Закрыть

Прогрузка автоматических выключателей методика – Прогрузка автоматических выключателей | Заметки электрика

Содержание

Прогрузка автоматических выключателей | Заметки электрика

Здравствуйте, уважаемые посетители сайта http://zametkielectrika.ru.

Сегодня я Вас познакомлю со статьей на тему прогрузка автоматических выключателей.

После выполнения электромонтажа производят ряд приемо-сдаточных испытаний и измерений, согласно нормативным техническим документам, типа ПУЭ и ПТЭЭП. Один из видов испытаний — это проверка работоспособности коммутационных аппаратов защиты на соответствие номинальным данным.

Аппараты защиты предназначены для защиты электрических цепей от коротких замыканий, соответственно, электромонтаж должен проводиться строго по проекту.

Что же такое номинальные данные аппаратов защиты?

Введение

Для автоматических выключателей основными данными (характеристиками) являются:

  • номинальный ток — допустимая величина тока для работы в нормальном режиме
  • ток срабатывания защиты — величина тока при коротком замыкании или перегрузки в электрической линии
  • время срабатывания защиты — уставка по времени при коротком замыкании или перегрузки

Своими словами можно сказать, что прогрузка автоматических выключателей — это измерение основных характеристик автоматического выключателя.

Измерение основных характеристик автоматических выключателей проводит персонал электролаборатории, прошедший специальную подготовку и имеющий высокую квалификацию.

А сейчас от теории перейдем к практики, и я Вам наглядно продемонстрирую как произвести прогрузку автоматического выключателя.

Устройство для прогрузки автоматических выключателей

Для прогрузки (проверки) автоматических выключателей первичным током применяют специальные прогрузочные устройства. В настоящее время имеется широкий выбор этих устройств для разных типов и номинальных токов.

В своей практики я применяю для прогрузки автоматических выключателей устройство со следующей схемой:

 В состав схемы устройства для прогрузки автоматических выключателей входит:

  • лабораторный автотрансформатор (ЛАТР)
  • ключ управления (КУ)
  • нагрузочный трансформатор (НТ)
  • амперметр с разными пределами измерения (шунт)
  • трансформатор тока (ТТ)
  • соединительные провода соединяют испытуемый автомат с выводами «регулируемый ток»

Также в состав устройства входит секундомер. Но я его на схеме не обозначил.

Данное устройство позволяет наводить во вторичной обмотке нагрузочного трансформатора ток до 50 (А). Для прогрузки автоматов с большим током, я применяю аналогичную схему, только с более мощным нагрузочным трансформатором и источником питания.

 

Методика прогрузки автоматических выключателей

Методику прогрузки автоматического выключателя я Вам покажу на примере автомата ВА47-29 с номинальным током 6 (А) и защитной характеристикой «С» российского производства IEK.

Этот автоматический выключатель имеет 2 защиты:

  • электромагнитную (мгновенную)
  • тепловую (с выдержкой времени)

Проверять будем и электромагнитную защиту, и тепловую. Для этого в паспорте на наш автоматический выключатель находим график время-токовой характеристики срабатывания.

Она выглядит следующим образом (более подробно о ней читайте в статье про время-токовые характеристики В, С и D — чем отличаются?):

Что же мы видим по графику?

А по графику мы видим абсолютно все характеристики срабатывания нашего испытуемого автомата. Ось Х — это кратность тока, т.е. отношение тока прогрузки к номинальному току. Ось У — это выдержка времени срабатывания автомата.

Зона срабатывания электромагнитной защиты для данного автоматического выключателя находится в диапазоне 5-10 кратности к номинальному току. Т.е. в нашем случае электромагнитная защита сработает при токе от 30-60 (А) за время не превышающее 0,01-0,02 (сек.).

Электромагнитную защиту будем проверять 8-кратным током 48 (А). При этом токе автомат должен отключиться за время не превышающее 0,01 (сек.) — смотрите желтую линию на графике.

Зона срабатывания тепловой защиты ограничена 2 кривыми, которые показывают разное температурное состояние автомата (горячее и холодное состояние).

Тепловую защиту будем проверять 3-кратным током 18 (А). При этом токе автомат должен отключиться за время от

3 — 80 (сек.) — смотрите красную линию на графике.

Если любая из вышеперечисленных защит не отключает автоматический выключатель согласно отведенному ей времени, то такой автоматический выключатель считается неисправным и к дальнейшей эксплуатации запрещен.

 

Пример

Для более удобного подключения к автоматическому выключателю устанавливаю на него удлиненные вывода из шпилек.

 Подключаем к шпилькам соединительные провода и проводим прогрузку.

 

Протокол прогрузки автоматических выключателей

После проведения прогрузки автоматического выключателя первичным током (срабатывание электромагнитной и тепловой защиты), все данные по наводимому току и полученной выдержке времени заносим в протокол следующей формы.

 

Периодичность прогрузки автоматов

Итак, мы подробно рассмотрели статью про прогрузку автоматических выключателей. А ни слова не упомянули о периодичности проверки. Строгих норм по прогрузке автоматов в ПУЭ и ПТЭЭП нет. Периодичность проверки автоматических выключателей определяется нормами заводов-изготовителей. На предприятиях периодичность определяет технический руководитель. Это может быть 1 раз в 3 года, и 1 раз в 6 лет и того реже, все зависит от важности потребителя.

Но я Вам рекомендую во избежании различных проблем,  проводить прогрузку автоматических выключателей 1 раз в 3 года.

Эта рекомендация относится к автоматическим выключателям, установленным, как на производстве, так и в быту. 

Рекомендую также прочитать статью о причинах отключения автоматических выключателей.

P.S. И на десерт я Вам приготовил видео-урок о прогрузке автоматического выключателя. 

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


zametkielectrika.ru

Теория и методика прогрузки автоматических выключателей

Заключительный этап электромонтажа требует, согласно нормативным техническим документам, проведения определенных испытаний и измерений, среди которых — испытание работоспособности коммутационных аппаратов защиты. Показания последних должны соответствовать номинальным данным.

Главное предназначение аппаратов защиты — не допустить возникновение в электрических цепях коротких замыканий. В связи с этим необходимо проводить электромонтаж строго по проекту.

Так что же представляют собой номинальные данные аппаратов защиты?

Основными характеристиками (данными) для автоматических выключателей являются следующие:

    1. Номинальный ток, то есть допустимая величина тока при условии работы сети в нормальном режиме.

    2. Ток срабатывания защиты. Это характеристика величины тока при коротком замыкании или перегрузке в электрической линии.

    3. Время срабатывания защиты. В этом случае речь идёт об уставке по времени при перегрузке или коротком замыкании.

Прогрузка автоматических выключателей подразумевает под собой измерение ключевых характеристик автоматических выключателей.

Обязанность по проведению измерений основных данных автоматических выключателей ложится на плечи персонала электролаборатории. Устройство для прогрузки автоматов различных типов позволяет применять их для проверки вольтамперных характеристик автоматических выключателей. Так, в соответствии с руководством ПУЭ п. 3.1.8 защита электрических сетей от коротких замыканий (КЗ) обеспечивает требования селективности и минимальное время отключения. В требованиях ПУЭ п. 1.7.79 и п. 7.3.139 представлены значения отношений минимального расчетного тока КЗ к Iноминальному току плавкой вставки или расцепителя, которые обеспечивают надежное отключение поврежденной электрической сети.

В системе TN максимальное время автоматического защитного отключения не должно быть больше 2 и 4 десятых секунд соответственно для 380 и 220В (ПЭУ п. 1.7.79 табл. 1.7.1).

Для автоматического отключения сети в электроустановках до 1000 Вольт с глухозаземлённой нейтралью, проводимость защитных нулевых проводников выбирается с учетом максимального короткого замыкания и должна быть такой, чтобы при возникновении аварийной ситуации возникал ток превышающий  в 4 раза Iноминального плавкой вставки и в 6 раз I расцепителя автоматического выключателя с обратнозависимой характеристикой (ПЭУ п. 7.3.139).

Автоматические выключатели с электромагнитным расцепителем (без временной выдержки), при защите сетей, используют кратность тока КЗ согласно требований ПЭУ п.1.7.79.

Для вновь смонтированных электроустановок или после их реконструкции используется методика прогрузки автоматов и испытаний на основании ПУЭ 1.8.37 п.п. 3.1, 3.2. Так, у выключателей с Iноминальным 400 Ампер и выше, проводится проверка сопротивления изоляции, которое должно быть не меньше 1Мом (ПУЭ 1.8.37 п. 3.1). Кроме того, проводится проверка действия расцепителя с мгновенным действием (электромагнитным расцепителем), и должно обеспечивать срабатывание выключателя при токе не более 1,1 номинального тока отключения, рекомендуемого  заводом-изготовителем.

Если электроустановка смонтирована в соответствии с главами 7.1 и 7.2 раздела 6 ПУЭ, тогда проверяют все секционные и вводные выключатели, автоматы цепей автоматического пожаротушения и пожарной сигнализации, автоматы аварийного освещения, а так же не менее 2% выключателей групповых и распределительных сетей. В других электроустановках проверка аналогичная, но не 1% выключателей. В случае обнаружения автоматических выключателей с не соответствием характеристик требованиям завода изготовителя, проводится проверка всех автоматов.

Для электроустановок находящихся в эксплуатации, периодичность прогрузки автоматов осуществляется каждые три года. Проверка действий расцепителей автоматов проводится согласно ПТЭЭП.

Как производится прогрузка автоматических выключателей?

Устройство прогрузки (проверки) автоматических выключателей

Для того, чтобы проверить первичным током автоматические выключатели, требуются специальные прогрузочные устройства. На сегодняшний день выбор таких устройств очень широк, легко найти подходящее для любого типа и номинального тока.

Это устройство с такой схемой:

 

 

Предложенная схема устройства для прогрузки автоматических выключателей состоит из:

    лабораторного автотрансформатора (ЛАТР)

    ключа управления (КУ)

    нагрузочного трансформатора (НТ)

    амперметра с различными пределами измерения (шунт)

    трансформатора тока (ТТ)

    соединительных проводов, которые соединяют испытуемый аппарат с выводами «регулируемый ток»

Обратите внимание: на схеме не обозначен секундомер, который тоже являются важной частью устройства.

Подобное устройство даёт возможность во вторичной обмотке нагрузочного трансформатора наводить требуемый ток.

 

Методика прогрузки (проверки) автоматических выключателей

Какова методика прогрузки автоматического выключателя? Рассмотрим её на примере автомата российского производства IEK ВА47-29 с номинальным током 6 (А) и защитной характеристикой «С».

 

Предложенный автоматический выключатель обладает двумя защитами:

    электромагнитной (мгновенной)

    тепловой (с выдержкой времени)

Необходимо проверить обе защиты: и тепловую, и электромагнитную. защиту. Для того, чтобы сделать это, нужно заглянуть в паспорт автоматического выключателя и найти там график времятоковых характеристик срабатывания.

 

 

 

 

 

Выглядит график следующим образом:

В этом графике отражен полный спектр характеристик срабатывания испытуемого нами аппарата. Ось Х демонстрирует кратность тока, другими словами, отношение к номинальному току тока прогрузки. Ось У отражает выдержку времени срабатывания автомата.

Для данного автоматического выключателя зона срабатывания электромагнитной защиты находится в диапазоне 5-10 кратности по отношению к номинальному току. Иначе говоря, в этом конкретном случае электромагнитная защита будет срабатывать за время не больше  0,01-0,02 секунды при токе в 30-60 (А).

Проверим электромагнитную защиту восьмикратным током 48 (А). При таких показателях тока автомат должен успеть отключиться за время, не превышающее 0,01 секунды: обратите внимание на желтую линию, изображенную на графике.

Зона срабатывания тепловой защиты ограничивается двумя кривыми. Эти кривые демонстрируют различное температурное состояние аппарата — горячее или холодное.

Для проверки тепловой защиты используем 3-кратный ток 18 (А). При заданных условиях, если всё в норме, автомат должен будет отключиться в интервал времени от 3 до 80 секунд, что показано на нашем графике красной линией.

Автоматический выключатель неисправен, при условии, что хотя бы одна из двух вышеназванных защит при проверке не отключит его в отведенные временные рамки. В таком случае автоматический выключатель нельзя допускать к дальнейшей эксплуатации.

 

Протокол прогрузки (проверки) автоматических выключателей

Все данные по выдержке времени и наводимому току, которые были получены по итогам проведения проверки автоматического выключателя первичным током, то есть проверки срабатывания электромагнитной и тепловой защиты, необходимо тщательно занести в протокол. Стандартная форма протокола выглядит следующим образом:

 

Периодичность прогрузки автоматических выключателей

Итак, нами была подробно рассмотрена прогрузка автоматических выключателей, однако мы ничего не сказали о том, как часто необходимо проводить такую проверку. Что касается периодичности проведения прогрузок автоматических выключателей, то её определяют нормы заводов-изготовителей.

 

Ссылка для скачивания:

Прогруз автоматических выключателей.pdf

 

http://cons-systems.ru/

 

cons-systems.ru

Методика проверки расцепителей автоматических выключателей ВА57-31

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

Принесли мне сегодня в электролабораторию два автоматических выключателя типа ВА57-31 с номинальным током 100 (А), чтобы проверить исправность их расцепителей.

У заказчика имеется подозрение, что данные автоматы «не держат» нагрузку и даже при токе около 100 (А) уже отключаются.

Одно из таких отключений повлекло за собой технологическую остановку, что привело к большим проблемам. Сами знаете, технологический процесс — это святое.

На основании проверки необходимо сделать заключение об исправности расцепителей автоматов и оформить официальный протокол для дальнейшего разбора полетов, но это уже другая история.

Несколько слов об автоматических выключателях ВА57-31.

Автоматы ВА57-31 применяются в цепях переменного тока промышленной частоты напряжением до 690 (В) для защиты при возникающих перегрузках и коротких замыканиях, а также для проведения тока в нормальном режиме. С помощью автоматов допускается коммутировать (включать и отключать) нагрузку до 30 раз за сутки.

Расшифруем обозначение испытуемых автоматов ВА57-31-340010:

  • ВА57-31 — тип автоматического выключателя
  • 3 — трехполюсный с тремя расцепителями максимального тока
  • 4 — наличие расцепителей токов короткого замыкания и токов перегрузки
  • 00 — без дополнительных контактов
  • 1 — ручное включение, способ установки — стационарный
  • 0 — отсутствуют данные для дополнительных контактов

Чуть ниже шифра идет обозначение:

Затем указаны:

  • 100 (А) — номинальный ток расцепителей
  • 690 (V), 50 (Hz) — номинальное рабочее напряжение переменного тока
  • 1200 (А) — уставка расцепителя токов короткого замыкания
  • Ics и Icu — рабочая и максимальная отключающие способности

Да, к слову вспомнил про постоянные споры среди электриков о том, с какой стороны необходимо подводить питание на автомат. Свое мнение с обоснованными доказательствами я высказал здесь, а почитав паспорт на автомат ВА57-31, еще раз убедился в этом. Дело вот в чем. Производитель четко заявляет о том, что если питание будет подключено на подвижные контакты автомата (нижние выводы 2, 4 и 6), то его рабочая и максимальная отключающие способности уменьшатся на 50%. Так что учтите данный факт.

Сразу же внесу ясность в терминологию расцепителей.

Существует два типа расцепителей (ГОСТ Р 50030.2-2010, п.4.7.1):

  1. независимый расцепитель
  2. максимальный расцепитель тока

С помощью независимого расцепителя можно дистанционно отключать автоматический выключатель. В корпусе автомата установлено реле напряжения. При подаче напряжения на катушку реле оно срабатывает и, воздействуя своим сердечником на планку отключения, отключает автомат. Напряжение на катушку должно быть приложено кратковременно, иначе она может выйти из строя (сгореть). Кратковременность осуществляется, например, путем разрыва цепи питания катушки через нормально-открытый блок-контакт автомата (этот вариант показан на схеме ниже). Еще вариант, это взять питание для реле с нижних выводов силовой цепи автомата. В таком случае, при отключении автомата с катушки расцепителя одновременно будет снято и напряжение питания.

Напряжение питания независимого расцепителя у разных типов автоматов может находиться в пределах от 12 до 400 (В), как переменного, так и постоянного тока (см. паспорт).

Вот принципиальная электрическая схема автомата ВА57-31 с независимым расцепителем.

У испытуемых автоматов независимый расцепитель отсутствует.

Максимальный расцепитель тока делится на:

  • расцепитель мгновенного действия
  • расцепитель с независимой выдержкой времени
  • расцепитель с обратнозависимой выдержкой времени (зависимой или независимой от предварительной нагрузки)

Максимальные расцепители тока, предназначенные для защиты от токов короткого замыкания, в нормативных документах называют расцепителями токов короткого замыкания или электромагнитными расцепителями. Лично я (да и не только я) привык называть их электромагнитными, поэтому в статье чаще всего будет встречаться именно такой термин. Защиту с помощью электромагнитных расцепителей называют электромагнитной защитой автомата или «отсечкой».

Максимальные расцепители тока, предназначенные для защиты от перегрузок в нормативных документах называют расцепителями токов перегрузки или тепловыми расцепителями, которые могу иметь, как независимую, так и обратнозависимую выдержку времени. Такие расцепители я привык называть тепловыми, поэтому в статье чаще всего буду применять именно такой термин. Защиту с помощью тепловых расцепителей называют тепловой защитой автомата или защитой от перегруза.

Итак, с определениями расцепителей разобрались. Теперь перейдем к их проверке.

Методика проверки действия расцепителей автоматических выключателей ВА57-31

Перед началом работ по проверке расцепителей необходимо произвести внешний осмотр автоматического выключателя на наличие сколов, трещин и прочих повреждений корпуса, а затем проверить сопротивление изоляции токоведущих частей.

Требование по измерению сопротивления изоляции (ПУЭ, п.1.8.37.3) относится к автоматам с номинальными токами свыше 400 (А), но я никогда не пренебрегаю им.

В других своих статьях я уже рассказывал, что в нашей электротехнической лаборатории имеются в наличии несколько типов мегаомметров с разными номиналами по напряжению:

  • М4100/5 напряжением 2500 (В)
  • ЭСО202/2 напряжением от 500-2500 (В)
  • Ф4102/1-1М напряжением от 500-2500 (В)
  • MIC-2500 напряжением от 50-2500 (В)

Для нашего случая необходим мегаомметр с напряжением от 1000-2500 (В). Лично мне по душе, либо M4100/5, либо MIC-2500.

Автомат должен быть закреплен на заземленное металлическое основание (панель, плита). Измерение сопротивления изоляции производится при отключенном автомате между полюсами и между каждым полюсом и «землей».

Согласно ПУЭ (п.1.8.37.3), сопротивление изоляции должно быть не менее 1 (МОм), а согласно ПТЭЭП (Приложение 3.1, таблица 37) — не менее 0,5 (МОм).

Проверку действия расцепителей автоматических выключателей раньше мы проводили с помощью самодельного испытательного стенда. Об этом я упоминал в статье про прогрузку автоматического выключателя ВА47-29.

Вот упрощенная схема нашего испытательного стенда и его внешний вид.

На этом стенде мы можем поднимать ток до 50 (А), т.е. прогружать автоматические выключатели с небольшим номинальным током.

Если необходимо было навести ток побольше, то мы собирали приведенную выше схему, только с более мощным нагрузочным трансформатором (нагрузочником).

С помощью этого «нагрузочника» мы могли поднимать ток до 1200 (А).

Но в настоящее время для прогрузки автоматических выключателей (и не только) мы активно используем испытательный прибор РЕТОМ-21.

Через его встроенный нагрузочный трансформатор можно поднимать ток до 200 (А) в течение длительного времени, 300 (А) в течение 1 минуты, 500 (А) в течение 5 секунд и даже 700 (А) в течение 0,5 секунд.

Если необходим ток побольше, то к РЕТОМу подключается нагрузочный трансформатор РЕТ-3000, который позволяет увеличить ток аж до 3500 (А).

А вот весь приобретенный нами комплект: испытательный прибор РЕТОМ-21, измерительно-трансформаторый блок РЕТ-ВАХ-2000, нагрузочный трансформатор РЕТ-3000 и измерительный токовый преобразователь РЕТ-ДТ.

О приборе РЕТОМ-21 я еще напишу отдельный пост, где поделюсь своими впечатлениями о нем.

Как мы уже знаем из расшифровки, автомат ВА57-31 имеет электромагнитный и тепловой расцепители. Вот их время-токовая характеристика с холодного состояния при контрольной температуре 30°С и одновременной нагрузке всех полюсов. Цифрой 1 обозначена граница работы теплового расцепителя. Но мы к ней еще вернемся.

Автоматы ВА57-31 относятся к оборудованию промышленного назначения, поэтому проверка их расцепителей осуществляется, согласно требований ГОСТа Р 50030.2-2010 (МЭК 60947-2:2006).

Проверка электромагнитного расцепителя (расцепителя тока короткого замыкания)

Срабатывание электромагнитного расцепителя автоматического выключателя проверяют путем прогрузки его током, равным 80% и 120% от его тока уставки (ГОСТ Р 50030.2-2010, п.8.3.3.1.2).

Уставка электромагнитного расцепителя для рассматриваемого в данной статье автомата ВА57-31 составляет 1200 (А). Таким образом получается, что электромагнитный расцепитель:

  • при испытательном токе 960 (А) должен сработать за время более 0,2 (сек.)
  • при испытательном токе 1440 (А) должен сработать за время не более 0,2 (сек.)

Прогрузка током осуществляется по любым двум полюсам автомата, соединенных последовательно. В процессе испытаний полюса комбинируют.

Но лично я так не делаю и проверяю каждый полюс по отдельности. Таким образом я буду на 100% уверен в работоспособности именно того полюса автомата, который был прогружен. А при прогрузке сразу двух полюсов есть вероятность, что какой-нибудь один из полюсов не сработает и останется не проверенным, или вовсе неисправным.

Кстати, полюса у автоматов с электронными (полупроводниковыми) расцепителями необходимо проверять по отдельности (ГОСТ Р 50030.2-2010, п.8.3.3.1.2).

Собираем схему для проверки электромагнитного расцепителя.

Подключаем к источнику 3 (разъем U6) первичную обмотку нагрузочного трансформатора РЕТ-3000.

Затем по таблице Е.1 (из руководства по эксплуатации РЕТОМ-21) определяем необходимое количество витков и число параллельных кабелей вторичной обмотки. В качестве вторичной обмотки используются силовые кабели (8 перемычек) из комплекта к РЕТ-3000.

Для нашего примера нам нужно намотать на тороидальный нагрузочный трансформатор два витка вторичной обмотки, использовав 4 кабеля в параллель. Выглядеть это будет примерно так.

Свободные концы силовых кабелей с помощью струбцин необходимо подключить к полюсам автомата через промежуточные шинки.

Таким образом мы можем поднять ток до 2000 (А) на время не более 25 (сек.), что нам будет вполне достаточно.

Срабатывание автомата будем фиксировать по обрыву тока в цепи. Обрыв можно контролировать:

  • отсутствием тока в силовой цепи источника питания
  • с помощью секундомера и свободного полюса автомата
  • с помощью токового преобразователя РЕТ-ДТ

Для нашего случая я использую третий способ, т.е. с помощью токового преобразователя РЕТ-ДТ.

Теперь обхватываем четыре параллельных кабеля с помощью синего измерительного кольца (его еще называют поясом Роговского или катушкой Роговского с воздушным сердечником). Для этого у него имеется специальный фиксирующийся замок.

С помощью измерительного кольца будет происходить измерение тока в силовой цепи. Измерительное кольцо соединено с интегратором, который преобразует измеренный ток в низковольтное напряжение 3 (В).

На интеграторе устанавливаем переключатель на диапазон измерений «3кА (1В/кА)» и включаем его. Выходной кабель с интегратора подключаем к РЕТОМу-21 (канал PV1).

Теперь включаем автомат, затем РЕТОМ-21 и начинаем проверять электромагнитный расцепитель.

Здесь вдаваться в подробности работы с РЕТОМ-21 я не буду. Скажу лишь то, что повышать значение тока необходимо короткими импульсами, чтобы не вызвать срабатывание теплового расцепителя. Длительность импульса должна быть на 20-50% больше, чем время срабатывания электромагнитного расцепителя.

После отключения автомата его ручка будет находиться в промежуточном положении. Чтобы снова включить автомат, необходимо сначала сделать движение рукоятки вниз (в сторону «О»), а потом снова взвести ее.

Затем электромагнитный расцепитель каждого полюса необходимо дополнительно проверить током, указанным в паспорте на конкретный тип автомата. Открываем паспорт и смотрим, что для ВА57-31 этот ток составляет 1,3 от тока уставки электромагнитного расцепителя, а значит нам необходимо прогрузить каждый полюс в отдельности током 1560 (А) и он должен отключится за время не более 0,2 сек.

Электромагнитные расцепители у испытуемых автоматов в этот раз я не проверял, т.к. изначальной задачей была проверка только лишь тепловых расцепителей. Так уж мы договорились с заказчиком, да и времени, как всегда, было мало — очень срочный заказ.

Проверка теплового расцепителя (расцепителя токов перегрузки)

Проверку теплового расцепителя автоматического выключателя необходимо проводить при контрольной температуре, которая равна 30°С, иначе в значение номинального тока придется вводить поправочный коэффициент, согласно приведенного ниже графика.

Во время испытаний температура в помещении электролаборатории была около 25-26°С, а значит номинальный ток теплового расцепителя необходимо умножить на коэффициент (примерно К=1,03), т.е. номинальный ток теплового расцепителя с учетом температуры в помещении нужно принимать, как 103 (А).

Разница между значениями не существенная, поэтому принимаю номинальный ток теплового расцепителя за 100 (А). Если в процессе испытаний возникнут сомнения по измеренным значениям, то перепроверю автомат уже с учетом поправочного коэффициента.

Тепловой расцепитель автоматического выключателя ВА57-31 имеет обратнозависимую выдержку времени и проверяется согласно ГОСТ Р 50030.2-2010 (п.8.3.3.1.3.b и п.7.2.1.2.4.b).

Сначала тепловой расцепитель проверяют при токе 1,05-кратным от его тока уставки.  Это значит, что при токе 105 (А) автомат должен отключиться за время не ранее, чем 2 часа. Если у Вас номинальный ток автомата меньше или равен 63 (А), то не ранее, чем через час.

Прогружают одновременно три последовательно-подключенных полюса автомата.

По сути, 1,05 от номинального тока — это и есть условный ток не расцепления.

Затем ток быстро поднимают до 1,3-кратного значения тока уставки. Автомат должен отключиться не позднее, чем через 2 часа. Здесь аналогично, если у Вас номинальный ток автомата меньше или равен 63 (А), то не позднее, чем через час.

Как видите, такие испытания занимают массу времени (как минимум 3-4 часа на один автомат).

Поэтому первые две проверки теплового расцепителя по условным токам нерасцепления и расцепления, мы опускаем, а переходим непосредственно к дополнительной проверке, предусмотренной производителем.

Каждый полюс автомата необходимо прогрузить током, указанным в паспорте завода-изготовителя. В паспорте на ВА57-31 указано, что прогрузка автомата осуществляется 2-кратным током для каждого полюса по отдельности. При этом автомат должен сработать за время от 30 до 500 (сек.).

Таким образом получается, что при токе 200 (А) автомат должен отключиться за время от 30 до 500 сек.

Итак, собираем схему для проверки теплового расцепителя.

Схема аналогичная предыдущей, только без внешнего нагрузочного трансформатора РЕТ-3000. Для проверки тепловых расцепителей мне будет достаточно встроенного источника тока (про характеристики внутреннего нагрузочного трансформатора я говорил выше по тексту) и кабеля меньшего сечения из стандартного комплекта РЕТОМ-21.

Подключаем одни концы кабеля к источнику 3 (выход I5 переменного тока), а другие — к первому полюсу (1-2) автоматического выключателя.

Срабатывание автомата, как и в предыдущей схеме, будем фиксировать по обрыву тока в цепи с помощью измерительного преобразователя РЕТ-ДТ. Обхватываем жилу силового кабеля с помощью измерительного кольца и защелкиваем замок.

Выставляем на интеграторе переключатель в диапазон измерений «300А (10мВ/А)» и включаем его.

Выходной кабель с интегратора подключаем к РЕТОМу-21 (канал PV1).

Готово. Можно приступать к измерениям.

Наводим ток 200 (А) и отсчитываем время отключения автомата.

Автомат отключился за время 191,9 (сек.).

Измеренные значения по всем полюсам:

  • полюс (1-2) — 191,9 (сек.)
  • полюс (3-4) — 188,1 (сек.)
  • полюс (5-6) — 151,3 (сек.)

Пределы работы теплового расцепителя ВА57-31 соответствуют заводским данным, ПУЭ (п.1.8.37.3.2), ПТЭЭП (п.28.6) и требованиям ГОСТ Р 50030.2-2010 (п.8.3.3.1.3).

По результатам измерений оформляем протокол утвержденной формы.

Для наглядности процесс проверки теплового расцепителя по одному полюсу я снял на видео (к сожалению, на остальные полюса не хватило заряда аккумулятора, так что как-нибудь в другой раз):

P.S. Вот таким образом проводятся проверки действия расцепителей автоматических выключателей промышленного назначения. Автоматы бытового назначения проверяются несколько иначе. Об этом я расскажу Вам в ближайшее время. Спасибо за внимание.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


zametkielectrika.ru

Методика проверка и испытание автоматических выключателей — Методики испытаний / Документы — Электротехническая лаборатория, г.Ханты-Мансийск

Общие положения.

Данная методика предназначена для производства измерений времени срабатывания аппаратов защиты с тепловыми, электро­магнитными и полупроводниковымирасцепителями с целью проверки выполнения требова­ний пункта 413 ГОСТ Р50571.3-94, обеспечивающего безопасность косвенного прикосновения к нетоковедущим
металлическим частям оборудования в момент замыкания фазного проводника.

Время отключения для распределительных цепей не должно превышать 5 с, если сопротивление защитного заземления меньше:

(50/U0)*Z0

где Uo — номинальное фазное напряжение, Zo — сопротивление цепи фаза-нуль, т.е. достаточно мало, чтобы обеспечить безопасное напряжение прикосновения на металлических час­тях оборудования, и 0,4 с для цепей, питающих передвижное и пере­носное оборудование и для распределительных цепей, в которых не выполняется вышеуказанное условие для сопротивления защитного заземления.

Объектом измерений являются автоматические выключатели, которые служат для защиты распределительных сетей переменного тока и электроприемников в аварийных случаях при повреждении изоляции. Для осуществления защитных функций автоматические выключатели имеют максимальные расцепители от токов перегрузки и токов короткого замыкания. При прохождении через автоматический выключатель токов больше номинальных не менее 20%, последний должен отключаться. Защита от перегрузки осуществляется тепловыми или электронными устройствами. Защита от токов короткого замыкания осуществляется электромагнитными или электронными расцепителями.

Измеряемой величиной является время отключения АВ при заданной величине тока, превышающей номинальное значение тока АВ.

2.
Объем и нормы испытаний

Согласно ПУЭ 7 изд. п.1.8.37, ПТЭЭП 2003 г.( приложение 1 §26) и Правил технического обслуживания устройств РЗ и А эл. сетей 0.4 — 35 кВ (РД 34.35.613-89 §58 ) Электрические аппараты до 1 кВ испытываются при вводе в эксплуатацию, а также в процессе ее в следующем объеме:

2.1. Измерение сопротивления изоляции

Сопротивление изоляции аппаратов должно соответствовать величинам, указанным в табл. 1.8.37 ПУЭ и табл.37 ПТЭЭП, но не менее 0,5 МОм. Периодичность проверки при вводе в эксплуатацию и в процессе ее не реже1 раза в 6 лет.

2.2. Испытательное напряжение для автоматических выключателей, магнитных пускателей и контакторов — 1кВ. Продолжительность приложения нормированного испытательного напряжения — 1мин.

Испытательное напряжение 1000 В промышленной частоты может быть заменено измерением одноминутного значения сопротивления изоляции мегаомметром на напряжение 2500В. В этом случае измерение сопротивления изоляции мегаомметром на 500 — 1000 В по п.1.1 можно не проводить (см. п.п.28.3, приложения 3 ПТЭЭП; п.1.8.37 ПУЭ).

2.3. Проверка действия максимальных, минимальных или независимых расцепителей автоматических выключателей (АВ).

Проверка действия (работоспособности) максимальных (тепловых, электромагнитных и комбинированных) расцепителей АВ, тепловых расцепителей магнитных пускателей (ПМ) производится первичным током от постороннего источника тока как при вводе электроустановок (или отдельного аппарата АВ или ПМ) в эксплуатацию, так и в процессе их эксплуатации в сроки, определяемые графиком ППР электрооборудования предприятия.

Плавкие вставки предохранителей должны проверяться в те же сроки, что и другие защитные аппараты. При этом проверяется их соответствие номинальным параметрам защищаемого оборудования, отсутствие трещин на корпусах предохранителей, наличие заполнителя.

2.4. Проверка работы автоматических выключателей и контакторов при пониженном и номинальном напряжениях оперативного тока.

Значения напряжения и количества операций при испытании автоматических выключателей и контакторов многократными включениями и отключениями

приведены в табл. 18.40 ПУЭ.

При профилактических испытаниях указанная проверка производится не реже 1 раза в 12 лет (п. 28.8 приложение 2 ПТЭЭП), кроме случаев, оговоренных выше, для взрывоопасных зон.

3. Условия испытаний.

При проведении испытаний соблюдают следующие условия:

Выключатель устанавливают вертикально.

Выключатели, предназначенные для установки в отдельной оболочке, испытывают в наименьшей оболочке, предписанной изготовителем.

Испытания проводят при частоте (50 ±5) Гц.

Во время испытаний не допускается обслуживание или разборка АВ.

Испытания проводят при искусственном или естественном освещении, при температуре 20-25 0С и относительной влажности воздуха до 80%(при 25 0С), и защищают от чрезмерного наружного нагрева или охлаждения.

4.
Метод испытаний.

Испытания автоматических выключателей производятся в соответствии с требованиями ГОСТ Р 50345-92 (п. 8) путем проверки время — токовых характеристик. Стандартные диапазоны токов мгновенного расцепления в соответствии с ГОСТ Р 50345-92 п.4.3.5 указаны в таблице 1.

Диапазоны токов мгновенного расцепления. Таблица 1.

Тип

Диапазон

В

3 In-5 In

С

5 In-10 In

D

10 In-50 In

Времятоковая характеристика (характеристика расцепления) АВ проверяется в соответствии с требованиями ГОСТ Р 50345-99 п.8.6.1 таблица 6.

5. Требования безопасности

5.1. При проверке срабатывания расцепителей АВ работа оформляется распоряжением (заданием) или нарядом.

5.2. Перед работой должны быть оформлены организационные и выполнены технические мероприятия, согласно требований раздела 3 ПОТ РМ-016-2001.

5.3. Измерение производится звеном из двух специалистов с квалификационной группой не ниже 111 и 1У. Работы выполняются в последовательности, определенной данной методикой. Подключать приборы к объекту измерений необходимо посредством соединительных проводов, поставляемых в комплекте с прибором. Запрещается выполнять работы в дождь и при повышенной влажности.

6. Требования к квалификации операторов

6.1. К выполнению проверки срабатывания расцепителей АВ допускаются лица электротехнического персонала, не моложе 18 лет, прошедшие проверку знаний ПОТ РМ-016-2001 и ПЭЭП, имеющих электротехническое среднее или высшее образование и практический опыт работы с приборами, знающие настоящую методику, обеспеченные спецодеждой, инструментом, индивидуальными защитными средствами.

7. Подготовка к выполнению измерений.

При подготовке к выполнению испытаний проводят следующие работы:

7.1 Перед выполнением испытаний необходимо проверить:

— соответствие типов и параметров АВ проекту или паспорту на электроустановку;

— соответствие токов уставки АВ проекту;

— проверить правильность монтажа АВ (в соответствии с требованием паспорта на АВ),

— проверить отсутствие видимых повреждений АВ,

— проверить соблюдение полярности подключения АВ,

— проверить надежность затяжки контактных зажимов АВ.

7.2 Снять напряжение со всех частей проверяемого АВ и принять меры, препятствующие подаче напряжения на место работы, вследствие ошибочного или самопроизвольного включения коммутационной аппаратуры. Проверить отсутствие напряжения на токоведущих частях. Оставшиеся под напряжением токоведущие части должны быть ограждены, на ограждениях вывешены предупреждающие и предписывающие плакаты.

7.3 Собрать схему нагрузочного устройства, по схеме, приведенной на рис 1.

7.4 Отсоединить внешние проводники от выводов АВ.

8. Устройство прибора.

Структурная схема прибора представлена на рисунке 1.

УПТР состоит из регулировочного (БР) и нагрузочного (БН) блоков. Блок

регулировочный БР содержит автоматический выключатель включения сети ВК, схему

синхронизации СС, автотрансформаторный регулятор напряжения РН и схему измерения

СИ. Блок нагрузочный БН содержит нагрузочный трансформатор ТН и измерительный

трансформатор тока ТТ.

При работе блоки БР и БН соединяются двумя кабелями. Вход ТН через Х2

соединен с выходом РН, выход ТТ через Х1 соединен с входом СИ, проверяемый

расцепитель Р от 25А и выше подключается к шинам Ш1 и Ш2 нагрузочного блока, а

расцепитель Р до 25А подключается к клеммам Кл1 и Кл2.

Выходные параметры УПТР устанавливаются соответствующими переключателями.

Конструктивно блоки БР и БН выполнены в прочных стальных корпусах с ручками

для переноски, предназначенных для размещения при работе на горизонтальных

поверхностях.

Данные в скобках для УПТР-2, 3

Рис. 1. Структурная схема УПТР

9. Порядок работы с УПТР

Краткие замечания

После транспортировки в зимних условиях перед очередным включением необходимо

дать прогреться изделию до комнатной температуры в течение 2-х часов.

Во избежание дополнительных погрешностей измерений при работе следует использовать

только гибкие соединители, поставляемые изготовителем.

Перед началом работы убедитесь в отсутствии механических повреждений изоляции. Все

органы управления и индикации размещены в блоке БР, вид лицевой панели которого

представлен на рис. 2.

В целях уменьшения погрешностей измерений запрещается использовать в совместной

работе блоки БР и БН разных номеров.

Все кабельные соединения расположены на правой стенке прибора.

Предохранитель ПР1 на ток 0,5А установлен в цепи трансформаторов питания схем СС и

СИ. Предохранитель ПР2 на ток 5А установлен в цепи гнёзд ГН1-2 и ГН3-4.

Примечания:

Для получения больших токов необходимо нагрузочный блок располагать в

непосредственной близости от испытуемого автомата, используя при этом комплект

гибких соединителей, подключив их попарно.

Рис. 2. Вид лицевой панели блока БР с органами управления и индикации. УПТР-1МЦ

10. Последовательность выполнения измерений.

10.1. Проверка токовых отсечек.

10.1.1. Переключатель предела измерений прибора УПТР ≪Ток срабатывания≫ устанавливается в соответствии с ожидаемым током.

10.1.2. Кнопкой ≪Автоматический≫, со временем длительности пуска равным 200mс, подают ток на испытуемый автомат, после каждого нажатия на кнопку постепенно увеличивая ток переключателями ≪Грубо≫ и ≪Точно≫, приближаясь к ожидаемой уставке. С увеличением номера положения на переключателе — ток выхода увеличивается. Сначала увеличивают ток переключателем грубой регулировки, потом — точной регулировки, до тех пор, пока испытуемый автомат отключится. При этом измеритель тока зафиксирует действующее значение величины тока срабатывания отсечки

10.1.3. Для окончательной оценки тока отсечки и времени срабатывания выключателя, следует сбросить показания приборов отсчёта времени и тока, для чего, спустя 2-3 сек. после последнего измерения нажать на кнопку ≪Сброс≫, после чего снова включить испытуемый автомат подать на него ток, нажав на кнопку ≪ Автоматический ≫.

10.1.4. Примечания:

10.1.4.1. Для получения больших токов необходимо нагрузочный блок располагать в непосредственной близости от испытуемого автомата, используя при этом комплект гибких соединителей, подключив их попарно.

10.1.4.2. Если нагрузочный трансформатор не обеспечивает максимального тока короткого замыкания (см. таблицу 1), то следует проверить сопротивление петли фаза-ноль (фаза-фаза), которое должно быть не более 0,3 Ома, либо ревизовать испытуемый автомат.

10.1.4.3. При больших кратностях тока, подаваемого на автомат, время действия последнего мало и может составлять доли периода (или полупериода ) частоты 50Гц.

10.1.4.4. Момент подачи тока, а также его синхронизация с сетью, осуществляется как в режиме автоматического пуска, так и в режиме ручного пуска.

10.1.4.5. Следует обращать внимание на правильность установки переключателя предела измерений измерителей тока и времени.

10.1.4.6. Поскольку ГОСТ регламентирует для различных выключателей различное время их минимального отключения, следует устанавливать переключатель длительности автоматического пуска в соответствии с требованиями ГОСТа, т.е. 200 или 500 мсек.

10.1.4.7. Соединители длиной по 1,5 м. используются для проверки малоамперных (до 32А) автоматов, расположенных на некоторой высоте от пола.

10.1.4.8. Шнур питания УПТР-1МЦ оканчивается ≪евро≫ вилкой с контактом заземления, обеспечивающим безопасность работы на УПТР.

10.1.4.11. Место подключения УПТР к питающей сети должно удовлетворять следующим условиям:

1. Ответная часть сетевого разъёма (розетка) должна обеспечивать контакт соединения вилки шнура УПТР с ≪землёй≫, либо с защитным проводником

2. Провода, подводящие к розетке, сама розетка должны выдерживать мощность, потребляемую УПТР из сети

3. Электрическая сеть в месте подключения должна обеспечивать получение максимальных токов, потребляемых УПТР (см. п10.1.4.2)

8.2.4.12. Подгонку тока по п.10.1.2 выполнять только при времени автоматического пуска — 200 мс.

10.1.4.13. Для проверки времени действия автоматических выключателей с замедлением более 200 мс, при выполнении п.10.13. перейти на время автоматического пуска, равное 500 мс

10.2. Проверка тепловых расцепителей

10.2.1. Выполнить подготовительные мероприятия.

10.2.2. Переключатель предела измерений установить на предел, соответствующий ожидаемому току.

10.2.3. Первоначально ток на автомат подается нажатием на кнопку ≪Автоматический пуск≫ при времени 200 мсек. Переключателями ≪Грубо≫ и ≪Точно≫ устанавливают необходимую величину тока, которая должна быть достаточна для действия теплового расцепителя автомата за определенное время, согласно характеристике теплового расцепителя данного автомата. Затем, когда величина тока установлена, не меняя положение переключателей ≪Грубо≫ и ≪Точно≫, подают ток на автомат, нажав кнопку ≪Ручной пуск≫.

10.2.4. Когда сработает тепловой расцепитель схема пуска отключится автоматически и УПТР зафиксирует показания тока и время срабатывания автомата.

10.2.5. Отключение подачи тока при необходимости может выполнить оператор, нажатием кнопки ≪СТОП≫.

10.2.6. При ощутимом нагреве БН, следует делать перерывы в работе на 5-10 минут.__

11. Техническое обслуживание

Обслуживание изделия во время эксплуатации сводится к очистке поверхности сухой

тканью и проверке отсутствия механических повреждений, могущих повлиять на работу УПТР или безопасность работы с ним.

12.Определение погрешности измерения

По техническим условиям расцепители автоматических выключателей имеют разброс параметров по срабатыванию: + 10% тепловых расцепителей; + 15% электромагнитных расцепителей. Исходя из этого, погрешность измерений при испытаниях, которая составляет 5%, не учитывается.

13. Обработка результатов испытаний

Согласно требованиям ГОСТ Р 50571.16-99 для регистрации и обработки результатов испытаний, должен вестись рабочий журнал, который должен быть пронумерован и прошнурован.

Лица, допустившие нарушение ПОТ РМ-016-2001 и ПЭЭП, а также исказившие достоверность и точность испытаний, несут ответственность в соответствии с законом и Положением о лаборатории.

14. Оформление результатов испытаний

По результатам испытаний составляется протокол.

РАЗРАБОТАЛ:

Начальник электролаборатории

etl86.ru

Методика проверки автоматических выключателей напряжением до 1000 В

О компании » Электролаборатория » Методики измерений » Методика проверки автоматических выключателей напряжением до 1000 В

1. Общие положения.

Данная методика предназначена для производства измерений времени срабатывания аппаратов защиты с тепловыми и электро­магнитными расцепителями с целью проверки выполнения требова­ний пункта 413 ГОСТ Р50571.3-94, обеспечивающего безопасность косвенного прикосновения к нетоковедущим металлическим частям оборудования в момент замыкания фазного проводника.

Время отключения для распределительных цепей не должно превышать 5 с, если сопротивление защитного заземления меньше

(50/U0)*Z0

где Uo- номинальное фазное напряжение,

Zo — сопротивление цепи фаза-нуль,

т.е. достаточно мало, чтобы обеспечить безопасное напряжение прикосновения на металлических час­тях оборудования, и 0,4 с для цепей, питающих передвижное и пере­носное оборудование и для распределительных цепей, в которых не выполняется вышеуказанное условие для сопротивления защитного заземления.

2 Методы измерения.

Для определения времени срабатывания аппаратов защиты используется испытательное устройство «Сатурн-М».

Принцип действия испытательного устройства основан на соз­дании искусственного замыкания за местом установки проверяемого аппарата защиты с плавным регулированием значения тока, изме­рением его эффективного значения и измерением времени от нача­ла возникновения заданного тока короткого замыкания до момента срабатывания аппарата защиты. Устройство «Сатурн-М» имеет циф­ровую индикацию значений указанных величин.

ПОДГОТОВКА К РАБОТЕ

1.Заземлить корпус устройства «Сатурн-М» с помощью клеммы «Корпус» медным проводом с сечением не меньшим, чем подводящие провода, но не менее 4 кв.мм.

2.При использовании силового блока соединить разъем его ка­беля с розеткой на базовом блоке. При автономной работе базового блока вставить в розетку разъем-заглушку.

З. Собрать схему испытаний устройств защиты и согласно схеме рис. 1 закрыть клеммы изоляционной крышкой.

рис.1

Рис. 1. Применение устройства «Сатурн-М» для проверки непо­средственно от сети 380 В постоянно подключенного к сети (АВ1) и подключаемого на время проверки (АВ2) автоматического выключа­теля. Тумблер «Останов.» должен быть в положении «Внутр.».

4.Подключить сетевую вилку к розетке 220 В, 50 Гц.

5.Включить тумблер питания устройства. При этом должны пройти начальные тесты. Состояние «0000» и включенные светодиоды «Тепл.», «2500», «Ввод», «Ток» соответствуют готовности к рабо­те.

б.Подать входное напряжение, при этом должен загореться светодиод «U вход».

ВЫБОР РЕЖИМА

1.Устройство имеет 4 режима работы:

— проверка тепловых расцепителей тока и РЗ с выдержкой вре­мени:

— проверка электромагнитных расцепителей и РЗ без выдержки времени:

— ручной режим проверки,

— непрерывный режим в качестве тиристорного регулятора мощности.

Выбор режима осуществляется кнопкой «Режим» путем их по­следовательного циклического перебора с индикацией включенного режима.

2.Устройство имеет 4 предела измерения действующего значе­ния тока: 25 А, 250 А, 2500 А и работа с внешним измерительным трансформатором тока — ТТ, кА.

Выбор предела осуществляется кнопкой «Предел» аналогично кнопке «Режим».

З.Для ввода любого из пяти параметров необходимо выбрать режим «Ввод», нажать кнопку соответствующего параметра и затем ввести его числовое значение.

При этом первая цифра появится в правой позиции индикатора, а при вводе следующей цифры сдвигается на одну позицию влево. Соответственно, при вводе пятой цифры первая пропадает, что по­зволяет исправлять ошибки ввода параметров.

Ввод параметров можно производить в любой последователь­ности.

4.В устройстве предусмотрен ввод следующих параметров:

— «Ток А» — предельное эффективное значение тока для провер­ки тепловой и электромагнитной отсечки автоматов;

«Длит. с « предельная длительность вьючения тиристоров при автоматической и ручной проверке;

— «Ток ТТ кА» — значение первичного тока применяемого внешне­го измерительного трансформатора тока для последующего автома­тического пересчета результата при выводе на индикатор;

— «Откр. %° — угол открытия тиристоров, задаваемый в ручном и непрерывном режимах;

— «Шаг откр., %» — ступень роста угла открытия тиристоров для автоматических режимов работы.

5.По включению питания производится автоматический ввод наиболее оптимальных значений параметров:

Ток, А 0000

Длит., с 00.02

Ток ТТ, кА 25.00

Откр., % 0000

Шаг откр., % 0002

В случае необходимости они заменяются оператором другими.

6.При работе с параметрами предусмотрено два режима рабо­ты — ввод и просмотр результата, выбираемые либо вручную, либо автоматически.

В режиме «Ввод» можно присваивать всем параметрам любые значения.

В режиме «Результат» можно только просматривать значение соответствующего параметра без возможности его изменения.

При этом имеются следующие особенности:

— параметры «Ток» и «Длит.» в режиме «Результат» являются ре­зультатом измерения и могут отличаться от своих значений в режи­ме «Ввод»‘

— параметры «Ток ТТ и «Шаг» могут только вводиться операто­ром и никогда сами не изменяются в любых режимах работы;

— параметр «Откр.» может вводиться оператором в режиме «Ввод», но может и изменяться при автоматических режимах работы, так как ему присваивается значение текущего угла открытия тиристоров при наборе заданного значения тока. В режиме «Ввод» и «Результат» высвечивается одинаковое значение угла открытия. При автоматических режимах работы можно для справки посмотреть угол открытия тиристоров после окончания режима «Пуск». Если при этом перейти в ручной режим, то угол открытия останется от предыдущего автоматического режима.

7.В устройстве предусмотрены следующие ограничения при вводе параметров;

-длительность тока 0,01 …99,99 с:

-задаваемое значение тока при 25 А, 250 А, 2500 А,

автоматических режимах проверки 99,99.кА;

-задаваемый угол открытия тиристоров 0… 100%;

-задаваемый шаг угла открытия тиристоров 1… 10%.

8.В случае неправильного задания параметров по нажатию кнопки «Пуск» индикатор будет мигать, показывая неправильно вве­денный параметр.

В случае задания значения тока на одном пределе, при перехо­де на другой число будет смещаться, и, если левая цифра выйдет за границу индикатора, то он будет мигать. При этом ввод первой же цифры сразу отменит ранее введенное значение.

В случае просмотра результата измеренного тока переключе­ние пределов аналогично смещает выводимое на индикатор число вместе с запятой. При выходе левой значащей цифры за границу индикатора также будет его мигание.

9.Работа с нагрузочным трансформатором требует примене­ния внешнего сигнала «Останов.» для фиксирования времени отклю­чения автомата.

При испытании обычных автоматов используются свободные контакты одного из размыкателей, которые будут разомкнуты при срабатывании аппарата. Их подключают к клеммам «Останов.» уст­ройства и переводят тумблер в положение «Внешн»

В других случаях при использовании нормально разомкнутых контактов проверяемого аппарата, тумблер устанавливают в поло­жение «Внутр.».

10.Если при включении питания на индикаторе высвечивается число с символом t в левой позиции, то работа с устройством не

возможна. Диагностика неисправностей приведена в Приложении 1 описания устройства.

1.Выбрать предел измерения и ввести значение проверочного тока.

2.Ввести длительность протекания тока на 30 — 50 % больше ожидаемого времени срабатывания аппарата.

З.Ввести шаг угла открытия тиристоров (типичное значение 2%).

4.Нажать кнопку «Пуск».

Периодически в течение 0,5 с на индикаторе будет высвечи­ваться измеренное за 0,02 с значение тока до достижения им задан­ного, а затем будет работать секундомер до истечения заданной длительности.

В случае отключения автомата на индикаторе останется время отключения, а измеренное значение тока можно посмотреть, нажав кнопку «Ток» в режиме «Результат».

В случае перегрузки входных цепей предел автоматически пе­реключится на более грубый.

В любой момент можно прервать процесс измерения, нажав кнопку «Стоп».

При достижении угла открытия, равного 100%, процесс набора тока прекратится, так и не достигнув заданного значения. Необходи­мо перейти на схему измерения по рис. 2 с нагрузочным трансфор­матором тока.

                                                    Схема

б)

Рис. 2. Применение устройства «Сатурн-М» для проверки авто­матических выключателей с нагрузочным трансформатором и оста­новом секундомера от резервных контактов АВ2 при использовании встроенного (а) и внешнего (б) трансформаторов тока. Тумблер «Останов.» должен быть в положении «Внешн.». Резистор R=50-100 0м, 500 -150 Вт.

1.Выбрать предел измерения и ввести значение тока через ав­томат на 20-30% больше ожидаемого тока отсечки.

2.Ввести длительность проверочного импульса тока (типичное значение — 0,02 с).

З.Ввести шаг угла открытия тиристоров (типичное значение 2 %).

4. Нажать кнопку «Пуск».

Периодически в течение 0,5 с на индикаторе будет высвечи­ваться измеренное на заданную длительность значение тока, сопро­вождаемое включением светодиодов «Ток», «Результат», пока оно не достигнет заданного значения тока.

В случае отключения автомата на индикаторе останется время отключения, а измеренное значение тока можно посмотреть, нажав кнопку «Ток» в режиме «Результат».

Можно установить ручной режим проверки.

1.Ввести длительность протекания тока.

2.Ввести желаемый угол открытия тока.

3.Выбрать ожидаемый предел измерения тока.

4. Нажать кнопку «Пуск».

На индикаторе будет работать секундомер до истечения за­данного времени или до отключения автомата.

Измеренное значение тока можно посмотреть, нажав кнопку «Ток» в режиме «Результат»

Если предел измерения выбран неправильно, то при перегрузке входных цепей устройства индикатор будет мигать, высвечивая не­корректно измеренное значение тока, требуя перевода на более гру­бый предел. Можно установить непрерывный режим работы.

1.Ввести желаемый угол открытия тиристоров.

2.Нажать кнопку «Пуск».

На индикаторе будут высвечиваться минуты, секунды до оста­новки по кнопке «Стоп» или при срабатывании подключенного авто­мата.

Предел автоматически установится на 2500 А. Для работы с внешним трансформатором тока:

1.Подключить вторичную обмотку трансформатора тока к клеммам «12=5 А» устройства.

2. Выбрать предел «ТТ, кА».

3.Ввести значение первичного тока применяемого ТТ. При этом все дальнейшие показания тока будут пересчитаны и отображаться на индикаторе в кА.

УКАЗАНИЕ МЕР БЕЗОПАСНОСТИ

1.При работе с устройством «Сатурн-М», «Сатурн-MI» необхо­димо строго соблюдать общие требования техники безопасности, распространяющиеся на устройства релейной защиты и автоматики энергосистем.

2.К эксплуатации допускаются лица, изучившие настоящую ме­тодику, инструкцию по эксплуатации и прошедшие проверку знаний правил техники безопасности и эксплуатации электроустановок электрических станций и подстанций.

3.Подключение входных клемм устройства к токоведущим це­пям должно производиться после проверки отсутствия напряжения.

4.При проверке автоматических выключателей непосредствен­но от сети 380 В подключение входных клемм должно производиться через автоматический выключатель с уставками большими, чем у проверяемого.

5.Рекомендуется входное напряжение подавать после включе­ния питания устройства, а снимать -до его выключения.

б.Соединительные провода надо сначала подключать к уст­ройству, а затем уже к токоведущим цепям.

7.На все время измерения входные клеммы устройства должны быть закрыты изоляционной крышкой.

8.Перед работой с устройством клемму «Корпус» устройства «Сатурн-М» необходимо соединить с контуром заземления.

9.При работе необходимо следить за допустимой длитель­ностью протекания тока через тиристоры для предотвращения пробоя тиристоров:

Ток, А

Допустимая длительность, с

Ток, А

Допустимая

длительность, с

100

100

500

5

200

20

1000

1

300

12

1500

0,3

 

2500

0,06

 

З. Определение погрешности измерения

Абсолютная погрешность измерения времени отключения ап­парата защиты определяется выражением:

Dt, с = 0,01 Тизм+ 0,01,

где Тизм — измеренное значение времени отключения.

Относительная погрешность измерения эффективного значе­ния тока 8 %.

4. Безопасные приемы работы.

К работе с устройством «Сатурн-М» по проверке автоматиче­ских выключателей допускаются лица электротехнического персона­ла, не моложе 18лет, обученные и аттестованные по знаниям ПТБ, методик измерений, обеспеченные спецодеждой, инструмен­том, индивидуальными средствами защиты.

Измерения производятся по распоряжению (заданию) группой из 2-х специалистов с квалификационной группой III.

Щуп измерительного прибора должен быть оборудован изоли­рующей ручкой. Изоляция проводов прибора должна быть не менее 1 Мом. Молоток, кувалда должны быть надежно закреплены на руч­ках, осмотрены перед применением.

При наличии напряжения на электроустановке согласно ПТБ должны выполняться организационные и технические мероприятия.

Запрещается выполнять работы в дождь и при повышенной влажности.

На выполненные измерения составляется протокол. Лица, допустившие

нарушения ПТБ или ПТЭЭП, а также допус­тившие искажения достоверности

и точности измерений, несут от­ветственность в соответствии с

законодательством и Положением о передвижной электролаборатории.

www.megaomm.ru

Теория и методика прогрузки автоматических выключателей

Область применения S 16 < S S > 35 S/2

Область применения Рекомендации настоящей методики распространяются на измерения в электроустановках 0,4кВ всех типов заземления нейтрали. В электроустановках напряжением ниже 1000В с глухозаземлённой

Подробнее

МЕТОДИКА 5 ПРОВЕРКА ЦЕПИ ФАЗА-НУЛЬ

МЕТОДИКА 5 ПРОВЕРКА ЦЕПИ ФАЗА-НУЛЬ 1 Содержание 1. Назначение 3 2. Метод измерения 3 3. Нормируемые величины 4 4. Определяемые характеристики 4 5. Требования к средствам измерения 5 6. Условия измерений

Подробнее

ЛЕКЦИЯ 13 ЗАНУЛЕНИЕ. ЗАЩИТНОЕ ОТКЛЮЧЕНИЕ

ЛЕКЦИЯ 13 ЗАНУЛЕНИЕ. ЗАЩИТНОЕ ОТКЛЮЧЕНИЕ Защитное зануление преднамеренное соединение открытых проводящих частей с глухозаземленной нейтралью трансформатора или генератора, выполняемое в целях электробезопасности.

Подробнее

Лекция 11. Электробезопасность.

Лекция 11 Электробезопасность. При расчетах, сопротивление тела человека переменному току частотой 50 Гц принимают равным 1кОм. На практике, оно может меняться в диапазоне от 300 Ом до 400 ком. Полностью

Подробнее

Автоматические выключатели

Автоматические выключатели Автоматические выключатели (автоматы) предназначены для защиты электрических установок от недопустимых перегрузок и токов короткого замыкания, а также для нечастой коммутации

Подробнее

автоматические выключатели серии ва-105

автоматические выключатели серии ва-105 2 Автоматические выключатели серии BA-105 Каталог электрооборудования 2014 автоматические выключатели серии ва-105 сертификат соответствия требованиям технического

Подробнее

автоматические выключатели серии ВА-105

автоматические выключатели серии ВА-105 2 Автоматические выключатели серии BA-105 Каталог электрооборудования 2014 Автоматические выключатели серии ВА-105 Сертификат соответствия требованиям технического

Подробнее

УДК (083.96)

УДК 621.311.1(083.96) МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ПРЕДОТВРАЩЕНИЮ ФЕРРОРЕЗОНАНСА В РАСПРЕДЕЛИТЕЛЬНЫХ УСТРОЙСТВАХ 110-500 кв С ЭЛЕКТРОМАГНИТНЫМИ ТРАНСФОРМАТОРАМИ НАПРЯЖЕНИЯ И ВЫКЛЮЧАТЕЛЯМИ, СОДЕРЖАЩИМИ ЕМКОСТНЫЕ

Подробнее

Автоматика защиты сети

Автоматика защиты сети Назначение: 1. Токовый автомат: Защита проводки от перегрева и пожара при: — Коротком замыкании — Перегрузке 2. УЗО: Защита человека от прямого или косвенного прикосновения (при

Подробнее

Устройства защиты электрических цепей

Устройства защиты электрических цепей 1. Выключатели автоматические 1.1. Назначение Автоматический выключатель (автомат защиты), предназначен для защиты кабелей, проводов и конечных потребителей от перегрузки

Подробнее

Технические характеристики

BA47-063Про ВА47-063Про, ВА47-100Про, УЗО-100Про, Технические характеристики Количество полюсов 1 2, 3, 4 Номинальный ток In, A 1, 2, 3, 4, 6, 10, 16, 20, 25, 32, 40, 50, 63 Тип мгновенного расцепления

Подробнее

ВЫКЛЮЧАТЕЛИ АВТОМАТИЧЕСКИЕ OptiDin BM63 DC

ВЫКЛЮЧАТЕЛИ АВТОМАТИЧЕСКИЕ OptiDin BM63 DC ВЫКЛЮЧАТЕЛИ АВТОМАТИЧЕСКИЕ OptiDin BM63 DC Выключатели автоматические OptiDin BM63 DC предназначены для защиты электрических цепей постоянного тока от перегрузки

Подробнее

ТИ СОДЕРЖАНИЕ

СОДЕРЖАНИЕ 1 Введение…3 2 Назначение и область применения 4 3 Краткое описание конструкции релейных шкафов….5 4 Рекомендации по выбору основных схем электрических соединений…..7 5 Рекомендации по

Подробнее

Общие технические условия ДСТУ (ГОСТ )

Общие технические условия ДСТУ 3025 95 (ГОСТ 9098 93) Дата введения 01.01.96 Настоящий стандарт распространяется на автоматические выключатели (далее выключатели), предназначенные для проведения тока в

Подробнее

ВАК (устройство защитного отключения УЗО)

WWW.ELAV.RU 1 2008 2 ОАО «ЭЛЕКТРОАВТОМАТ» Автоматические выключатели дифференциального тока ВАК (устройство защитного отключения УЗО) Выключатели автоматические с комбинированной защитой серии ВАК предназначены

Подробнее

Автоматические выключатели ВА47-29.

.vmnoprint { display: none } Версия для печати Автоматические выключатели ВА47-29. Возможные наименования: ВА-47-29, ВА 47 29 Назначение ВА47-29. Автоматические выключатели ВА47-29 предназначены для защиты

Подробнее

Автоматические выключатели ВА

Автоматические выключатели ВА 47-100 Автоматические выключатели ВА 47-100 предназначены для защиты распределительных и групповых цепей, имеющих активную и индуктивную нагрузки. Рекомендуются к применению

Подробнее

Краткие теоретические сведения

Практическая работа 1.9. Аппаратура автоматического управления и защиты авиационных генераторов постоянного тока (часть 2). Цель работы: изучить устройство и принцип работы автомата защиты бортсети от

Подробнее

Автоматические выключатели

4А В Т О М А Т И Ч Е С К И Е В Ы К Л Ю Ч А Т Е Л И Автоматические выключатели СЕРИИ ВА21 ТУ16-90 ИКЖШ.641211.002ТУ Выключатели предназначены для проведения тока в нормальном режиме и отключения тока при

Подробнее

OptiDin VD C 16 — A — УХЛ4

Устройства дифференциальной защиты Устройства дифференциальной защиты — это коммутационные аппараты, основным назначением которых, является защита человека от поражения электрическим током при случайном,

Подробнее

Протокол испытаний электроустановки 01

Электротехническая испытательная лаборатория ООО «Образец» лаборатории от 20 г. выданное РОСТЕХНАДЗОР СИБИРСКОЕ УПРАВЛЕНИЕ ФЕДЕРАЛЬНОЙ СЛУЖБЫ ПО ЭКОЛОГИЧЕСКОМУ, ТЕХНОЛОГИЧЕСКОМУ И АТОМНОМУ НАДЗОРУ (Сибирское

Подробнее

Общие технические условия ДСТУ (ГОСТ )

Общие технические условия ДСТУ 3025 95 (ГОСТ 9098 93) Дата введения 01.01.96 Настоящий стандарт распространяется на автоматические выключатели (далее выключатели), предназначенные для проведения тока в

Подробнее

ЭЛЕКТРОУСТАНОВКИ ЗДАНИЙ

ГОСТ Р 50571.5-94 (МЭК 364-4-43-77) ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ ЭЛЕКТРОУСТАНОВКИ ЗДАНИЙ Часть 4 ТРЕБОВАНИЯ ПО ОБЕСПЕЧЕНИЮ БЕЗОПАСНОСТИ. ЗАЩИТА ОТ СВЕРХТОКА Издание официальное Н о ш Спнцщямфцщ

Подробнее

ТУ

А В Т О М А Т И Ч Е С К И Е В Ы К Л Ю Ч А Т Е Л И 3ТРЁХПОЛЮСНЫЕ Автоматические выключатели ТИПА ВА57 ТУ3422-034-05758109-2005, ТУ3422-037-05758109-2006 Трехполюсные автоматические выключатели типа ВА57

Подробнее

Наименование параметра

Однофазные стабилизаторы напряжения СНВТ Предназначены для автоматической защиты бытового, офисного и промышленного однофазного электрооборудования от перепадов, бросков и просадок напряжения питающей

Подробнее

РЕКОМЕНДАЦИИ ДЛЯ ЗАЩИТЫ ТРАНСФОРМАТОРОВ

ВЫСОКОВОЛЬТНЫЕ ПРЕДОХРАНИТЕЛИ РЕКОМЕНДАЦИИ ДЛЯ ЗАЩИТЫ ТРАНСФОРМАТОРОВ ОПРЕДЕЛЕНИЯ И УСЛОВИЯ ВЫСОКОВОЛЬТНЫЕ ПРЕДОХРАНИТЕЛИ Мощь требует контроля 101 ВЫСОКОВОЛЬТНЫЕ ПРЕДОХРАНИТЕЛИ С ВЫСОКОЙ ОТКЛЮЧАЮЩЕЙ СПОСОБНОСТЬЮ

Подробнее

1.1.2 Автоматические выключатели до 125А

1.1.2 Автоматические выключатели до 125А Автоматические выключатели ABB Серия S200 Новые автоматические выключатели System pro M compact серии S200 удовлетворяют всем требованиям, предъявляемым к модульным

Подробнее

ВА Х 1 Х 2 Х 3

Назначение Выключатели автоматические серии ВА 67-100 современные малогабаритные аппараты модульного исполнения, предназначенные для защиты электрических цепей от перегрузок и коротких замыканий (сверхтоков),

Подробнее

docplayer.ru

Прогрузка автоматических выключателей — Вода в доме

Для обеспечения безопасных условий работы на производстве, для предупреждения возможных поломок и выхода электроустановок из строя, а также в соответствии с

нормативной документацией, ПУЭ и ПТЭЭП регулярно и без исключения должен проводится контроль работоспособности коммутационных аппаратов защиты на согласованность с номинальными данными. Это позволит обеспечить бесперебойность снабжения электроэнергией, минимизировать риск получения травм электрическим током при работе с электроаппаратурой, что особенно актуально при процессах на объектах с высоким уровнем взрывоопасности.

На деле это происходит с применением специализированного инструмента. Прогрузка автоматов — это замер базовых показателей посредством прогрузочных приборов. Это несложные, но обязательные измерения, проводить кои обязан профессионал. ЛАБСИЗ быстро и качественно осуществит прогрузку автоматов, цена на услугу демократична и выгодна.

Услуга прогрузки автоматических выключателей

У исправно работающих автоматов, способных защитить при замыкании  от поражения электротоками, показатели срабатывания отвечают параметрам производителя. Автоматы предупреждают повреждения при коротком замыкании, защищают электрическую сеть от слишком высоких нагрузок в результате механических повреждений и скачков напряжения в сети. Иначе говоря, прогрузка автовыключателей —  осуществление проверки всех его характеристик.

По окончанию испытания первичным током (диагностика срабатывания электромагнитной и тепловой защиты) принятые фактические сведения по используемому току и выдержке временного интервала вносятся в протокол прогрузки автоматических выключателей.

Как и любой другой вид проверки, осуществление прогрузки автоматических выключателей имеет периодичность. Хоть строгие нормы и отсутствуют, периоды, через которые нужно осуществлять проверку, указаны в нормах завода, который изготовил продукцию. На производстве ответственность за регулярность этого мероприятия берет на себя руководитель. Но как правило стандартно прогрузку приборов, установленных в быту и на производстве, производят единожды в 3 года.

Методика прогрузки автоматических выключателей

Существующий на сегодняшний день регламентированный в ГОСТ Р50030.2-99 метод предполагает использование низковольтной аппаратуры управления и распределения. Расцепитель, находящийся под защитой, должен срабатывать во время короткого замыкания или перегрузки в сети. Если этого не происходит, то оборудование неисправно и подлежит замене.

Электролаборатория «ЛАБСИЗ» производит все виды измерительных работ, в том числе прогрузку автоматов, стоимость услуги является максимально выгодной в нашем регионе. Мероприятие происходит при участии высококвалифицированных специалистов, имеющих большой опыт в прогрузке автоматов в Москве и области.  Прогрузка автоматических выключателей,  цена на которую зависит от объема работ, осуществляется в кратчайшие сроки после подачи заявки, и сопровождается выдачей всей необходимой отчетной документации и рекомендаций касательно дальнейшей работы.

Источник: labsiz.ru

Добрый вечер, дорогие друзья.

Поводом к этой статье стал вопрос читателя:

Каким нормативным документом нормируется периодичность проверки автоматического выключателя на кратность КЗ ?
В ПТЭЭП нету, в ПУЭ нету. Где есть?

В самом деле, этой стороне деятельности ЭТЛ на сайте уделяется весьма мало внимания. Я сейчас говорю о таком виде работ, как проверка устройств релейной защиты и электроавтоматики.

И так. Начнем с того, что в ПУЭ (Правила устройства электроустановок) не может быть указана никакая периодичность каких либо работ, т.к. это правила по которым осуществляется проектировка и монтаж вновь вводимого оборудования.

Поэтому переходим сразу к ПТЭЭП (Правила технической эксплуатации электроустановок потребителей). Нам будет интересен Раздел 2.6. РЕЛЕЙНАЯ ЗАЩИТА, ЭЛЕКТРОАВТОМАТИКА, ТЕЛЕМЕХАНИКА И ВТОРИЧНЫЕ ЦЕПИ. Именно в этом разделе в пункте 2.6.1. и упомянуты наряду с устройствами релейной защиты автоматические выключатели. То есть релейная защита и автоматические выключатели – это устройства, имеющие одно и тоже назначение.

Для таких устройств существуют отдельные правила РД153-34.3-35.613-00 Правила технического обслуживания устройств релейной защиты и электроавтоматики электросетей 0,4 – 35кВ. К ним мы вернемся позже.

А сейчас перейдем назад к ПТЭЭП п.3.6.2.

«Конкретные сроки испытаний и измерений параметров электрооборудования электроустановок при капитальном ремонте (далее – К), при текущем ремонте (далее —  Т) и при межремонтных испытаниях и измерениях, т.е.при профилактических испытаниях, выполняемых для оценки состояния электрооборудования и не связанных с выводом оборудования в ремонт (далее – М), определяет руководитель Потребителя на основе приложения 3 настоящих Правил с учетом рекомендаций заводских инструкций, состояния электроустановок и местных условий».

Напомню, у Потребителя должны быть составлены графики капитальных и текущих ремонтов электрооборудования в соответствии с системой ППР.

В ПТЭЭП есть приложение 3 НОРМЫ ИСПЫТАНИЙ ЭЛЕКТРООБОРУДОВАНИЯ И АППАРАТОВ ЭЛЕКТРОУСТАНОВОК ПОТРЕБИТЕЛЕЙ. Согласно этому приложению п.28.6. Проверка действия расцепителей. Осуществляется при КАПИТАЛЬНОМ ремонте. Пределы работы расцепителей должны соответствовать заводским данным.

Несколько туманно. Даже не сразу понятно, что за расцепители.

За разъяснениями обратимся к РД 34.45-51.300-97 Объем и нормы испытаний электрооборудования.

В этом документе нас интересует пункт 26.3 Проверка действия максимальных и минимальных или независимых расцепителей автоматов.

Единственное, что нам разъясняет, этот пункт то, что расцепители относятся к автоматам.

Но и вносит неразбериху, т.к. заявляет, что проверять расцепители следует при ТЕКУЩЕМ ремонте.

Но т.к. ПТЭЭП имеет более позднюю редакцию чем РД, то думаю более правильно опираться на требования Правил и проверку расцепителей проводить при КАПИТАЛЬНОМ ремонте.

А теперь вернемся к тому с чего я начал. Т.к. автоматические выключатели отнесены к устройствам релейной защиты и электроавтоматики, то лично я пользуюсь требованиями РД153-34.3-35.613-00.

В этом документе рекомендую всем изучить раздел 2 Система технического обслуживания устройств РЗА.

Для определения периодичности проверки расцепителей автоматов в Ваших условиях привожу здесь раздел 2.3. Периодичность технического обслуживания устройств РЗА.

 2.3.1. Для устройств РЗА цикл технического обслуживания устанавливается от трех до двенадцати лет.

Под циклом технического обслуживания понимается период эксплуатации устройства между двумя ближайшими профилактическими восстановлениями, в течение которого выполняются в определенной последовательности установленные виды технического обслуживания, предусмотренные настоящими Правилами.

2.3.2. По степени воздействия различных факторов внешней среды на аппараты в электрических сетях 0,4-35 кВ могут быть выделены две категории помещений.

К I категории относятся закрытые, сухие отапливаемые помещения.

Ко II категории относятся помещения с большим диапазоном колебаний температуры окружающего воздуха, в которых имеется сравнительно свободный доступ наружного воздуха (металлические помещения, ячейки типа КРУН, комплектные трансформаторные подстанции и др.), а также помещения, находящиеся в районах с повышенной агрессивностью среды.

2.3.3. Цикл технического обслуживания для устройств РЗА, установленных в помещениях I категории, принимается равным 12, 8 или 6 годам, а для устройств РЗА, установленных в помещениях II категории, принимается равным 6 или 3 годам в зависимости от типа устройств РЗА и местных условий, влияющих на ускорение износа устройств (см. таблицу). Цикл обслуживания для устройств РЗА устанавливается распоряжением главного инженера предприятия.

Для неответственных присоединений в помещениях II категории продолжительность цикла технического обслуживания устройств РЗА может быть увеличена, но не более чем в два раза. Допускается в целях совмещения проведения технического обслуживания устройств РЗА с ремонтом основного оборудования перенос запланированного вида технического обслуживания на срок до одного года. В отдельных обоснованных случаях продолжительность цикла технического обслуживания устройств РЗА может быть сокращена.

Указанные в таблице циклы технического обслуживания относятся к периоду эксплуатации устройств РЗА, соответствующему полному сроку службы устройств. По опыту эксплуатации устройств РЗА на электромеханической элементной базе, установленных в помещениях I категории, полный средний срок их службы составляет 25 лет и для устройств, установленных в помещениях II категории, 20 лет.

В технической документации по устройствам РЗА на микроэлектронной и электронной базе полный средний срок службы установлен, как правило, 12 лет. Эксплуатация устройств РЗА на электромеханической, микропроцессорной и электронной базе сверх указанных сроков может быть разрешена только при удовлетворительном состоянии и сокращении цикла технического обслуживания, устанавливаемого руководством предприятия.

Наибольшее количество отказов электронной техники происходит в начале и в конце срока службы, поэтому рекомендуется устанавливать для этих устройств укороченные периоды между проверками в первые два-три года и после 10—12 лет эксплуатации. Периоды эксплуатации между двумя ближайшими профилактическими восстановлениями для этих устройств в первые годы эксплуатации рекомендуется устанавливать не более 6 лет. По мере накопления опыта эксплуатации цикл технического обслуживания может быть увеличен до 12 лет.

Цикл технического обслуживания расцепителей автоматических выключателей 0,4 кВ рекомендуется принимать равным 3 или 6 годам.

2.3.4. Плановое техническое обслуживание устройств РЗА электрических сетей 0,4-35 кВ следует по возможности совмещать с проведением ремонта основного электрооборудования.

2.3.5. Первый профилактический контроль устройств РЗА должен проводиться через 10-18 мес. после включения устройства в работу.

2.3.6. Периодичность технического обслуживания аппаратуры и вторичных цепей устройств дистанционного управления и сигнализации принимается такой же, как для соответствующих устройств РЗА.

2.3.7. Периодичность технических осмотров аппаратуры и цепей устанавливается МС РЗА в соответствии с местными условиями.

2.3.8. Тестовый контроль (опробование) устройств на микроэлектронной базе рекомендуется проводить еженедельно на подстанциях с дежурным персоналом, а на подстанциях без дежурного персонала — по мере возможности, но не реже одного раза в 12 мес.

2.3.9. Для микроэлектронных и микропроцессорных устройств РЗА перед новым включением, как правило, должна производиться тренировка подачей на устройство в течение 3 — 4 сут. оперативного тока и при возможности рабочих токов и напряжений с включением устройства с действием на сигнал. По истечении срока тренировки проводится тестовый контроль и при отсутствии каких-либо неисправностей устройство РЗА переводится с действием на отключение.

2.3.10. Удаление пыли с внешних поверхностей, проверка надежности контактных соединений, проверка целости стекол, состояния уплотнений кожухов и т.п. микропроцессорных и электромеханических устройств РЗА выполняются обычным образом. Чистка от пыли внутренних модулей микропроцессорных устройств РЗА при внутреннем осмотре должна производиться пылесосом для исключения повреждения устройств статическим разрядом. Следует учитывать, что заводы-изготовители гарантируют нормальную работу электронных устройств и выполнение гарантийного ремонта РЗА в течение ограниченного периода эксплуатации при сохранности пломб завода. С учетом этого вскрывать кожухи этих устройств РЗА в течение гарантийного срока эксплуатации не рекомендуется.

2.3.11. При неисправности устройств РЗА на микроэлектронной базе ремонт устройства в период гарантийного срока эксплуатации должен производиться на заводе-изготовителе. В последующий период эксплуатации ремонт производится по договору с заводом-изготовителем или в базовых лабораториях квалифицированными специалистами.

2.3.12. Методики проверки микропроцессорных устройств РЗА приведены в технических описаниях и инструкциях по эксплуатации заводов-изготовителей.

Вот исходя из вышеизложенного, можно легко составить график проверки автоматических выключателей в соответствии с вашими условиями.

А теперь из личного опыта.

Автоматические выключатели проверяются перед вводом в эксплуатацию. Проверка производится в соответствии с требованиями ПУЭ глава 1.8 пункт 1.8.37. Электрические аппараты, вторичные цепи и электропроводки до 1 кВ.

Проверка действия расцепителей. Проверяется действие расцепителей мгновенного действия. Выключатель должен срабатывать при токе не более 1,1верхнего значения тока срабатывания выключателя, указанного заводом-изготовителем.

В электроустановках, выполненных по требованиям раздела 6 глав 7.1 и 7.2, проверяются все вводные и секционные выключатели, выключатели цепей аварийного освещения, пожарной сигнализации и автоматического пожаротушения, а также не менее 2% выключателей распределительных и групповых сетей.

В других электроустановках испытываются  все вводные и секционные выключатели, выключатели цепей аварийного освещения, пожарной сигнализации и автоматического пожаротушения, а также не менее 1% остальных выключателей.

При выявлении выключателей, не отвечающих установленным требованиям, дополнительно проверяется удвоенное количество выключателей.

В дальнейшем про выключатели в большинстве электрохозяйств просто забывают. Инспектора при проверках требуют протоколы, как правило, четырех видов:

  1. Измерение сопротивления заземляющего устройства.
  2. Проверка цепи заземления (Металлическая связь).
  3. Сопротивление изоляции электрооборудования, кабельных линий и электропроводок.
  4. Проверка сопротивления петли «фаза-нуль».

Проверка параметров автоматов производится лишь после их несрабатывания или ложного срабатывания или ремонта или изменения уставок (где это возможно). Но такие проверки проводятся на единичных экземплярах автоматов.

Я все же рекомендую ответственным за электрохозяйство разработать план проверки автоматических выключателей, находящихся у них в эксплуатации, и придерживаться его.

Надеюсь, эта статья окажется полезной.

Желаю успехов.

Источник: elektrolaboratoriy.ru

Проверка работы расцепителей автоматических выключателей

Основная часть испытаний автоматов — это проверка исправной работы их расцепителей. Дополнительно проверяется качество монтажа выключателей, затяжка контактов, соответствие защитного оборудования проектной документации, но эти параметры уже второстепенны.

Существует большое количество модификаций автоматических выключателей: воздушные, модульные, предназначенные для защиты двигателей, в литом корпусе. Самыми распространенными являются модульные автоматические выключатели, устанавливаемые на DIN-рейку, поэтому целесообразно будет рассмотреть ход проверки на их примере.

После срабатывания одного из расцепителей автоматически выключатель выполняет свою функцию — отключает питание определенного участка цепи. Расцепители по типу могут быть тепловыми или электромагнитными, но в современном оборудовании чаще всего используют оба типа для наиболее надежной защиты. Автоматы с одним типом расцепителей имеют гораздо более узкую сферу применения.

Автоматы с тепловыми расцепителями обеспечивают защиту электросети от перегрузки линии. Такой расцепитель представляет собой двухслойную биметаллическую пластинку. Когда возникает перегрузка, этот элемент выключателя нагревается. Под воздействием температуры происходит деформация пластины, что и приводит к расцеплению.

Электромагнитные расцепители нужны для защиты линии от разрушительного воздействия тока КЗ. Этот элемент прибора представляет собой соленоид с подвижным сердечником. Механизм расцепления приводится в действие сердечником, который втягивается магнитным полем, созданным под воздействием токов КЗ.

В свою очередь электромагнитные расцепители подразделяются на типы в зависимости от временных и токовых характеристик, то есть от того, за какое время и токи какой силы приводят выключатель в действие. Обозначаются типы электромагнитных расцепителей заглавными латинскими буквами. К наиболее распространенным относятся типы, соответствующие буквам B, C, D.

В этих элементах мгновенное расцепление происходит при таких стандартных диапазонах:

  • B — в диапазоне от 3-кратного до 5-кратного номинального тока;
  • С — в диапазоне 5-10-кратного номинального тока;
  • D — 10-20-кратного номинального тока.

При низких пусковых токах в системе допустимо использовать автоматы с расцепителями типа B. В этой же сети целесообразно установить входной автомат с характеристиками C. Эти же устройства допустимо устанавливать в сети с умеренными пусковыми токами. Для защиты линии с высокими пусковыми токами подходят автоматы типа D.

ГОСТ Р 50345-2010 «Аппаратура малогабаритная электрическая. Автоматические выключатели для защиты от сверхтоков бытового и аналогичного назначения» регламентирует, как и какие именно автоматы нужно испытывать.

Таблица 7 Время-токовые рабочие характеристики

ИспытаниеТип
расцепителя
Испытательный
ток
Начальное
состояние
Время расцепления
или нерасцепления
Требуемый
результат
Примечание
aB, C, D1,13 InХолодное

t < 1 ч (при In < 63 А)
t < 2 ч (при In> 63 А)

Без
расцепления
bB, C, D1,45 In Сразу же после испытания

t < 1 ч (при In < 63 А)
t < 2 ч (при In> 63 А)

РасцеплениеНепрерывное нарастание тока в течение 5 с
cB, C, D2,55 In Холодное

1 с < t < 60 с (при In < 32 А)
1 c < t < 120 c (при In > 32 A)

Расцепление
dB3 InХолодноеt< 0,1 сБез
расцепления
Ток создается замыканием вспомогательного выключателя
C5 In
D10 In
eB5 InХолодноеt< 0,1 сРасцеплениеТок создается замыканием вспомогательного выключателя
C10 In
D20 In
(в особых случаях 50 In)

Термин «холодное состояние» означает, что при контрольной температуре калибровки ток предварительно не пропускают.
Примечание — Для выключателей типа D рассматривается возможность дополнительного испытания для промежуточного значения между c и d.
a, b и c — это испытания тепловой защиты, а d и e — соответственно, защиты от короткого замыкания (КЗ).

Как проверяется срабатывание автоматических выключателей?

Порядок проведения проверок утвержден в нормативной документации. Так, срабатывание электромагнитных расцепителей проверяется согласно ПУЭ 1.8.37 путем проведения испытаний, которые рекомендует завод производитель.

Специалисты нашей лаборатории для выполнения испытаний используют специальное оборудование: аппарат «Синус-3600». Этот прибор весит 22 кг и внешне напоминает системный блок ПК. Аппарат позволяет успешно провести испытания расцепителей электромагнитного типа, полупроводниковых и тепловых при условии, что In попадает в диапазон от 16 до 320 А.

Для проведения испытаний выводы аппарата подключают к вводам автоматического выключателя. После этого подается ток и засекается, какое время пройдет до срабатывания механизма расцепления. При этом испытание проводится поэтапно:

  1. Сначала на неразогретый прибор подается ток, который превышает номинальный в 1,13 раз. Расцепитель теплового типа не должен срабатывать на протяжении 1 часа номинальный ток меньше 63 А, и минимум в течение 2 часов при значении номинального тока выше 63 А.
  2. Сразу посл завершения первого этапа на оборудование подают ток, который превышает номинальное значение в 1,45 раза. Расцепитель должен сработать в течение часа при In<63 А, или в течение 2 часов при In>63 А.
  3. После завершения второго этапа с выключателя снимается напряжение, ему дают вернуться в первоначальное «холодное» состояние. Далее на прибор подается ток, больше In в 2,55 раза. Если In<32 А, то сработать тепловой расцепитель должен за 1 минуты, при In>32 А расцепление должно произойти за 2 минуты.

Для проведения всех этапов испытания достаточно включить аппарат «Синус» и установить требуемое значение тока в Амперах. После этого автоматически включается таймер, который отключается после расцепления.

Подобным же образом проводится и испытание автоматических выключателей с электромагнитными расцепителями:

  1. На «холодный» автомат подается ток в 3, 5 или 10 А в зависимости от его типа (B, C, D – соответственно). Мгновенный расцепитель должен вызвать отключение за 0,1 секунду или более.
  2. Автомат возвращается в холодной состояние, а затем на него подается ток 5, 10 или 20 А, также в зависимости от типа расцепителя. Сработать устройство должно менее, чем за 0,1 секунды.

При выполнении испытания ток, который подается на прибор, возрастает от минимального значения до верхней границы. Происходит это практически мгновенно. Во время срабатывания расцепителя фиксируется величина тока в этот момент и время, которое прошло с достижения током необходимого значения.

Сколько автоматических выключателей требуется проверить?

Даже на среднем объекте автоматических выключателей может быть сотни, поэтому проверить все может быть достаточно проблематично. К тому же это вызовет дополнительные траты.

Согласно ПУЭ (ПУЭ, п. 1.8.37, пп. 3) проверять необходимо определенную часть от всех выключателей. В жилых, административных, общественных, бытовых зданиях, спортивных сооружениях, клубных учреждениях, на зрелищных мероприятий проверять должно не менее 2% автоматических выключателей распределительного типа и групповых сетей, а также вводные, пожарной сигнализации, автоматического пожаротушения, цепи аварийного освещения, секционные выключатели. В прочих электрических установках возможно снижение количества проверяемых автоматов распределительного типа и групповых сетей до 1%. В остальном — правила те же.

Заказчик сам может решать, где проводить испытания — в лабораторных условиях или непосредственно на объекте. В последнем случае присутствие специалистов лаборатории на объекте может быть достаточно длительным, но это вполне выполнимо, если вы обратитесь в нашу лабораторию. Наши специалисты проведут на объекте столько времени, сколько потребуется.

Если объект еще не эксплуатируется, то проверка в лаборатории будет значительно проще и удобней. Но если объект введен в эксплуатацию, то потребуется замена проверяемых автоматов резервными. В этом случае заказчику потребуется заранее подготовить их а необходимом количестве. Резервные выключатели будут установлены на место проверяемых, чтобы электроустановка продолжала работать во время выполнения испытаний.

Если же заказчик не считает целесообразным приобретать большое количество резервного оборудования, то проводить испытание придется в нерабочие часы — вечером и ночью, а также в выходные дни. В этом случае потребителю не придется испытывать неудобства от отключения сети.

Заказчики могут выбрать вариант проведения испытаний, которые предложат наши специалисты. Окончательное решение всегда остается за ответственным лицом: инженером по технической безопасности или владельцем.

Необходимость эксплуатационной проверки и прогрузки автоматов

Требуется ли проведение проверку автоматических выключателей в ходе эксплуатационных испытаний, может решать технический руководитель объекта. В нормативной документации не указано точно, с какой периодичность должны проводиться проверки, поэтому их частота полностью в компетенции лица, ответственного за техническую безопасность объекта.

Специалисты все же рекомендую время от времени проводит проверку исправности автоматов. Это объясняется тем, что любой прибор со временем изнашивается и может выйти из строя. Чтобы убедиться в том, что автоматы выполняют свою защитную функцию, стоит установить определенную периодичность, с которой будут проводится эксплуатационные испытания.

Для установления периодичности лучше всего опираться на рекомендации производителя приборов. Как правило, приборы европейского производства можно проверять относительно редко. А вот если в системе установлены автоматы, изготовленные в Китае или на отечественном заводе, то рекомендуется проводить проверки чаще. В любом случае окончательное решение остается за заказчиком.

Результаты проверки автоматических выключателей

Результаты проведения испытательных работ заносятся в специальный протокол. В документе фиксируется срабатывание или несрабатывание автомата, время срабатывания и ток в момент срабатывания.

Выключатель должен быть исключен из сети и заменен аналогичным в следующих случаях:

  • при токе несрабатывания происходит расцепление;
  • при токе срабатывания расцепление не происходит;
  • автомат срабатывает, но этот момент не вписывает в допустимый интервал времени срабатывания.

Если в ходе испытаний был выявлен хотя бы один выключатель, который подлежит замене, то по требованиям ПУЭ необходимо дополнительно проверить такое же количество приборов, которое было отправлено на первичную проверку.

Чаще всего выявление неисправных выключателей происходит при эксплуатационных испытаниях. Если проверка осуществляется в рамках передачи объекта в эксплуатацию, то вероятность обнаружения неисправности значительно ниже. Использование надежного оборудования и строгое соблюдение регламента испытаний позволяет нам выявить дефектные выключатели с высокой точностью. Это позволяет максимально защитить электросеть, объект и людей, которые проживают на нем, работают или посещают его. И хотя замена выключателя может быть достаточно затратной, повышение безопасности этого стоит.

Случается, что из-за короткого замыкания происходит поломка другого оборудования сети: вентиляционного или промышленного. В результате затраты становятся еще больше, поэтому вклад средств в испытания и замену выявленных неисправных автоматов можно рассматривать как экономию в долгосрочной перспективе.


 ТАКЖЕ МЫ ВЫПОЛНЯЕМ:

Обслуживание
электроустановок
Слаботочные
системы и сети
Испытание
электроустановок
Автоматизация и диспетчеризация зданий

Источник: vnt24.ru


vodavdome.website

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *