней текла. Может быть на другом конце трубы просто закрыта задвижка. И по мере ее открытия, скорость потока будет увеличиваться. Вот эта скорость, в электрической цепи, и будет силой тока. Измеряется она в амперах «А».

Сопротивление показывает насколько трудно току пройти тот или иной участок электрической цепи. Вернувшись к водопроводной аллегории сопротивление можно сравнить с каким-то узким участком трубы, например засором. Чем меньше диаметр трубы в этом месте ( читай больше сопротивление) тем меньше скорость водяного потока (сила тока). Это очень хорошо проиллюстрировано на веселой картинке. Единицей измерения является Ом, который обозначается греческой буквой омега (?).

Постоянный и переменный ток

Direct current –для тех, кто знает английский, перевести не составит труда. Дословный перевод, направленный ток. Это электрический ток, который течет в одном направлении. В русском языке он получил название постоянного. Большинство мелких домашних приборов работает на постоянном токе. Его выдают батарейки всех классов и размеров, автомобильные и телефонные аккумуляторы. Постоянному току присвоена аббревиатура DC.

В зависимости от производителя на мультиметре соответствующие позиции могут обозначаться либо DCA и DCV (измерение постоянного тока и напряжения соответственно), либо “A”и”V”. а рядом черта и под ней пунктир.

Переменный ток (Alternating current ) меняет свое направление десятки раз в секунду. К примеру, в домашних розетках частота составляет 50-т герц. Это означает, что направление тока меняется 50 раз в секунду. Но не стоит, не имея опыта и знаний по технике безопасности пытаться померить высокое напряжение в розетке. Это очень опасно.

Переменный ток получил аббревиатуру “AC”. На переключателях мультиметра возможны 2 варианта:
ACA ” и “ACV ” измерение переменного тока и напряжения;A

Измерение постоянного напряжения имеет свои нюансы – обязательно нужно соблюдать полярность. Это особенно актуально для стрелочных приборов. У них в этом случае может выйти из строя измерительная головка. Цифровые – переносят это безболезненно, просто на экране появляется знак минус. Это обязательно нужно учитывать, перед тем как пользоваться мультиметром в режиме измерения напряжения.

Параллельное и последовательное подключение

При работе с мультиметром очень важно знать, как подключать его при измерении. Возможны всего два варианта: последовательно или параллельно, в зависимости от того, какую величину нужно измерить. При последовательном подключении через все элементы цепи протекает один и тот же ток. Следовательно, последовательно, еще говорят «в разрыв цепи», нужно мерить силу тока. Если рассмотреть параллельное соединение, то здесь к каждому элементу приложено одинаковое напряжения, и став щупами параллельно любому из них можно его померить. Итак, напряжение меряется параллельно, ток – последовательно, это нужно запомнить и никогда не путать.

На рисунке показаны схемы параллельного и последовательного соединения. Следует обратить внимание, что при последовательном, ток, протекающий через каждый из элементов, будет одинаковы, если их сопротивления будут равны. Это же условие обеспечит равное напряжение через элементы, в случае параллельного соединения.

Обозначения на передней панели мультиметра

Не опытного пользователя хитрые символы, нанесенные на главный переключатель мультиметра. Но здесь нет ничего сложного, достаточно только вспомнить, как обозначаются единицы измерения напряжения, тока и сопротивления:

  • Вольт – “V”;
  • Ампер – “A”;
  • ОМ – “Ω”

Все производители без исключения используют только эти значки. Правда, есть одно но. Не всегда приходится измерять целые величины. Иногда результат составляет тысячные доли единицы измерения, а иногда, наоборот – миллионы. Поэтому в мультиметр внесены соответствующие пределы измерения и производители для их обозначения используют метрические приставки. Основных всего четыре:

  • µ ( микро) – 10-6 единицы измерения;
  • m (мили) – 10-3 единицы измерения;
  • к (кило) – 103 единиц измерения;
  • М (мега) – 106 единиц измерения.

Эти префиксы добавляются к основным единицам измерения и в таком виде нанесены на переключатель режимов работы прибора: µА (микроампер), mV(милливольт), кОм(килоом), мОм(мегаом).

Прежде чем измерять какую либо величину нужно выставить соответствующий предел. Для этого нужно, хотя бы приблизительно знать какой будет результат, и выставить на приборе цифру немного его превышающую. Если даже в первом приближении невозможно предугадать величину измеряемого тока или напряжения, лучше начать с максимального предела. Полученный результат будет очень приблизительный, но позволит сделать вывод о том какой установить предел. Теперь измерения можно провести с большей точностью.

Некоторые мультиметры оснащены функцией “auto-rangin”. Благодаря ей, предел измерений выставляется автоматически. Это очень удобно, так как пользоваться мультиметром, в этом случае, гораздо проще. На рисунке представлены простой мультиметр (слева) и прибор оснащенный функцией auto-ranging”(справа).

Символы на мультиметре и их назначение

Производители приборов редко придерживаются стандартов, если они вообще есть, поэтому в разных мультиметрах одна и та же функция может быть обозначена по-разному. Конечно, невозможно привести здесь все возможные варианты символов, однако основные из них приведены ниже.

Вот так, волнистой линией обозначают переменный ток. Причем обратите внимание, что может измеряться как ток, так и напряжение. Может быть переменный ток (сила тока), а может быть напряжение переменного тока.

Горизонтальной чертой, с пунктиром под ней, обозначается постоянный ток и постоянное напряжение.

Обозначение тока и напряжения с помощью аббревиатуры “AC”и “DC”. Из примера видно, что иногда буквы дублируются знаками. Еще следует обратить внимание, что обозначения AC,DC, могут быть как до AилиV, так и после.

Таким значком обозначается прозвонка цепей. Если цепь цела, мультиметр издаст звуковой сигнал. Иногда эта функция совмещена с режимом измерения сопротивления. В этом случае звуковой сигнал будет звучать, если сопротивление менее 30 Ом.

Функция проверки диодов. Позволяет определить исправность диода и его полярность.

Что же. С теоретической частью можно считать закончили. Теперь можно переходить непосредственно к процессу измерения.

для измерения напряжения необходимо:

  • подключить щупы к мультиметру.
  • лучше сразу, привыкнуть это делать правильно: черный к гнезду COM. а красный к гнезду V ;
  • устанавливаем переключатель в положение соответствующее режиму измерения (переменное или постоянное) и пределу;
  • теперь можно стать щупами параллельно элементу цепи, на котором предполагается померить напряжение.

На рисунке приведен пример измерения падения напряжения на девяти вольтовой батарие “кроне”;

Теперь экран прибора должен показывать напряжение. В том случае, если на дисплее появляется «1», предел измерения мал, нужно установить поменьше. Но в данном примере переключать находится в правильном положении, установлена на предел в 20 Вольт постоянного тока. Красный провод- плюсовой, подключается к плюсу батареи, а черный соответсвенно это минус, вставлен в разъем COM на мультиметре. Он подключается к минусу батареи.

Подключаем щупы, не забываем про цвет; Здесь нужно обратить внимание на следующее: при измерении малых токов красный шнур подключается к тому же гнезду, как и при измерении напряжения, а токов до 10-ти ампер – к разъему «10А».
Теперь необходимо выбрать режим измерения и его предел.

В отличие от напряжения, силу тока меряют последовательно. Для этого придется разорвать (поэтому и говорят « в разрыв») цепь. Если все сделано правильно дисплей покажет значение силы тока. В том случае, когда на экране высвечиваются нули, причин может быть несколько: не включено напряжение, нет контакта на щупах и, самое вероятное велик предел. Если на экране высвечивается единица – предел мал. На рисунке приведена схема измерения постоянного тока протекающего через лампочку.

Подключить щупа к разъемам “COM” и “?”. Полярность здесь соблюдать, конечно, не обязательно и все же черный лучше подключить к разъему COM. Выставляем предел и режим измерения.

Измеряем сопротивление резистора или спирали лампочки, как это показано на рисунке. Нужно обязательно иметь в виду, что измеряемый элемент должен быть обязательно исключен из схемы. В противном случае измерения будут не правильными.Если индикатор перед цифрой показывает несколько нулей, предел измерения вели, для большей точности его нужно уменьшить. Если предел мал, индикатор будет показывать все ту же единицу.

Установить прибор в режим звукового сигнала. На переключатели есть соответствующий значок. Он также приведен в качестве примера в таблице выше.

Щупы установить в гнезда по аналогии с измерением сопротивления.Измерить нужный элемент схемы. Если между щупами протекает электрический ток, т.е. он исправен, должен раздаться звуковой сигнал с частотой порядка 1кГц. при этом нужно обязательно отключить от схемы питание. Кстати говоря, если звукового сигнала нет, то вовсе необязательно, что он неисправен. Возможно, его нормальное сопротивление превышает 30 Ом.

Мультиметр проверяет диод, пропуская через него ток и измеряя падение напряжение на нем. При наличии некоторого навыка прибором можно проверять даже биполярные транзисторы. Иногда полупроводниковые приборы даже нет необходимости выпаивать из схемы. Итак, последовательность действий следующая.

Щупы подключаются аналогично измерению сопротивления.Переключатель прибора устанавливается в положение измерения диода. Чаще всего это значок – схематичное обозначение диода.Измеряем диод, касаясь щупами его анода и катода. Показания прибора должны быть: для кремниевого диода -500-700 mV, для германиевого – 200-300mV, исправный светодиод должен показывать 1.5-2 V.

Теперь меняем полярность на диоде. Прибор должен показать нули, в противном случае он неисправен. Вот, в общем, то и все, что можно вкратце рассказать про работу с мультиметром. Все остальное придет с опытом. Главное не забывать про безопасность и перед тем как пользоваться мультиметром, обязательно изучить правила техники безопасности.

Добавить комментарий

Узнать стоимость строительства Задать вопрос Фотографии Отзывы

  • Главная
  • Строительство
    • Баня
    • Коттедж
    • Бассейн
    • Веранда
    • Фундамент
    • Забор
    • Ворота
    • Кровля
    • Крыша
    • Утепление
    • Беседки
    • Грунт
    • Гараж
    • Строительство из кирпича
    • Строительство каркасного дома
    • Строительство бани
    • Деревянные дома
    • СРО
  • Инженерные системы
    • Теплый пол
    • Кондиционеры
    • Отопление
    • Септик
    • Котельная
    • Дымоход
    • Газоснабжение
    • Электромонтаж
    • Водяное отопление
    • Котел
    • Циркуляционный насос
    • Системы отопления
    • Терморегуляторы
    • Водяной теплый пол
    • Скважина
  • Ремонт квартир
    • Потолки из гипсокартона
    • Перегородки

    Как обозначаются постоянный и переменный токи?

    Здравствуйте. Когда мы пользуемся электрическими бытовыми приборами, раной электрической техникой, мы постоянно натыкаемся на такие понятия, как постоянный ток, переменный ток. Расскажите, пожалуйста, как обозначаются постоянный и переменный токи и про их понятие?

    Ответы пользователей и экпертов форума на вопрос: Как обозначаются постоянный и переменный токи?

    Добрый день. Для обозначения постоянного и переменного токов имеется специальная аббревиатура из латинских букв: AC/DC. Постоянный ток DC – это величина тока и его направление меняются со временем слабо. Переменный ток AC – это величина тока и его направление меняются со временем основательно. С переменным током мы встречаемся, когда включаем бытовые приборы в розетки. Постоянный ток присутствует в батареях, аккумуляторах.

    Коричневым и черным цветом изоляции проводов обозначается фаза, синим…

    …переменный ток. А для …переменный ток. Передают такой ток на…

    Актуальное время для грунтовки стен под оклейку обоев

    Прошу совета. Подготовил стены для грунтовки и дальнейшей поклейки обоев, но сам процесс планирую начать через 3-4 месяца, поэтому хотел бы уточнить – стоит ли начать.

    Купит погружную пилу festool?

    Привет! Сейчас делаю у себя на даче ремонт, а точнее наново решил все перестроить и сами понимаете, что требуется много разных материалов и оборудования, где много можно.

    Как купить земельный участок у государства?

    Доброе время суток. Я уже давно работаю на фирме по строительству заводов. Но мне это уже надоело. И поэтому я решил купить землю у государства для постройки маленького.

    Чем клеить пвх уголок?

    Решили застеклить и утеплить балкон. Обшивать балкон буду сам, пока еще не решили чем, но скорее всего пластиковыми панелями. Как крепить панели я представляю,- есть.

    Перегородка внутри дома нового

    строю дом, хочу поделить на двух хозяев, из чего сделать перегородку, исключая слышимость. И подешевле

    Украшения для штор фото

    Украшения для штор, всевозможные бантики, подхваты, ленточки, бусины и ламбрекены (как на фото) способны преобразить простые скучные шторы. Он сделают их произведение.

    Полезно знать

    Источники: http://obelektrike.ru/posts/kakoj-tok-v-rozetke-postojannyj-ili-peremennyj/, http://www.radio-magic.ru/beginners/411-kak-polzovatsya-multimetrom, http://electro-montazh.postroyforum.ru/discussion/77357/kak-oboznachayutsya-postoyannyy-i-peremennyy-toki

electricremont.ru

Расшифровка обозначений на мультиметре. Как обозначаются переменный и постоянный ток и напряжение

Мультиметр – один из самых необходимых и многофункциональных приборов электрика. Наверняка все помнят, как на уроках физики в школе измеряли напряжение вольтметром, сопротивление – омметром, силу тока – амперметром. Так вот, мультиметр воплотил в себе все эти измерительные приборы, а также несколько других, о которых чуть ниже расскажем подробнее.

Сам по себе мультиметр работать не будет, все зависит от знания мастера и умения пользоваться этим прибором. То есть, чтобы измерить какой-либо параметр, сначала нужно правильно выставить переключатель, знать какой щуп в какое гнездо воткнуть, и так далее. Поэтому, прежде чем брать прибор в руки, нужно научиться им правильно пользоваться.

Внимание! В данной статье описывается стандартный мультиметр с наиболее распространенными функциями. В зависимости от модели мультиметра, его функционал может быть больше и включать в себя дополнительные возможности. Здесь описываются только те, которые имеются практически в каждом приборе, а также расшифровка обозначений на мультиметре.

Вкратце опишем основные компоненты прибора:

  1. 1. Электронное табло
  2. 2. Шкала обозначений
  3. 3. Переключатель
  4. 4. Кнопка “ВКЛ/ВЫКЛ” (вместо нее бывает специальное положение для регулятора)
  5. 5. Разъемы для щупов
  6. 6. Специальные разъемы для проверки транзисторов (присутствуют на некоторых тестерах)
  7. 7. Индикатор прозвонки (зуммер и светодиод красного цвета)
  8. 8. Батарейка

Из всего вышеперечисленного самым важным моментом является шкала обозначений, так как если вы неправильно выставите регулятор, то можете сжечь измеряемую радиодеталь или сам прибор. Поэтому расшифровка обозначений на мультиметре очень важный момент при работе с этим прибором.

Обозначения на мультиметре

Шкала обозначений включает в себя круговой переключатель положений, а также символы, обозначающие те или иные параметры, разбитые на сектора.

Каждый сектор отвечает за измерение одного конкретного параметра (например сопротивления). Внутри сектора имеется несколько положений регулятора, каждое положение обозначает измеряемый номинал. Каждый сектор обозначается специальным символом. Все сектора разделяются между собой линиями.

Куда подключать щупы мультиметра

Щупы для мультиметра идут в комплекте. Один щуп – красный, второй – черный. Корпус щупа выполнен из диэлектрика, на конце – заостренный металлический стержень

Внимание! Помните золотое правило: красный – всегда плюс, черный – всегда минус. Поэтому важно не перепутать гнезда подключения, иначе есть риск запутаться. Красный щуп всегда кидаем на плюс, черный – на минус.

Щупы подключаются к специальным гнездам, также имеющим обозначения. Самих гнезд может быть три или четыре, в зависимости от модели мультиметра.

Гнезда для подключения щупов:

  • 1. Гнездо “СОМ” – обозначает минус (масса, общий). В него подключается щуп черного цвета. Всем известно, что при замере переменного напряжения, допустим, в розетке, полярность не имеет значения. Тем не менее, следуйте следующему правилу: если есть определенный провод (щуп) и для него имеется специальное отверстие, то нужно подключать этот провод именно в это отверстие, так как черный цвет провода недвусмысленно нам намекает на то что он – минусовой.
  • 2. Гнездо «VΩCX+» — обозначает плюс, к нему подключается красный провод. Это гнездо используется при измерении сопротивления, напряжения, частоты, температуры, проверки диодов и транзисторов. Проще говоря, это гнездо используется во всех измерениях, за исключением измерения силы тока.
  • 3. Гнездо “20А” – специальное гнездо. К нему подключается красный щуп, а функция этого гнезда – измерение силы тока величиной до 20 ампер. 20 ампер это очень большая сила тока, поэтому будьте осторожны. Опять же, очень важное правило: при измерении силы тока, прибор (в нашем случае – мультиметр) нужно подключать к цепи последовательно и только так. Если рядом с этим гнездом увидите надпись “UNFUSED”, то имейте ввиду, что измерение производится без использования предохранителя, поэтому постарайтесь не сжечь прибор. Также нужно знать, как обозначается постоянный ток на мультиметре.
  • 4. Гнездо “MACX” – гнездо для измерения силы тока малых значений микро- и миллиампер. Если рядом окажется надпись «0.2А MAX FUSED» — значит измерение производится с защитой прибора предохранителем, максимальное значение измерения – 0.2 ампера.

На приборе может быть нарисован красный треугольник с надписью “МАХ 600V” (значения могут отличаться в зависимости от модели мультиметра). Это максимальное значение измерения напряжения. Нельзя замерять напряжение выше этого параметра.

Внимание! Если вам неизвестны пределы измеряемого значения – устанавливайте регулятор на максимальное значение, по мере измерения – двигайтесь в меньшую сторону. Например, мы знаем, что измеряемый прибор (например, аккумулятор) имеет постоянное напряжение, но не знаем примерный диапазон (то-ли 24 вольта, то-ли 12 вольт, а может быть и 1.6 вольт). В этом случае устанавливаем регулятор на максимальное значение сектора измерения постоянного напряжения и двигаемся в меньшую сторону.

Очень важно! Проводя любые измерения, ни в коем случае не держитесь пальцами за металлическую часть щупа, особенно при каких-либо измерениях опасного напряжения или силы тока.

Диапазоны переключателя мультиметра

Сначала затронем тему включения и выключения мультиметра. Обычно присутствует кнопка “ON/OFF”, но на некоторых моделях мультиметров имеется специальный сектор с таким же названием. Также есть тестеры, которые выключаются самостоятельно, спустя некоторое время.

Сам же регулятор, или переключатель – кому как больше нравится, модно крутить хоть по часовой, хоть против часовой стрелки. Что измерить какой-либо параметр – просто переведите регулятор в нужный сектор на нужное значение.

Важно! Сектора обозначаются буквами, номиналы – цифрами.

Расшифровка обозначений на мультиметре, которую нужно запомнить раз и навсегда:

  1. 1. DCV – сектор измерения постоянного напряжения
  2. 2. ACV – сектор измерения переменного напряжения
  3. 3. DCA – сектор измерения силы постоянного тока
  4. 4. ACA – сектор измерения переменного тока

Как обозначается сопротивление на мультиметре

Из школьного курса физики мы помним, что сопротивление измеряется в Омах, в честь немецкого физика Георга Симона Ома. Обозначение на мультиметре — «Ω», номиналы сопротивления на стандартном приборе следующие: 20 Ом, 200 Ом, 2 кОм, 20 кОм, 200 кОм, 2 МОМ, 20 МОМ, 200 МОМ. В зависимости от модели используемого мультиметра диапазон значений может быть иным.

Измерение этого параметра является очень популярным как в радиоэлектронике, так и в электрике. С помощью сопротивления можно очень быстро проверить работоспособность лампочки, спирали, провода и т.д.

Для измерения сопротивления переставьте регулятор в сектор «Ω» и выберите нужное значение.

Обозначение постоянного напряжения на мультиметрах

Напряжение измеряется в Вольтах, в честь итальянского физика Алессандро Вольта. Выше мы уже писали, что сектор измерения постоянного напряжения обозначается аббревиатурой “DCV”. Но, на многих моделях вместо этого сокращения используют символ “V-”. В этом сокращении буква “V” обозначает напряжение, а символ “-” – постоянное.

Также, чтобы не перепутать сектор постоянного напряжения с переменным, запомните следующее: диапазон значений сектора постоянного напряжения шире, чем диапазон переменного.

Для измерения постоянного напряжения необходимо выставить регулятор на нужное значение в секторе “V-”.

Внимание! Если в процессе измерения вы перепутали полюса, то на дисплее отобразится то же самое значение, но со знаком “-”. В этом нет ничего страшного.

Обозначение переменного напряжения

Переменное напряжение также измеряется в Вольтах. Аббревиатура “ACV”, либо, как в предыдущем случае, сокращение “V~” – обозначение на мультиметре, расшифровка – “v” – напряжение, знак “~” — переменное.

Для электрика этот параметр является основной задачей, поскольку в розетках, выключателях и т.д. всегда используется переменное напряжение. Наши сети работают на 220 Вольт, а на мультиметре присутствуют значения 700 В (750В) и 200 В.

Один знакомый как-то раз спросил меня, для чего на мультиметре имеется значение в 200 Вольт, если в сети используется переменное напряжение 220, а переменка в 200 Вольт и ниже вообще не используется. Так вот, примите к сведению: практически вся Америка использует стандарт 110 Вольт переменного напряжения.

При замере переменного напряжения полярность не важна. То есть при измерении напряжения в розетке без разницы, в какой разъем розетки вы воткнете красный и черный щуп.

Как обозначается постоянный ток на мультиметре

Сила тока измеряется в Амперах в честь французского физика Анри Ампера. На мультиметре сектор измерения постоянного тока обозначается как DCA, либо просто DC. Регулятор, как и в предыдущих случаях, выставляется на нужное для измерения значение в секторе DC.

Не забывайте о том, что для измерения силы тока прибор подключается последовательно. Что это значит? Для измерения силы тока мы разрываем цепь.

Например, нам нужно замерить силу тока в фазном проводе. Нельзя просто взять и прикоснуться в двух местах щупами к проводу. Должен быть разрыв провода (или цепи), именно в этот разрыв мы подключаем прибор.

Как обозначается переменный ток на мультиметре

Не каждый тестер способен измерить силу переменного тока, но на некоторых моделях такая функция присутствует. На вопрос “как обозначается переменный ток на мультиметре” ответим: аналогично обозначению переменного напряжения, сектор переменного тока обозначается как «A~».

Вообще, мультиметр плохо подходит для измерения переменного тока. Лучше для этой цели использовать токоизмерительные клещи.

Что такое сектор hFE?

Некоторые владельцы мультиметров могут увидеть у себя на приборе сектор hFE, а в придачу к нему – два гнезда по четыре разъема в каждом. Этот сектор отвечает за проверку транзисторов (измерение значения коэффициента передачи тока). Гнезда подписаны “NPN” и “PNP”, а разъемы – буквами “E”, “B”, “C”.

Существует два типа транзисторов: транзистор типа “PNP-переход”, транзистор типа “NPN-переход”. Буквы “E”, “B”, “C” обозначают “эмиттер”, “база”, “коллектор” соответственно.

Чтобы проверить транзистор, выставьте регулятор на сектор hFE, посмотрите распиновку его ножек, тип транзистора, потом вставьте сам транзистор в нужный разъем. Если ваш транзистор неисправен, то прибор покажет значение “0”. Конечно, многих начинающих электриков пугает аббревиатура hFE, но для этого и нужна расшифровка обозначений на мультиметре, чтобы все непонятное стало понятным.

Тест диодов

Выше упоминалось, что практически в каждом мультиметре есть специальный светодиод и зуммер. Кроме этого, на шкале измерений должен быть сектор с нарисованным диодом. Это все необходимо для проверки диодов на работоспособность, а также проверки целостности цепей и всего прочего, сопротивлением не больше 50 Ом.

Чтобы проверить диод, нужно вспомнить о его свойствах. Диод пропускает ток только в одну сторону. Выставляем регулятор на значок диода и начинаем проверять, меняя полюса. Исправный диод в одном положении на дисплее выдаст значение 1, при этом светодиод загорится, а зуммер запищит. При смене полюсов – мультиметр покажет значение диода, например, 436 милливольт. Неисправный диод – будет прозваниваться в обе стороны.

Это лишь поверхностные принципы работы диода, но для проверки исправности диода мультиметром этого достаточно.

Проверка емкости конденсаторов

Чтобы измерить емкость конденсатора необходимо установить переключатель в диапазон F (Фарад). Для проверки ёмкости конденсатора мультиметр должен иметь эту функцию. Чтобы произвести измерение, используют гнёзда -CX+. «-» и «+» означают полярность подключения.

Диапазон измерения емкости в данном мультиметре варьируется от 200 микрофарад до 20 наноФарад.

Что означает kHz?

Этот параметр присутствует не на всех приборах. “Hz” – единица измерения частоты (Герц). С помощью данного сектора можно измерить частоту сигнала.

Для чего нужна кнопка hold

Такая кнопка тоже присутствует не на всех приборах, полное ее название – “Data hold”. Она служит для того, чтобы зафиксировать полученные данные на дисплее. Нужное значение будет отображаться ровно до повторного нажатия этой кнопки. Кто-то считает ее бесполезной, кто-то периодически ее использует.

Похожие материалы на сайте:

Понравилась статья — сохрани на стену!

electricvdome.ru

каким символом обозначается на электроустановках

Для успешной работы с электроустройствами требуется не только умение справляться с различными задачами по монтажу и ремонту, но и умение читать и понимать электрические схемы. Для унификации и облегчения понимания все элементы схем стандартизированы. Разные государства, а, порой, и разные предприятия могут иметь частично или полностью свою систему обозначений. Справедливости ради стоит отметить, что различия в обозначениях тока несущественны и большой путаницы практически никогда не возникает. Напряжение питания (или ток) имеет две основополагающие характеристики: величину и частоту. Если с первым параметром вопросов почти не возникает, то на втором следует остановиться подробнее.

Переменный ток в широком понимании

Что такое переменный ток

Напряжение может быть как постоянным, так и изменять свое мгновенное значение в каждый отрезок времени. При этом может изменяться не только величина параметра, но и его направление. В большинстве случаев переменный ток подразумевает изменение по синусоидальному закону и имеет знакопеременную величину. Это всем известное напряжение в бытовой и промышленных сетях электропитания. В более широком смысле напряжение может изменять свое значение без смены полярности.

Те, кто более глубоко знаком с электротехникой, могут сказать, что в данном случае речь идет о переменном напряжении с некоторой постоянной составляющей. Достаточно установить последовательно в цепь конденсатор, который не пропускает постоянную составляющую, и на выходе получится знакопеременный электрический ток.

Обозначения на электрических схемах

Для однозначного толкования электрических схем разработана система графических обозначений. Она несколько меняется в разных странах, но общие принципы обозначений сохраняются. Переменный или постоянный ток обозначается строго определенными символами, чтобы избежать путаницы, неопределенности и неверного понимания.

В странах постсоветского пространства принято обозначение переменного тока графическим символом, который представляет собой отрезок синусоиды, поскольку под переменным в большинстве случаев подразумевается именно тот, который изменяется по синусоидальному закону.

Условное графическое обозначение

Иногда можно встретить равнозначное изображение в виде двух отрезков синусоиды. Такие обозначения полностью взаимозаменяемы. В отличие от них, обозначение постоянного тока имеет вид двух параллельных линий.

Условные графические символы используются для обозначения клемм питания, а также совместно с некоторыми другими обозначениями, например, для характеристики генератора или потребителя.

Генератор переменного напряжения и потребители

Зарубежная литература использует иной принцип обозначения. В основном используется аббревиатура от английских слов «Alternating current» – переменный ток и «Direct current» – постоянный ток. Соответственно, сокращения имеют вид AC и DC.

В некоторых случаях, кроме типа тока или напряжения, требуется добавлять информацию о их частоте, величине и количестве фаз. На схемах такие обозначения интуитивно понятны. К примеру, надпись 3 ~ 50Гц 220В может говорить только об одном, что используется трехфазное переменное напряжение 220 В с частотой 50 Гц.

В современных обозначениях зачастую встречается комбинация отечественной и зарубежной символики.

Измерительные приборы и электрооборудование

На электроизмерительных приборах можно видеть те же условные знаки, что и на электросхемах. В данном случае они говорят, с каким родом напряжения или тока может работать измерительный прибор. Для тех приборов, которые предназначены для работы в узкой области, символы рода тока или напряжения могут располагаться непосредственно на указателе (стрелочном индикаторе). Универсальные измерительные устройства снабжены переключателем рода и пределов измерений, поэтому все обозначения находятся возле соответствующих позиций.

Комбинированный измерительный прибор

Распространенные цифровые тестеры имеют следующие обозначения: 

  • ACA или ≈A – режим измерения переменного тока;
  • DCA или =А – режим измерения постоянного тока;
  • ACV или ≈V – режим измерения переменного напряжения;
  • DCV или =V – режим измерения постоянного напряжения.

Для электрического оборудования род питания указывается на шильдике или бирке. Устройства, где комбинированное питание, имеют на бирке знак переменного тока в виде отрезка синусоиды и одну горизонтальную черту.

Обозначение смешанного тока

Англоязычные производители для обозначения смешанного или комбинированного питания используют аббревиатуру AC/DC.

Практически всегда возле символа напряжения или тока указывается его величина: отдельно для переменного и отдельно для постоянного тока.

Особую символику можно увидеть на шильдике двигателей переменного напряжения. Там, кроме его рода, указывается еще и схема включения (звезда или треугольник) и величина питающего напряжения для каждого из вариантов.

Кроме этого двигатели характеризуются мощностью (током потребления) и величиной COSϕ, которая характеризует реактивную мощность потребителя. Эти данные также присутствуют на бирке изделия.

Информация по значению и роду питания важна для безопасности и правильного функционирования устройств. Для устранения ошибочного и непреднамеренного включения устройств к несоответствующим источникам питания, кроме условных обозначений, добавляется механическая защита. Так, вилки шнуров питания аппаратуры, использующей переменный ток, имеют иную форму штырей, чем для постоянного, что не допускает возможность неправильного подключения.

Видео

Оцените статью:

elquanta.ru

Как обозначается переменный и постоянный ток, обозначение acc

Среди видов электрического тока различают:

•          Постоянный ток:

Обозначение (—) или DC (Direct Current = постоянный ток).

•          Переменный ток:

Обозначение (~) или AC (Alternating Current = переменный ток).

В случае постоянного тока (—) ток течет в одном направлении. Постоянный ток поставляют, например, сухие батарейки, солнечные батареи и аккумуляторы для приборов с небольшим потреблением электротока. Для электролиза алюминия, при дуговой электросварке и при работе электрифицированных железных дорог требуется постоянный ток большой силы. Он создается с помощью выпрямления переменного тока или с помощью генераторов постоянного тока.

В качестве технического направления тока принято, что он течет от контакта со знаком «+» к контакту со знаком «—».

В случае переменного тока (~) различают однофазный переменный ток, трехфазный переменный ток и высокочастотный ток.

При переменном токе ток постоянно изменяет свою величину и свое направление. В западноевропейской энергосети ток за секунду меняет свое направление 50 раз. Частота изменения колебаний в секунду называется частотой тока. Единица частоты — герц (Гц). Однофазный переменный ток требует наличия проводника, проводящего напряжение, и обратного проводника.

Переменный ток применяется на стройплощадке и в промышленности для работы электрических машин, например ручных шлифовальных устройств, электродрелей и круговых пил, а также для освещения стройплощадок и оборудования стройплощадок.

Генераторы трехфазного переменного тока вырабатывают на каждой из своих трех намоток переменное напряжение частотой 50 Гц. Этим напряжением можно снабжать три раздельные сети и при этом использовать для прямых и обратных проводников всего шесть проводов. Если объединить обратные проводники, то можно ограничиться только четырьмя проводами

Общим обратным проводом будет нейтральный проводник (N). Как правило, он заземляется. Три другие проводника (внешние проводники) имеют краткое обозначение LI, L2, L3. В единой энергосистеме Германии напряжение между внешним проводником и нейтральным проводником, или землей, составляет 230 В. Напряжение между двумя внешними проводниками, например между L1 и L2, составляет 400 В.

О высокочастотном токе говорят, когда частота колебаний значительно превышает 50 Гц (от 15 кГц до 250 МГц). С помощью высокочастотного тока можно нагревать токопроводящие материалы и даже плавить их, например металлы и некоторые синтетические материалы.

Преобразователи переменного постоянного тока. Устройство …

Источники питания постоянным током. … вырабатывающую переменный ток частотой 300 Гц. Машина оснащена выпрямительным устройством из кремниевых вентилей и …
bibliotekar.ru/spravochnik-17/22.htm

Электрический ток

Такой ток называется постоянным током. Однако в технике чаще используется переменный ток, направление и сила которого периодически изменяются.

Как обозначают постоянный ток. Переменный электрический ток


bibliotekar.ru/enc-Tehnika-3/83.htm

Трансформатор. Аппараты преобразующие переменный ток одного …

Переменный ток выгодно отличается от постоянного тем, что относительно легко можно изменять его силу. Аппараты, преобразующие переменный ток одного …
bibliotekar.ru/enc-Tehnika-3/55.htm

Источники питания постоянным током. Сварочные преобразователи …

Они обладают следующими преимуществами по сравнению с источниками переменного тока: … при сварке постоянным током возможно применение всех выпускаемых … источники постоянного тока—сварочные генераторы, вырабатывающие постоянный ток, …
bibliotekar.ru/spravochnik-17/19.htm

Самостоятельное подключение автомагнитолы или приемника в авто

Установка или замена автомагнитолы в авто возможна самостоятельно любым автомобилистом, который не тратит деньги на все подряд. Если у Вас большие проблемы с руками, то тогда лучше обратиться в автосервис — так точно получится дешевле и в разы быстрей. Далее статья для тех, у кого «прямые руки» и фамилия не Рокфеллер. 🙂 Схема подключения различных магнитол в разнообразные авто остается одинаковой, однако имеются различные нюансы и особенности. До всеобщей стандартизации и взаимозаменяемости еще, к сожалению, далеко. 
По способу установки автомобильные магнитолы или приемники бывают встраиваемые  и стационарные.

Для защиты от воровства встраиваемые магнитолы довольно часто комплектуются съемной лицевой панелью, раньше применялись направляющие салазки с замком, для быстрого снятия всего устройства.
Стационарные автомагнитолы от кражи защищают их оригинальная форма и нестандартные размеры. Подходят они в определенную марку автомобиля, что лишает их универсальности. Как правило, устанавливаются такие магнитолы производителями автомобилей еще на сборочном конвейере. Контейнеры под магнитолу в некоторых моделей авто снабжаются специальной шторкой – устройство довольно простое, но весьма эффективное от авто воров.

Современные магнитолы бывают  двух размеров по высоте —  одно блочные и двух блочные (или однодиновые и двухдиновые). Европейские производители в большинстве производят автомагнитолы стандарта 1DIN (одноблочные). И в автомобиле должна быть подходящего размера ниша. Японские, американские, а так же и корейские фирмы представляют аппаратуру вдвое большую по высоте, под соответствующую нишу для установки в автомобиле, которая носит название 2DIN. Это основное, на что надо обратить внимание при покупке автомагнитолы для Вашего автомобиля. 

Далее разъемы. Различные магнитолы и автомобили могут иметь различные виды разъемов. Поэтому нужно посмотреть, какой разъем в автомобиле перед покупкой магнитолы. Если в приобретенной магнитоле разъем не совпадает с автомобильным, то тоже ничего страшного.
Вариант 1 (предпочтительный) —  существует большое количество различных переходников, главное правильно подобрать. Также выпускаются специальные переходники, позволяющие перейти с оригинальных колодок на стандарт ISO.
Вариант 2 — Расковырять разъем и подключиться напрямую. Крайний метод, но зная схему — без музыки не останетесь.

Самый распространенный разъем для подключения автомагнитолы — ISO 10487. Первым делом проверьте его наличие в Вашем автомобиле.

Если таков иметься, то необходимо просто удостовериться в правильной распиновке Вашего разъема. 

По входам в магнитолу почти все производителепридерживаются стандартной цветовой маркировки проводов.

— Желтый провод (BAT) — к постоянному +, независимо от положения замка зажигания, напрямую к аккумулятору через предохранитель на 10-20А;

 Красный провод (ACC) — к клемме замка зажигания, на которой появляется + при повороте ключа зажигания. На многих иномарках существует уже отдельно проведенный провод в колодке. Надо его лишь найти (довольно просто при помощи тестера или контрольной лампочки). Либо, если возникнут затруднения, к любой клемме, где появляется +12 при включении зажигания.

— Черный провод —  это минус или масса, что то же самое. Подключается на кузов хорошим контактом. (там постоянный минус).

— Голубой/бело — голубой провод (REM) — это управляющий провод, который при включении магнитолы, автоматически включает автомобильный усилитель или активную антенну.

— Оранжевый провод авто магнитолы (либо вариации) (ILL) — подлючается к клемме переключателя освещения либо к любой другой клемме, где появляется +12 при включении габаритных огней или фар.

— Желто — черный провод (вариации) (MUTE) — это дистанционное это выключение звука или его приглушение. Подключается к соответствующему проводу Вашего автомобильного Hands.  Если комплект отсутствует — не подключайте никуда. Это опция и на работоспособность магнитолы и качество работы не влияет.

Выходы магнитолы — это акустические провода на динамики. Они имеют по парные цвета. К каждой цветовой паре подключается определенный динамик:

Белая пара проводов — передний левый динамик;

Серая пара               — передний правый динамик;

Зеленая пара              — задний левый динамик;

Фиолетовая пара       — задний правый динамик.

 Каждая пара проводов на динамики состоит из монотонный провода и провода с черной полосой. Черной полосой обозначается минусовой провод.
 Очень важно соблюсти правильность подключения акустических проводов, в противном случае, при несоблюдении цветовой схемы – будет не корректна регулировка баланса, при несоблюдении полярности – задние колонки будут играть в противофазе, это проявиться отсутствием баса.

Общая схема подключения автомагнитолы

Схемные, буквенные обозначения, встречающие в инструкциях по подключению магнитол различных марок

Акустическая группа:
— R = Динамик правый.
— L = Динамик левый.
— FR+, FR- или RF+, RF- = Динамик передний — правый (Соответственно плюс или минус).
— FL+, FL- или LF+, LF- = Динамик передний — левый (Соответственно плюс или минус).
— RR+, RR- = Динамик задний — правый (Соответственно плюс или минус).
— LR+, LR- или RL+, RL- = Динамик задний — левый (Соответственно плюс или минус).
— GND SP = Общий провод динамиков.

Разъём питания:
— B+ или BAT или K30 или Bup+ или B/Up или B-UP или MEM +12 = Питание от аккумулятора (плюс)

— GND или GROUND или K31 или просто указан минус  = Общий провод (Масса), минус аккумулятора.

— A+ или ACC или KL 15 или S-K или S-kont или SAFE или SWA = +12 с замка зажигания.

— N/C или n/c или N/A = Нет контакта. (Физически вывод имеется но никуда не подключен).

— ILL или LAMP или обозначение солнышка или 15b или Lume или iLLUM или K1.58b = Подсветка панели. На контакт подаётся +12 вольт при включении габаритных огней. На некоторых магнитолах есть два провода, -iLL+ и iLL- Минусовой провод гальванически отвязан от массы.

— Ant или ANT+ или AutoAnt или P.ANT = После включения магнитолы с этого контакта подаётся питание +12 вольт на управление выдвижной антенной, если такова, естественно, присутствует.

— MUTE или Mut или mu или изображение перечеркнутого динамика или TEL или TEL MUTE = Вход выключения или приглушения звука при приеме звонка телефона или других действиях (например движения задним ходом). 

Другие возможные контакты:

-Amp = Контакт управления включением питания внешнего усилителя
-DATA IN = Вход данных
-DATA OUT = Выход данных
-Line Out = Линейный выход
-REM или REMOTE CONTROL = Управляющее напряжение (Усилитель)
-ACP+, ACP- = Линии шины (Ford)
-CAN-L = Линия шины CAN
-CAN-H = Линия шины CAN
-K-BUS = Двунаправленная последовательная шина (К-line)
-SHIELD = Подключение оплётки экранированного провода.
-AUDIO COM или R COM, L COM = Общий провод (земля) входа или выхода предварительных усилителей
-CD-IN L+, CD-IN L-, CD-IN R+, CD-IN R- = Симметричные линейные входы аудио сигнала с ченжера
-SW+B = Переключение питания +B батареи.
-SEC IN = Второй вход
-DIMMER = Изменение яркости дисплея
-ALARM = Подключение контактов сигнализации для выполнения магнитолой функций охраны автомобиля (магнитолы PIONEER)
-SDA, SCL, MRQ = Шины обмена с дисплеем автомобиля.
-LINE OUT, LINE IN = Линейный выход и вход, соответственно.
-D2B+, D2B- = Оптическая линия связи аудиосистемы

Если при подключении видеорегистратора или навигатора появляются помехи радиоприему, причина не в магнитоле. Способы устранения по ссылке. 

Рекомендации при подключении магнитолы на машине:

  • Питание желательно осуществлять при помощи отдельной проводки, непосредственно идущей от аккумулятора к магнитоле.

  • Диаметр проводки должен быть не меньше чем на разъеме магнитолы, в идеале в полтора-два раза толще.

    Обозначение постоянного и переменного тока

    Это касается как питающей проводки, так и акустической.  Рекомендуется  применить специализированные акустические провода  сечением порядка 1.5-4 мм2 с бескислородной меди и силиконовой изоляцией. Кабель должен быть как можно менее короткий и без скруток.


    Сопротивление акустики, как правило, 4 Ом, а проводка из комплекта акустики будет соизмерима по сопротивлению с динамиками. Это свою очередь повлечет значительное рассеивание мощности усилителя магнитолы, именно на вспомогательном оборудовании – акустической проводке, а не на динамиках (акустике). В итоге, громкость воспроизведения уменьшится и, что еще хуже, уменьшится и диапазон воспроизводимых частот. Особенности распространения ВЧ заключаются в том, что сигнал идет лишь только по поверхности провода, соответственно при меньшем диаметре провода уменьшится его пропускная способность к ВЧ, и как следствие, ухудшение общего качества звучания.

  • При питании магнитолы используются красный и желтый провода. Желтый предназначен для питания памяти, а красный служит для отключения магнитолы и предполагает наличие выхода на замок зажигания. Это означает, что после выключения зажигания автоматически будет выключаться и автомагнитола. Наиболее удобным вариантом считается параллельное присоединение желтого и красного проводов, тогда выключение магнитолы будет происходить только при нажатии кнопки на панели магнитолы. 

Однако в данном случае могут возникнуть проблемы, связанные с тем, что усилители магнитолы питаются от красного провода, в том числе и в режиме ожидания. Поэтому увеличивается потребление тока, а значит, аккумулятор может быстрее разрядиться. Для того чтобы избежать данной ситуации, на красный провод магнитолы можно поставить отдельный выключатель, тогда питание будет самостоятельно отключаться при длительной стоянке автомобиля.
Если у Вас магнитола с внутренним аккумулятором для сохранения настроек, то используйте схему с полным отключением питания при выключении магнитолы. Тогда Ваша основная батарея на машине гарантировано не будет разряжаться во время длительной стоянки через приемник.

В конце тестируем звучание и правильность работы всех функций (баланс передние/задние, левые/правые динамики, частоты, радиоволны). Если фазировка и установка динамиков была проведена правильно, то не должно быть ни хрипов, ни помех при воспроизведении. 

Постоянный электрический ток

Постоянный ток (DC — Direct Current) — электрический ток, не меняющий своей величины и направления с течением времени.

В реальности постоянный ток не может сохранять величину постоянной. Например, на выходе выпрямителей всегда присутствует переменная составляющая пульсаций. При использовании гальванических элементов, батареек или аккумуляторов, величина тока будет уменьшаться по мере расхода энергии, что актуально при больших нагрузках.

Постоянный ток существует условно в тех случаях, где можно пренебречь изменениями его постоянной величины.

Постоянная составляющая тока и напряжения. DC

Если рассмотреть форму тока в нагрузке на выходе выпрямителей или преобразователей, можно увидеть пульсации — изменения величины тока, существующие, как результат ограниченных возможностей фильтрующих элементов выпрямителя.
В некоторых случаях величина пульсаций может достигать достаточно больших значений, которые нельзя не учитывать в расчётах, например, в выпрямителях без применения конденсаторов.
Такой ток обычно называют пульсирующим или импульсным. В этих случаях следует рассматривать постоянную DC и переменную AC составляющие.

Постоянная составляющая DC — величина, равная среднему значению тока за период.

AVG — аббревиатура Avguste — Среднее.

Переменная составляющая AC — периодическое изменение величины тока, уменьшение и увеличение относительно среднего значения .

Следует учитывать при расчётах, что величина пульсирующего тока будет равна не среднему значению, а квадратному корню из суммы квадратов двух величин — постоянной составляющей (DC) и среднеквадратичного значения переменной составляющей (AC), которая присутствует в этом токе, обладает определённой мощностью и суммируется с мощностью постоянной составляющей.

Что означает AC и DC на панели мультиметра?

Вышеописанные определения, а так же термины AC и DC могут быть использованы в равной степени как для тока, так и для напряжения .

Отличие постоянного тока от переменного

По ассоциативным предпочтениям в технической литературе импульсный ток часто называют постоянным, так как он имеет одно постоянное направление. В таком случае необходимо уточнять, что имеется в виду постоянный ток с переменной составляющей.
А иногда его называют переменным, по той причине, что периодически меняет величину. Переменный ток с постоянной составляющей.
Обычно берут за основу составляющую, которая больше по величине или которая наиболее значима в контексте.

Следует помнить, что постоянный ток или напряжение характеризует, кроме направления, главный критерий — постоянная его величина, которая служит основой физических законов и является определяющей в расчётных формулах электрических цепей.
Постоянная составляющая DC, как среднее значение, является лишь одним из параметров переменного тока.

Для переменного тока (напряжения) в большинстве случаев бывает важен критерий — отсутствие постоянной составляющей, когда среднее значение равно нулю.
Это ток, который протекает в конденсаторах, силовых трансформаторах, линиях электропередач. Это напряжение на обмотках трансформаторов и в бытовой электрической сети.
В таких случаях постоянная составляющая может существовать только в виде потерь, вызванных нелинейным характером нагрузок.

Параметры постоянного тока и напряжения

Сразу следует отметить, что устаревший термин «сила тока» в современной отечественной технической литературе используется уже нечасто и признан некорректным. Электрический ток характеризует не сила, а скорость и интенсивность перемещения заряженных частиц. А именно, количество заряда, прошедшее за единицу времени через поперечное сечение проводника.
Основным параметром для постоянного тока является величина тока.

Единица измерения тока — Ампер.
Величина тока 1 Ампер — перемещение заряда 1 Кулон за 1 секунду.

Единица измерения напряжения — Вольт.
Величина напряжения 1 Вольт — разность потенциалов между двумя точками электрического поля, необходимая для совершения работы 1 Джоуль при прохождения заряда 1 Кулон.

Для выпрямителей и преобразователей часто бывает важными следующие параметры для постоянного напряжения или тока:

Размах пульсаций напряжения (тока) — величина, равная разности между максимальным и минимальным значениями.
Коэффициент пульсаций — величина, равная отношению действующего значения переменной составляющей AC напряжения или тока к его постоянной составляющей DC.

Похожие статьи: Параметры переменного тока.

Замечания и предложения принимаются и приветствуются!

Существует два типа ксеноновых ламп и блоков — это тип DC и тип АС. Главное их отличие друг от друга в том, что в первом случае питание ламп производится  постоянным током DC (с низкой амплитудой колебаний импульсов 40-60 Гц), в то время как в типе АС используется переменный ток.

     Как правило, блоки розжига типа DC имеют более низкую стоимость, т.к.

Обозначение переменного тока

имеют более упрощенную схему электроники — в схеме отсутствует инвертор (в некоторых случаях присутствует только его «фейк»). Чаще всего, срок «жизни» таких блоков весьма невелик, поэтому гарантийный срок достаточно мал. При использовании блоков с несоответствующим им типом ламп, приводит к значительному сокращению срока «жизни» блоков. Несоответствие блоков и ламп можно выявить визуально — при использовании блоков DC с лампами AC проявляется эффект «подрагивания света», которое происходит за счёт нестабильности электрической дуги в колбе. Если же использовать АС блоки с DC лампами, то такая связка вовсе не станет работать, т.к. лампа DC имеет полярность, а блок АС выдаёт переменный ток (без полярности). Ещё одно отличие — это звуковое сопровождение… AC балласт издаёт достаточно громкий характерный «писк» в начале розжига, который затихает по мере розжига лампы, в то время как DC балласт не издаёт ни единого звука, либо издаёт очень тихий однотонный писк на всём протяжении работы.

     Ксенон переменного тока AC имеет иной принцип работы нежели DC. За счет более сложной схемы блоков AC, достигается более высокая светоотдача ламп, но и цена, при этом, несколько выше. Сам АС блок имеет либо двухкомпонентное строение (slim — тонкие): основная часть в металлическом корпусе, а высоковольтная часть вынесена в отдельный пластиковый корпус; либо один корпус в котором располагается обе части схемы. Обычно, блоки типа AC имеют процент брака от 0.5 до 2, в то время как у блоков DC брак достигает 5 и более процентов.

     Соблюдайте правильную комплектацию ксенона: DC блоки + DC лампы, либоAC блоки + АС лампы.

П.С. Все блоки розжига и ксеноновые лампы марки LX (Legal Xenon) имеют тип AC !

Постоянный ток

Категория применения аппарата характеризуется одним или несколькими из следующих условий эксплуатации.

  • током(ми), выраженным(ми) в кратности к номинальному рабочему току;
  • напряжением(ями), выраженным(ми) в кратности к номинальному рабочему напряжению;
  • коэффициентом мощности или постоянной времени;
  • работоспособностью в условиях короткого замыкания;
  • селективностью;
  • прочими условиями эксплуатации в меру их необходимости.

Категории применения для пускателей и контакторов

ГОСТ 30011.4.1-96

Род токаКатегория примененияТипичные области применения
ПеременныйАС-1Неиндуктивные или слабоиндуктивные нагрузки, печи сопротивления
АС-2Двигатели с контактными кольцами: пуск, отключение
АС-3Двигатели с короткозамкнутым ротором: пуск, отключение без предварительной остановки1)
АС-4Двигатели с короткозамкнутым ротором: пуск, торможение противотоком, повторно-кратковременные включения
АС-5аКоммутирование разрядных электроламп
АС-5bКоммутирование ламп накаливания
АС-6аКоммутирование трансформаторов
АС-6bКоммутирование батарей конденсаторов
AС-7а3)Слабоиндуктивные нагрузки бытового и аналогичных назначений
АС-7b3)Двигательные нагрузки бытового назначения
АС-8аУправление герметичными двигателями компрессоров холодильников с ручным взводом расцепителей перегрузки2)
АС-8bУправление герметичными двигателями компрессоров холодильников с автоматическим взводом расцепителей перегрузки2)
ПостоянныйDC-1Неиндуктивные или слабоиндуктивные нагрузки, печи сопротивления
DC-3Шунтовые двигатели: пуск, торможение противотоком, повторно-кратковременные включения. Динамическое отключение двигателей постоянного тока
DC-5Сериесные двигатели: пуск, торможение противотоком, повторно-кратковременные включения. Динамическое отключение двигателей постоянного тока
DC-6Коммутирование ламп накаливания

1) Категория АС-3 может предусматривать случайные повторно-кратковременные включения или торможение противотоком ограниченной длительности, например при наладке механизма; в эти ограниченные периоды число срабатываний не должно превышать пяти в 1 мин или более 10 за 10 мин.
2) Герметичный двигатель компрессора холодильника представляет собой комбинацию компрессора и двигателя, заключенную в одну оболочку, без наружного вала или его уплотнения, причем двигатель работает в холодильнике.
3) Для АС-7а и АС-7b смотрите ГОСТ Р 51731.

Категории применения коммутационных элементов

ГОСТР 50030.5.1-2005

Род токаКатегория примененияТипичные области применения
ПеременныйАС-12Управление омическими и статическими нагрузками, отключаемыми с помощью фотоэлементов
АС-13Управление статическими нагрузками, отключаемыми с помощью трансформатора
АС-14Управление электромагнитами малой мощности (до 72Вт включительно)
АС-15Управление электромагнитами большой мощности (свыше 72 Вт)
ПостоянныйDC-12Управление омическими и статическими нагрузками, отключаемыми с помощью фотоэлементов
DC-13Управление электромагнитами
DC-14Управление электромагнитами, снабженными ограничительными резисторами

Категории применения для низковольтных коммутационных аппаратов

ГОСТ Р 50030.3-99

Род токаКатегория примененияТипичные области применения
ПеременныйAC-1Электроцепи сопротивления; неиндуктивная или малоиндуктивная нагрузка
AC-2Пуск и торможение противовключением электродвигателей с фазным ротором
AC-3Прямой пуск электродвигателей с короткозамкнутым ротором, отключение вращающихся двигателей
AC-4Пуск и торможение противовключением электродвигателей с короткозамкнутым ротором
AC-11Управление электромагнитами переменного тока
AC-20Коммутация электрических цепей без тока или с незначительным током
AC-21Коммутация активных нагрузок, включая умеренные перегрузки
AC-22Коммутация смешанных активных и индуктивных нагрузок, включая умеренные перегрузки
AC-23Коммутация нагрузок двигателей или других высокоиндуктивных нагрузок
Переменный и постоянныйAОтключение электрических цепей в условиях короткого замыкания при отсутствии специальной избирательности (селективности) по времени относительно последовательно соединенных нижестоящих на стороне нагрузки аппаратов
BОтключение электрических цепей в условиях короткого замыкания при наличии специальной избирательности (селективности) по времени относительно последовательно соединенных нижестоящих на стороне нагрузки аппаратов
ПостоянныйDC-1Электропечи сопротивления; неиндуктивная или малоиндуктивная нагрузка
DC-2Пуск электродвигателей с параллельным возбуждением и отключение вращающихся двигателей с параллельным возбуждением
DC-3Пуск электродвигателей с параллельным возбуждением, отключение неподвижных или медленно вращающихся электродвигателей, торможение противовключением
DC-4Пуск электродвигателей с последовательным возбуждением и отключение вращающихся электродвигателей с последовательным возбуждением
DC-5Пуск электродвигателей с последовательным возбуждением, отключение неподвижных или медленно вращающихся двигателей, торможение противовключением
DC-11Управление электромагнитами постоянного тока
DC-20Включение и отключение цепи без нагрузки или с незначительным током
DC-21Коммутация активных нагрузок, включая умеренные перегрузки
DC-22Коммутация смешанных активных и индуктивных нагрузок, включая умеренные перегрузки, например, двигателей с параллельным возбуждением
DC-23Коммутация высокоиндуктивных нагрузок, например, двигателей с последовательным возбуждением

Похожие статьи

shtyknozh.ru

Обозначение постоянного и переменного электрического тока

Рано или поздно каждый человек вынужден столкнуться с ситуацией, когда необходимо познакомиться с электричеством ближе, чем на уроках физики в школе. Отправным моментом для этого может стать как поломка электроприборов или розеток, так и просто искренний интерес к электронике со стороны человека. Один из основных вопросов, который необходимо рассмотреть: каким образом обозначены постоянный и переменный ток. Если вы знакомы с понятиями:электрический ток, напряжение и сила тока, вам будет проще понять, о чём идёт речь в этой статье.

Электрическое напряжение делят на два вида:

  1. постоянное (dc)
  2. переменное (ас)

Обозначение постоянного тока (—), у переменного тока обозначение (~). Аббревиатуры ac и dc устоявшиеся, и употребляются наравне с названиями «постоянный» и «переменный». Теперь рассмотрим в чём их отличие. Дело в том, что постоянное напряжение течёт только в одном направлении, из чего и вытекает его название. А переменное, как вы уже поняли, может менять своё направление. В частных случаях направление переменного может оставаться одним и тем же. Но, кроме направления, у него также может меняться и величина. В постоянном ни величина, ни направление, не изменяется. Мгновенным значением переменного тока называют его величину, которая берётся в данный момент времени.

В Европе и России принята частота в 50 Гц, то есть изменяет своё направление 50 раз в секунду, в то время, как в США, частота равна 60 Гц. Поэтому техника, приобретённая в Соединённых штатах и в других государствах, с отличающейся частотой может сгореть. Поэтому при выборе техники и электроприборов следует внимательно смотреть на то, чтобы частота была 50 Гц. Чем больше частота у тока, тем больше его сопротивление. Также можно заметить, что в розетках у нас дома течёт именно переменный.

Помимо этого, у переменного электрического тока существует деление ещё на два вида:

  • однофазный
  • трёхфазный

Для однофазного необходим проводник, который будет проводить напряжение, и обратный проводник. А если рассматривать генератор трёхфазного тока, у него, на всех трёх намотках вырабатывается переменное напряжение частотой в 50 Гц. Трёхфазная система — это не что иное, как три однофазных электрических цепи, сдвинутых по фазе относительно друг друга под углом в 120 градусов. Посредством его использования, можно одновременно обеспечивать энергией три независимые сети, пользуясь при этом только шестью проводами, которые нужны для всех проводников: прямых и обратных, чтобы проводить напряжение.

А если у вас, например, имеется только 4 провода, то и тут проблем не возникнет. Вам нужно будет только соединить обратные проводники. Объединив их, вы получите проводник, который называют нейтральным. Обычно его заземляют. А оставшиеся внешние проводники кратко обозначают как L1, L2 и L3.

Но существует и двухфазный, он представляет из себя комплекс двух однофазных токов, в которых также присутствуют прямой проводник для проведения напряжения и обратный, они сдвинуты по фазе относительно друг друга на 90 градусов.

Применение



Из-за того что постоянный течёт лишь в одну сторону, его использование обычно ограничивается носителями с небольшой энергоёмкостью, например, его можно встретить в обычных батарейках, аккумуляторах для электроприборов с маленьким энергопотреблением, такие как фонарики или телефоны и батареях, использующих солнечную энергию. Но постоянный источник необходим не только для зарядки небольших аккумуляторов, так постоянный ток большой мощности используется для работы электрифицированных железнодорожных путей, при электролизе алюминия или при дуговой электросварке, а также других промышленных процессов.

Для выработки постоянного тока такой силы используют специальные генераторы. Также его можно получить посредству преобразования переменного, для этого используется прибор, в котором применяют электронную лампу, его называют кенотронный выпрямитель, а сам процесс обозначается как выпрямление. Ещё для этого используется двухполупериодный выпрямитель. В нём, в отличие от простого лампового выпрямителя, находятся электронные лампы, которые имеют два анода — двуханодные кенотроны.

Если вы не знаете как определять то, с какого полюса течёт постоянный ток, запоминайте: он всегда течёт от знака «+» к знаку «-«. Первыми источниками постоянного тока были особые химические элементы, их называют гальванические. Уже позже люди изобрели аккумуляторы.

Переменный применяют почти везде, в быту, для работы домашних электроприборов подпитывающихся из домашней розетки, на заводах и фабриках, на стройплощадках и многих других местах. Электрификация железнодорожных путей также может быть и на dc напряжении. Так, напряжение идёт по контактному проводу, а рельсы являются обратным электрическим проводником. По такому принципу работает около половины всех железных дорог в нашей стране и странах СНГ. Но, помимо электровозов, работающих лишь на постоянном и только на переменном, существуют также электровозы, совмещающие в себе способность работы как на одном виде электричества, так и на другом.

Переменный ток используется и в медицине

Так, например,дарсонвализация — это метод воздействия электричеством при большом напряжении, на наружные покровы и слизистые оболочки организма. Посредством этого метода у пациентов улучшается кровоснабжение, улучшается тонус венозных сосудов и обменных процессов организма. Дарсонвализация может быть как местная, на определённом участке, так и общая. Но чаще используют местную терапию.

Таким образом, мы узнали, что есть два вида электрического тока: постоянный и переменный, по-другому их называют ac и dc, поэтому, если вы скажете одну из этих аббревиатур, вас точно поймут. Кроме того, обозначение постоянного и переменного тока в схемах выглядит как (—) и (~), что упрощает их узнавание. Теперь, при починке электроприборов, вы, без сомнений, скажете, что в них используется переменное напряжение, а если вас спросят какой ток находится в батарейках, вы ответите, что постоянный.

remontoni.guru

определение, в чём отличие AC от постоянного значения

Простой способ визуализировать различие между постоянным и переменным токами — построить графики зависимости их направления от времени. Первый будет выглядеть как прямая, а второй как волнообразная линия. Один цикл этой кривой и есть графическая основа того, как обозначается переменный ток на схемах и пиктограммах (~), а аббревиатура AC (Alternating Current) устоялась как общепризнанный термин в текстах.

Обозначения DC и AC

Все проводники имеют свободные электроны, способные перемещаться в присутствии разности потенциалов. Этот поток заряженных частиц в замкнутом контуре называется электрическим током. Если электрический заряд движется только в одном направлении, то это явление называется постоянным электрическим током, его обозначение «—» или DC (Direct Current).

Определение переменного тока можно вывести от обратного: это будет движение зарядов, меняющих своё направление на периодической основе. Колебания АС могут принимать самые разнообразные формы, например:

  • пилообразную;
  • квадратную;
  • треугольную;
  • синусоидальную.

Синусоидальный AC ток — это тот тип энергии, который транспортируется по современным электрическим сетям. Его огромное преимущество для энергосистем в том, что он позволяет достаточно просто изменять передаваемое напряжение с помощью трансформаторов, а такую форму волны легко генерировать. Эти качества позволяют экономить огромное количество денег и материальных ресурсов при производстве и передаче электроэнергии на значительные расстояния.

Проиллюстрировать выгоды от использования АС энергокомпаниями можно на следующем примере. Допустим, что в качестве генерирующей мощности есть электростанция, которая способна производить 1 млн ватт энергии.

Для наглядности удобно будет рассмотреть 2 способа её транспортировки:

  1. Передать по сетям 1 млн ампер с напряжением 1 вольт.
  2. Транспортировка тока силой в 1 ампер и напряжением 1 млн вольт.

Главное отличие заключается в следующем: во втором случае для передачи энергии потребуется проводник небольшой толщины, в то время как в первом — без кабеля с огромным сечением не обойтись. Поэтому энергетические компании преобразуют сгенерированную энергию в AC с очень высоким напряжением для транспортировки, а затем понижают в непосредственной близости от потребителей.

Ещё одним преимуществом AC для энергокомпаний является превосходство в надёжности и простоте генераторов переменного тока в сравнении с динамо. Кроме того, AC обладает такими преимуществами:

  • позволяет эксплуатировать сравнительно более эффективные, простые и надёжные электрические машины;
  • не разрушает коммутационные устройства.

Вся электроника и цифровая техника потребляет DC. Как правило, генерация постоянного тока производится с помощью электрохимических и гальванических элементов. Это сравнительно дорогие способы получения электричества, поэтому существует немало конструкций устройств, преобразующих AC в DC, основанных на предотвращении протекания тока в обратном направлении и выпрямлении синусоиды с помощью фильтров.

В комбинации с трансформаторами выпрямители позволяют получать из сети DC требуемых параметров и высокого качества.

Идеи Эдисона

Современную жизнь невозможно представить без электричества. Для того чтобы оно служило в гражданских и промышленных целях, его необходимо не только произвести, но и доставить потребителю. Первым, кто решил производить электроэнергию в большом объёме и транспортировать её на заводы, в офисы и домашние хозяйства, был американский предприниматель Томас Эдисон — один из самых влиятельных изобретателей мира.

Для реализации своей идеи он спроектировал и испытал паровые генераторы постоянного тока, счётчики электрической энергии и элементы распределительных сетей. Провести первую электрификацию освещения было в то время непросто. Владельцы газовых компаний рассматривали Эдисона как опасного конкурента, способного поставить существование их предприятий под угрозу. Но изобретателя ничто не могло остановить. Ни колоссальная стоимость прокладки кабелей в тротуарах, ни аварии во время испытаний не помешали ему в сентябре 1882 г. запустить первую осветительную сеть из пяти тысяч ламп.

Через 5 лет работало уже более 50 электростанций Эдисона. Несмотря на большой успех изобретателю не удалось расширить географию своих электрических сетей на весь мир. Жители районов, в которых находились электростанции, жаловались на дым и копоть, и добились закрытия производств Эдисона. Таким образом, первое поколение угольных электростанций со временем прекратило свою работу, уступив место тысячам новым, генерирующим AC.

Победа Теслы

Бо́льшая часть раннего распределяемого электричества была постоянным током, а стандартов для потребителей не существовало. Например, дуговые лампы нуждались в нескольких тысячах вольт, а лампы накаливания Эдисона требовали 110 В, трамваи Сименса работали от 500 В, а промышленные двигатели на предприятиях могли в разы отличаться по напряжению.

Электрические компании вынуждены были создавать и содержать одновременно несколько генерирующих линий для различного класса нагрузок. Можно сказать, что для повсеместного использования сетей DC было два серьёзных препятствия:

  • близость генераторов к нагрузкам;
  • сложности с обеспечением разнообразия напряжений.

Хорватский учёный Тесла, работавший с Эдисоном, считал, что использование переменного тока в электрических сетях может решить эти проблемы. Их разногласия относительно перспектив переменного напряжения закончились тем, что исследователь АС продолжил свои работы уже с конкурентом Эдисона — Джорджем Вестингаузом. Тесла не открыл переменный ток, но был изобретателем синхронного генератора и асинхронного двигателя, а также автором патентов, касающихся работы многофазных устройств.

Преимущества AC для генерации и транспортировки были очевидны, но Эдисон, вместо того, чтобы признать это, оставался твёрд в продвижении DC и пытался дискредитировать своих конкурентов. Он начал популяризировать идеи о том, что АС смертоносен для животных и людей. Например, Эдисон даже стал изобретателем электрического стула на переменном токе с целью получить основания для пропагандистской компании, посвящённой опасности АС.

Несмотря на то что антирекламная кампания прошла успешно и дала ощутимые плоды, радость победы для Эдисона была недолгой. В 1892 г. немецкий физик Поллак изобрёл механический выпрямитель, с помощью которого стало возможным заряжать электрические батареи, и существование транспортировки DC потеряло своё последнее оправдание. Уже в 1893 году Чикагская мировая ярмарка была освещена от сети АС, что стало началом триумфа переменного тока в XX веке, а конкурентные события между изобретателями вошли в историю как «война токов».

Ренессанс электрической войны

Рост использования источников возобновляемой энергии в XXI веке привёл к появлению децентрализованных электросетей небольшого масштаба с потреблением электричества практически на месте производства. Для таких энергосистем преимущества AC не имеют никакого значения, поэтому применение в них постоянного тока оправдано.

Современная высокопроизводительная электроника осуществила прогресс в преобразовании энергии и позволяет трансформировать постоянный ток в диапазонах напряжений до 800 тыс. вольт с большей эффективностью, чем в электрических машинах АС. Эти инновации стали основой для строительства высоковольтных линий постоянного тока (HVDC) для передачи избыточной солнечной или ветровой энергии из одних регионов в другие. Строительство HVDC обходится приблизительно вдвое дороже традиционных, но из-за низких потерь и экологичности всей системы подобные инвестиции оправданы.

Всё большее количество электроприборов требуют постоянного тока. Компьютеры, светодиодное освещение и другие электронные устройства нуждаются в преобразовании и выпрямлении сетевого электричества. В ближайшие годы ожидается рост количества электрических транспортных средств. Современные распределительные системы DC способны со временем исключить в быту преобразователи напряжения и легко интегрировать в бытовые и промышленные сети фотоэлектрические элементы и накопительные батареи.

Передача высоковольтного DC в настоящее время уже проверенная и отработанная технология в таких странах, как Германия и Китай. Но для практической повсеместной реализации остаётся ещё много нерешённых вопросов. Как обе технологии будут сосуществовать? Что будет эффективными мерами безопасности? Какие технические и юридические мероприятия потребуются для перехода на постоянный ток? Преимущества и масштабы подобных изменений настолько значительны, что, видимо, речь идёт о смене парадигмы.

220v.guru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *