Закрыть

Как обозначается стабилитрон на плате: Стабилитрон: принцип работы, маркировка, обозначение, параметры, свойства

Содержание

Стабилитрон: принцип работы, маркировка, обозначение, параметры, свойства

Обновлена: 24 Ноября 2022 136 7

Поделиться с друзьями

Полупроводниковый стабилитрон, или диод Зенера, представляет собой диод особого типа. При прямом включении обычный диод и стабилитрон ведут себя аналогично. Разница между ними проявляется при обратном включении. Обычный диод при подаче обратного напряжения и превышении его номинального значения просто выходит из строя. А  для стабилитрона подключение обратного напряжения и его рост до установленной точки является штатным режимом. При достижении определенной точки обратного напряжения в стабилитроне возникает обратимый пробой. Через устройство начинает течь ток. До наступления пробоя стабилитрон находится в нерабочем состоянии и через него протекает только малый ток утечки.  На электросхемах стабилитрон обозначается как стрелка-указатель, на конце которой имеет черточка, обозначающая запирание.

Стрелка указывает направление тока. Буквенное обозначение на схемах – VD.

Содержание статьи

  • Устройство
  • Принцип действия
  • Вольт-амперная характеристика
  • Области применения
  • Основные характеристики
  • Способы включения – последовательное и параллельное
  • Составные стабилитроны
  • Виды стабилитронов
    • Прецизионные
    • Быстродействующие
  • Регулируемые стабилитроны
  • Способы маркировки
  • Как отличить стабилитрон от обычного диода
  • Как правильно подобрать стабилитрон?
  • Содержание драгоценных металлов в стабилитронах

Устройство

Полупроводниковые стабилитроны пришли на смену морально устаревшим стабилитронам тлеющего разряда – ионным газоразрядным электровакуумным приборам. Для изготовления стабилитронов используются кремниевые или германиевые кристаллы (таблетки) с проводимостью n-типа, в которые добавляют примеси сплавным или диффузно-сплавным способом.

Для получения электронно-дырочного p-n перехода используются акцепторные примеси, в основном алюминий. Кристаллы заключают в корпуса из полимерных материалов, металла или стекла.

Кремниевые сплавные стабилитроны Д815 (А-И) выпускаются в металлическом герметичном корпусе, который является положительным электродом. Такие элементы имеют широкий интервал рабочих температур – от -60°C до +100°C. Кремниевые сплавные двуханодные стабилизирующие диоды КС175А, КС182А, КС191А, КС210Б, КС213Б выпускают в пластмассовом корпусе. Кремниевые сплавные термокомпенсированные детали КС211 (Б-Д), используемые в качестве источников опорного напряжения, имеют пластмассовый корпус.

SMD стабилитроны, то есть миниатюрные компоненты, предназначенные для поверхностного монтажа, изготавливаются в основном в стеклянных и пластиковых корпусах. Такие элементы могут выпускаться с двумя и тремя выводами. В последнем случае третий вывод является «пустышкой», никакой смысловой нагрузки не несет и предназначается только для надежной фиксации детали на печатной плате.

Принцип действия

Стабилитрон был открыт американским физиком Кларенсом Мелвином Зенером, именем которого его и назвали. Электрический пробой p-n перехода может быть обусловлен туннельным пробоем (в этом случае пробой носит название Зенеровского), лавинным пробоем, пробоем в результате тепловой неустойчивости, который наступает из-за разрушительного саморазогрева токами утечки.

И инженеры конструируют эти элементы таким образом, чтобы возникновение туннельного и/или лавинного пробоя произошло задолго до того, как в них возникнет вероятность теплового пробоя.

Величина напряжения пробоя зависит от концентрации примесей и способа легирования p-n-перехода. Чем больше концентрация примесей и чем выше их градиент в переходе, тем ниже обратное напряжение, при котором образуется пробой.

  • Туннельный (зенеровский) пробой появляется в полупроводнике в тех случаях, когда напряженность электрического поля в p-n зоне равна 106 В/см. Такая высокая напряженность может возникнуть только в высоколегированных диодах. При напряжениях пробоя, находящихся в диапазоне 4,5…6,7 В, сосуществуют туннельный и лавинный эффекты, а вот при напряжении пробоя менее 4,5 В остается только туннельный эффект.
  • В стабилитронах с небольшими уровнями легирования или меньшими градиентами легирующих добавок присутствует только
    лавинный механизм пробоя
    , который появляется при напряжении пробоя примерно 4,5 В. А при напряжении выше 7,2 В остается только лавинный эффект, а туннельный полностью исчезает.

Как было сказано ранее, при прямом подключении стабилитрон при прямом включении ведет себя так же, как и обычный диод, – он пропускает ток. Различия между ними возникают при обратном подключении.

Обычный диод при обратном подключении запирает ток, а стабилитрон при достижении обратным напряжением величины, которая называется напряжением стабилизации, начинает пропускать ток в обратном направлении. Это объясняется тем, что при подаче на стабилитрон напряжения, которое превышает U ном. устройства, в полупроводнике возникает процесс, называемый пробоем. Пробой может быть туннельным, лавинным, тепловым. В результате пробоя ток, протекающий через стабилитрон, возрастает до максимального значения, ограниченного резистором. После достижения напряжения пробоя ток остается примерно постоянным в широком диапазоне обратных напряжений. Точка, в которой напряжение запускает ток, может очень точно устанавливаться в процессе производства легированием. Поэтому каждому элементу присваивают определенное напряжение пробоя (стабилизации).

Стабилитрон используется только в режиме «обратного смещения», то есть его анод подключается к «-» источника питания. Способность стабилитрона запускать обратный ток при достижении напряжения пробоя применяется для регулирования и стабилизации напряжения при изменении напряжения питания или подключенной нагрузки. Использование стабилитрона позволяет обеспечить постоянное выходное напряжение для подключенного потребителя при перепадах напряжения ИП или меняющемся токе потребителя.

Вольт-амперная характеристика

ВАХ стабилитрона, как и обычного диода, имеет две ветви – прямую и обратную. Прямая ветвь является рабочим режимом для традиционного диода, а обратная характеризует работу стабилитрона. Стабилитрон называют опорным диодом, а источник напряжения, в схеме которого есть стабилитрон, называют опорным.

На рабочей обратной ветви опорного диода выделяют три основные значения обратного тока:

  • Минимальное. При силе тока, которая меньше минимального значения, стабилитрон остается закрытым.
  • Оптимальное. При изменении тока в широких пределах между точками 1 и 3 значение напряжения меняется несущественно.
  • Максимальное. При подаче тока выше максимальной величины опорный диод перегреется и выйдет из строя. Максимальное значение тока ограничивается максимально допустимой рассеиваемой мощностью, которая очень зависит от внешних температурных условий.

Области применения

Основная область применения этих элементов – стабилизация постоянного напряжения в маломощных ИП или в отдельных узлах, мощность которых не более десятков ватт. С помощью опорных диодов обеспечивают нормальный рабочий режим транзисторов, микросхем, микроконтроллеров.

В стабилизаторах простой конструкции стабилитрон является одновременно источником опорного напряжения и регулятором. В более сложных конструкциях стабилитрон служит только источником опорного напряжения, а для силового регулирования применяется внешний силовой транзистор.

Термокомпенсированные стабилитроны и детали со скрытой структурой востребованы в качестве дискретных и интегральных источников опорного напряжения. Для защиты электрической аппаратуры от перенапряжений разработаны импульсные лавинные стабилитроны. Для защиты входов электрических приборов и затворов полевых транзисторов в схему устанавливают рядовые маломощные стабилитроны.

Полевые транзисторы с изолированным затвором (МДП) изготавливаются с одним кристаллом, на котором расположены: защитный стабилитрон и силовой транзистор.

Основные характеристики

В паспорте стабилизирующего диода указывают следующие параметры:

  • Номинальное напряжение стабилизации Uст. Этот параметр выбирает производитель устройства.
  • Диапазон рабочих токов. Минимальный ток – величина тока, при которой начинается процесс стабилизации. Максимальный ток – значение, выше которого устройство разрушается.
  • Максимальная мощность рассеивания. В маломощных элементах это паспортная величина. В паспортах мощных стабилитронов для расчета условий охлаждения производитель указывает: максимально допустимую температуру полупроводника и коэффициент теплового сопротивления корпуса.

Помимо параметров, указываемых в паспорте, стабилитроны характеризуются и другими величинами, среди которых:

  • Дифференциальное сопротивление. Это свойство определяет нестабильность устройства по напряжению питания и по току нагрузки. Первый недостаток устраняется запитыванием стабилизирующего диода от источника постоянного тока, а второй – включением между стабилитроном и нагрузкой буферного усилителя постоянного тока с эмиттерным повторителем.
  • Температурный коэффициент напряжения. В соответствии со стандартом эта величина равна отношению относительного изменения напряжения стабилизации к абсолютному изменению наружной температуры. В нетермостабилизированных стабилитронах при нагреве от +25°C до +125°C напряжение стабилизации сдвигается на 5-10% от первоначального значения.
  • Дрейф и шум. Эти характеристики для обычных стабилитронов не определяются. Для прецизионных устройств они являются очень важными свойствами. В обычных (непрецизионных) стабилитронах шум создают: большое количество посторонних примесей и дефекты кристаллической решетки в области p-n перехода. Способы снижения шума (если в этом есть необходимость): защитная пассивация оксидом или стеклом (примеси направляются вглубь кристалла) или перемещением вглубь кристалла самого p-n-перехода. Второй способ является более радикальным. Он востребован в диодах с низким уровнем шума со скрытой структурой.

Способы включения – последовательное и параллельное

На детали импортного производства в сопроводительных документах ситуации, при которых возможно последовательное или параллельное соединение, не регламентируются. В документации на отечественные опорные диоды можно встретить два указания:

  • В приборах маленькой и средней мощности можно последовательно или параллельно подсоединять любое количество односерийных стабилитронов.
  • В приборах средней и значительной мощности можно последовательно соединять любое число стабилизирующих диодов единой серии. При параллельном соединении необходимо произвести расчеты. Общая мощность рассеивания всех параллельно подсоединенных стабилитронов не должна быть выше аналогичного показателя одной детали.

Допускается последовательное подключение опорных диодов разных серий в том случае, если рабочие токи созданной цепи не превышают паспортные токи стабилизации для каждой серии, установленной в схеме.

На практике для умножения напряжения стабилизации чаще всего применяют последовательное соединение двух-трех стабилитронов. К этой мере прибегают в том случае, если не удалось достать деталь на нужное напряжение или необходимо создать высоковольтный стабилитрон. При последовательном соединении напряжение отдельных элементов суммируется. В основном этот вид соединения используется при сборке высоковольтных стабилизаторов.

Параллельное соединение деталей служит для того, чтобы повышать ток и мощность. Однако на практике этот вид соединения применяется редко, поскольку различные экземпляры опорных диодов даже одного типа не имеют совершенно одинаковых напряжений стабилизации. Поэтому при параллельном соединении разряд возникнет только в детали с наименьшим напряжением стабилизации, а в остальных пробой не произойдет. Если пробой и возникает, то одни стабилитроны в такой цепи будут работать с недогрузкой, а другие с перегрузкой.

Для стабилизации переменного напряжения стабилитроны соединяются последовательно и встречно. В первый полупериод синусоиды переменного тока один элемент работает как обычный диод, а второй выполняет функции стабилитрона. Во втором полупериоде элементы меняются функциями. Форма выходного напряжения отличается от входного. Ее конфигурация напоминает трапецию. Это связано с тем, что напряжение, превышающее напряжение стабилизации, будет отсекаться и верхушки синусоиды будут срезаны. Последовательное и встречное соединение стабилитронов может применяться в термостабилизированном стабилитроне.

Составные стабилитроны

Составной стабилитрон – устройство, применяемой в ситуациях, когда необходимы токи и мощность большего значения, чем это допускают технические условия. В этом случае между стабилизирующим диодом и нагрузкой подсоединяют буферный усилитель постоянного тока. В схеме коллекторный переход транзистора включен параллельно стабилизирующему диоду, а эммиттерный переход – последовательно.

Схема обычного составного стабилитрона не предназначена для применения на прямом токе. Но добавление диодного моста превращает составной стабилитрон в систему двойного действия, которая может работать и при прямом, и при обратном токе. Такие стабилитроны еще называют двойными или двуханодными. Стабилитроны, которые могут работать с напряжением только одной полярности, называют несимметричными. А составные стабилитроны, дееспособные при любом направлении тока, называют симметричными.

Виды стабилитронов

На современном рынке электроники имеется широкий ассортимент стабилитронов, адаптированных к определенным условиям применения.

Прецизионные

Эти устройства обеспечивают высокую стабильность напряжения на выходе. К ним предъявляются дополнительные требования к временной нестабильности напряжения и температурного коэффициента напряжения. К прецизионным относятся устройства:

  • Термокомпенсированные. В схему термокомпенсированного стабилитрона входят последовательно соединенные: стабилитрон номинальным напряжением 5,6 В (с плюсовым значением температурного коэффициента) и прямоосвещенный диод (с минусовым коэффициентом). При последовательном соединении этих элементов происходит взаимная компенсация температурных коэффициентов. Вместо диода в схеме может использоваться второй стабилитрон, включаемый последовательно и встречно.
  • Со скрытой структурой. Ток пробоя в обычном стабилитроне сосредотачивается в приповерхностном кремниевом слое, где находится максимальное количество посторонних примесей и дефектов кристаллической решетки. Эти несовершенства конструкции провоцируют шум и нестабильную работу. В деталях со скрытой структурой ток пробоя «загоняют» внутрь кристалла путем формирования глубокого островка p-типа проводимости.   

Быстродействующие

Для них характерны: низкое значение барьерной емкости, всего десятки пикофарад, и краткий период переходного процесса (наносекунды). Такие особенности позволяют опорному диоду ограничивать и стабилизировать кратковременные импульсы напряжения.

Стабилизирующие диоды могут быть рассчитаны на напряжение стабилизации от нескольких вольт до нескольких сотен вольт. Высоковольтные стабилитроны устанавливаются на специальные охладители, способные обеспечить нужный теплообмен и уберечь элемент от перегрева и последующего разрушения.

Регулируемые стабилитроны

При изготовлении стабилизированных блоков питания необходимый стабилитрон может отсутствовать. В этом случае собирают схему регулируемого стабилитрона.

Нужное напряжение стабилизирующего диода подбирают при помощи резистора R1. Для настройки схемы на место резистора R1 подключают переменный резистор номиналом 10 кОм. После получения нужного значения напряжения определяют полученное сопротивление и устанавливают на постоянное место резистор нужного номинала. Для этой схемы можно применить транзисторы КТ342А, КТ3102А.

Способы маркировки

На корпусе детали имеется буквенная или буквенно-цифровая маркировка, которая характеризует электрические свойства и назначение устройства. Различают два типа маркировки. Детали в стеклянном корпусе маркируются привычным образом. На поверхности элемента пишут напряжение стабилизации с использованием буквы V, которая выполняет функцию десятичной запятой. Маркировка из четырех цифр и буквы в конце менее понятна. Расшифровать ее можно только с помощью даташита.

Еще один способ обозначения стабилизирующих диодов – цветовая маркировка. Часто применяется японский вариант, который представляет собой два или три цветных кольца. При наличии двух колец, каждое из них обозначает определенную цифру. Если второе кольцо нанесено в удвоенном варианте, то это означает, что между первой и второй цифрой надо поставить запятую.

Как отличить стабилитрон от обычного диода

Оба эти элемента имеют схожее обозначение на схеме. На практике отличить стабилитрон от обычного диода  и даже узнать его номинал, если оно не более 35 В, можно с помощью приставки к мультиметру.

Схема приставки к мультиметру

Для выполнения генератора с широтно-импульсной модуляцией используется специализированная микросхема MC34063. Чтобы обеспечить гальваническую развязку между ИП и измерительной частью схемы напряжение контролируют на первичной обмотке трансформатора. Это позволяет сделать выпрямитель на VD2. Точка стабилизации выходного напряжения устанавливается с помощью резистора R3. Напряжение на конденсаторе С4 – примерно 40 В. Стабилизатор тока А2 и проверяемый опорный диод составляют параметрический стабилизатор, а мультиметр, подключенный к выводам схемы, позволяет определить напряжение стабилитрона.

Если диод подключить в обратной полярности (анод к «-», а катод к «+»), то мультиметр для обычного диода покажет 40 В, а для стабилитрона – напряжение стабилизации.

Для определения работоспособности стабилитрона с известным номиналом используют простую схему, состоящую из источника питания и токоограничительного резистора на 300…500 Ом. В этом случае с помощью мультиметра определяют не сопротивление перехода, а напряжение. Включают элементы, как показано на схеме, и меряют напряжение на стабилитроне.

Медленно поднимают напряжение блока питания. На значении напряжения стабилизации напряжение на стабилитроне должно прекратить свой рост. Если это произошло, значит, элемент исправен. Если при последующем увеличении напряжения ИП диод не начинает стабилизировать, значит, он не исправен.

Как правильно подобрать стабилитрон?

Стабилитроны относятся к стабилизаторам небольшой мощности. Поэтому их необходимо подбирать так, чтобы через них без перегрева мог проходить весь ток нагрузки плюс минимальный ток стабилизации.


Для правильного выбора стабилитрона для электрической схемы необходимо знать следующие параметры: минимальное и максимальное входное напряжение, напряжение на выходе, минимальный и максимальный ток нагрузки. Напряжение стабилизации стабилитрона равно выходному напряжению. А рассчитать максимальный ток, который может пройти через стабилитрон в конкретной схеме, и мощность рассеивания при максимальном токе, лучше всего с помощью онлайн-калькулятора.  


Содержание драгоценных металлов в стабилитронах

В стабилитронах, как и в других полупроводниках – обычных диодах, тиристорах, варикапах, из драгоценных металлов содержится, в основном, серебро, в некоторых – золото. Конкретное количество указывается в специальных таблицах. Содержание палладия и платины, даже если они и присутствуют в полупроводниках, обычно не указывается, поскольку их концентрация ничтожно мала.



Была ли статья полезна?

Да

Нет

Оцените статью

Что вам не понравилось?


Другие материалы по теме


Анатолий Мельник

Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.


Стабилитрон. Его назначение, параметры и обозначение на схеме.

Много-много лет тому назад такого слова как стабилитрон не существовало вообще. Тем более в бытовой аппаратуре.

Попробуем представить себе громоздкий ламповый приёмник середины двадцатого века. Многие приносили их в жертву собственному любопытству, когда папа с мамой приобретали что-нибудь новое, а «Рекорд» или «Неман» отдавали на растерзание .

Блок питания лампового приёмника был предельно прост: мощный кубик силового трансформатора, который обыкновенно имел всего две вторичных обмотки, диодный мостик или селеновый выпрямитель, два электролитических конденсатора и резистор на два ватта между ними.

Первая обмотка питала накал всех ламп приёмника переменным током и напряжением 6,3V (вольт), а на примитивный выпрямитель приходило порядка 240V для питания анодов ламп. Ни о какой стабилизации напряжения и речи не шло. Исходя из того, что приём радиостанций вёлся на длинных, средних и коротких волнах с очень узкой полосой и ужасным качеством, наличие или отсутствие стабилизации напряжения питания на это качество совершенно не влияло, а приличной автоподстройки частоты на той элементной базе просто быть не могло.

Стабилизаторы в то время применялись только в военных приёмниках и передатчиках, конечно тоже ламповые. Например: СГ1П – стабилизатор газоразрядный, пальчиковый. Так продолжалось до тех пор, пока не появились транзисторы. И тут выяснилось, что схемы, выполненные на транзисторах очень чувствительны к колебаниям питающего напряжения, и обыкновенным простым выпрямителем уже не обойтись. Используя физический принцип, заложенный в газоразрядных приборах, был создан полупроводниковый стабилитрон реже называемый диод Зенера.

Графическое изображение стабилитрона на принципиальных схемах.

Внешний вид стабилитронов. Первый сверху в корпусе для поверхностного монтажа. Второй сверху – в стеклянном корпусе DO-35 и мощностью 0,5 Вт. Третий, – мощностью 1 Вт (DO-41). Естественно, стабилитроны изготавливают в разнообразных корпусах. Иногда в одном корпусе объединяется два элемента.

Принцип работы стабилитрона.

Прежде всего, не следует забывать, что стабилитрон работает только в цепях постоянного тока. Напряжение на него подают в обратной полярности, то есть на анод стабилитрона будет подан минус «-«. При таком включении через него протекает обратный ток (I обр) от выпрямителя. Напряжение с выхода выпрямителя может изменяться, будет изменяться и обратный ток, а напряжение на стабилитроне и на нагрузке останется неизменным, то есть стабильным. На следующем рисунке показана вольт-амперная характеристика стабилитрона.

Стабилитрон работает на обратной ветви ВАХ (Вольт-Амперной Характеристики), как показано на рисунке. К его основным параметрам относятся U ст. (напряжение стабилизации) и I ст. (ток стабилизации). Эти данные указаны в паспорте на конкретный тип стабилитрона. Причём величина максимального и минимального тока учитывается только при расчёте стабилизаторов с прогнозируемым большим изменением напряжения.

Основные параметры стабилитронов.

Для того чтобы подобрать нужный стабилитрон необходимо разбираться в маркировках полупроводниковых приборов. Раньше все типы диодов, включая и стабилитроны, обозначались буквой “Д” и цифрой определяющей, что же это за прибор. Вот пример очень популярного стабилитрона Д814 (А, Б, В, Г). Буква показывала напряжение стабилизации.

Д814Б2С147А
  • V стаб. мин. – 8 вольт.

  • V стаб. ном. – 9 вольт.

  • V стаб. макс. – 9,5 вольт.

  • I стаб. – 3 – 35 мA.

  • P макс. – 340 мВт.

  • V стаб. мин. – 4,2 вольта.

  • V стаб. ном. – 4,7 вольт.

  • V стаб. макс. – 5,1 вольт.

  • I стаб. – 3 – 60 мА.

  • P макс. – 300 мВт.

Рядом паспортные данные современного стабилитрона (2C147A), который использовался в стабилизаторах для питания схем на популярных сериях микросхем К155 и К133 выполненных по ТТЛ технологии и имеющих напряжение питания 5V.

Чтобы разбираться в маркировках и основных параметрах современных отечественных полупроводниковых приборов необходимо немного знать условные обозначения. Они выглядят следующим образом: цифра 1 или буква Г – германий, цифра 2 или буква К – кремний, цифра 3 или буква А – арсенид галлия. Это первый знак. Д – диод, Т – транзистор, С – стабилитрон, Л – светодиод. Это второй знак. Третий знак это группа цифр обозначающих сферу применения прибора. Отсюда: ГТ 313 (1Т 313) – высокочастотный германиевый транзистор, 2С147 – кремниевый стабилитрон с номинальным напряжением стабилизации 4,7 вольта, АЛ307 – арсенид-галлиевый светодиод.

Вот схема простого, но надёжного стабилизатора напряжения.

Между коллектором мощного транзистора и корпусом подается напряжение с выпрямителя и равное 12 – 15 вольт. С эмиттера транзистора мы снимаем 9V стабилизированного напряжения, так как в качестве стабилитрона VD1 мы используем надёжный элемент Д814Б (см. таблицу). Резистор R1 – 1кОм, транзистор КТ819 обеспечивающий ток до 10 ампер.

Транзистор необходимо разместить на радиаторе-теплоотводе. Единственный недостаток данной схемы – это невозможность регулировки выходного напряжения. В более сложных схемах подстроечный резистор, конечно, имеется. Во всех лабораторных и домашних радиолюбительских источниках питания есть возможность регулировки выходного напряжения от 0 и до 20 – 25 вольт.

Интегральные стабилизаторы.

Развитие интегральной микроэлектроники и появление многофункциональных схем средней и большой степени интеграции, конечно, коснулось и проблем связанных со стабилизацией напряжения. Отечественная промышленность напряглась и выпустила на рынок радиоэлектронных компонентов серию К142, которую составляли как раз интегральные стабилизаторы. Полное название изделия было КР142ЕН5А, но так как корпус был маленький и название не убиралось целиком, стали писать КРЕН5А или Б, а в разговоре они назывались просто «кренки».

Сама серия была достаточно большая. В зависимости от буквы варьировалось выходное напряжение. Например, КРЕН3 выдавал от 3 до 30 вольт с возможностью регулировки, а КРЕН15 был пятнадцативольтовым двухполярным источником питания.

Подключение интегральных стабилизаторов серии К142 было крайне простым. Два сглаживающих конденсатора и сам стабилизатор. Взгляните на схему.

Если есть необходимость получить другое стабилизированное напряжение, то поступают следующим образом: допустим, мы используем микросхему КРЕН5А на 5V, а нам нужно другое напряжение. Тогда между вторым выводом и корпусом ставится стабилитрон с таким расчётом, чтобы сложив напряжение стабилизации микросхемы, и стабилитрона мы получили бы нужное напряжение. Если мы добавим стабилитрон КС191 на V = 9,1 + 5V микросхемы, то на выходе мы получим 14.1 вольт.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

  • Как купить радиодетали в интернет?

  • Как устроен динамик?

  • Электромагнитное реле. Устройство и характеристики.

 

Как идентифицировать компоненты на печатных платах

Определить все компоненты на печатных платах может быть сложно.

Если вы когда-либо пытались работать с собственными печатными платами или печатными платами, вы, возможно, испытывали разочарование, глядя на деталь и не зная точно, что это такое. После работы с тысячами печатных плат мы понимаем.

К счастью, есть ресурсы, которые могут помочь. На самом деле их много. Но они разбросаны повсюду. И многие из лучших даже больше не доступны в Интернете, если вы не знаете, как использовать некоторые специальные инструменты (Wayback Machine вам в помощь!)

Но вместо того, чтобы жаловаться на такое положение вещей, мы решили создать собственный учебник, чтобы исправить это. Бонус: вы тоже выигрываете.

Вот наш учебник по компонентам печатной платы с большим количеством информации и изображений, которые помогут вам идентифицировать эти отдельные части.

Печатные платы: основные сведения

Печатные платы обычно изготавливаются из многослойного композитного материала. Эта непроводящая подложка сжимает медные схемы, которые фактически составляют схемы, в честь которых названы платы.

субстрат: /ˈsəbˌstrāt/; нижележащее вещество или слой.

Mudcoders.com

Эти медные цепи, также известные как сигнальные дорожки, электрически соединяют и механически поддерживают другие компоненты, установленные на плате.

Почему печатные платы зеленые? На самом деле это паяльная маска, которая видна сквозь стекловолоконную сердцевину платы. Припой защищает медные цепи и предотвращает короткие замыкания. Зеленый припой придает оттенок стеклу, защищающему его.

паяльная маска: /ˈsädər mask/; защитный слой жидкого фотолака, нанесенный на верхнюю и нижнюю часть печатных плат для защиты меди от окисления и пыли.

eurocircuits.com

Пошаговая инструкция по идентификации компонентов

Как и большинство вещей в жизни, идентификация компонентов упрощается, если разбить задачу на более мелкие части.

Идентификация платы Использование

Сначала попытайтесь идентифицировать всю плату. Для чего его используют? Это материнская плата, дочерняя плата или она выполняет определенную задачу? Некоторые доски отмечены кодами, которые помогут в этом процессе. Например, плата DMCB, изображенная ниже, имеет размер 9.0023 D OS M ain C управление B плата для системы GE Mark V. Многие аббревиатуры советов директоров GE похожи на это. Они могут помочь вам разобраться с приложением платы.

Материнская плата: печатная плата с основными компонентами и разъемами для установки других печатных плат. Дочерняя плата: плата расширения, которая подключается к материнской плате для доступа к процессору и памяти.

AX Control
Эта печатная плата GE DS200DMCBG1ABB функционирует как D OS M ain C управление B плата или DMCB.

Определите детали

Затем определите пассивные компоненты, такие как конденсаторы и катушки индуктивности. Не волнуйтесь, позже в этом посте будут фотографии. Затем ищите резисторы и потенциометры. Обычно они имеют метку измерения сопротивления. Символом ома является греческая буква Омега, которая выглядит так: Ом . 100 МОм переводится в 100 мегаом.

Другие легко идентифицируемые компоненты включают генераторы (цилиндры или коробки, обычно помеченные X или Y), трансформаторы (T), диоды (D) и реле (обозначенные как K).

Теперь проверьте, есть ли на плате предохранитель. Предохранители часто представляют собой прозрачные или непрозрачные трубки. Затем попытайтесь идентифицировать какие-либо батареи или транзисторы.

Определите разъемы платы. Соединители используются для подключения других печатных плат или для подключения платы к более крупной системе или внешним компонентам.

Существует так много различных типов разъемов, что вы могли бы потратить месяцы на изучение их всех, но наиболее распространенными являются объединительные платы, клеммные колодки, контактные разъемы и разъемы, которые их принимают, а также разъемы или вилки.

Наконец, определите процессор и другие интегральные схемы на плате. На многих микросхемах есть этикетка или идентификатор производителя и номера детали. Если это так, вы можете найти отдельное техническое описание, чтобы узнать больше о чипе.

Печатные платы: наиболее распространенные компоненты

Хотя на печатных платах может быть много различных установленных компонентов, наиболее распространенными являются восемь. К ним относятся

. На этой печатной плате показаны общие детали печатных плат, включая конденсаторы, резисторы, транзисторы и диоды. Щелкните правой кнопкой мыши, чтобы открыть полноразмерное изображение, чтобы увидеть метки на поверхности печатной платы.
  • Батареи. В большинстве случаев батареи имеют маркировку «BT». Аккумуляторы обеспечивают резервную запасенную энергию.
  • Конденсаторы . Обозначается буквой «С». Конденсаторы хранят энергию и измеряются в фарадах. Обычно это указывается в микрофарадах (мкФ) или миллифарадах (мФ).
  • Диоды . Маркировка D или CR. Стабилитроны могут иметь маркировку Z или ZD. Они регулируют напряжения.
  • Катушки индуктивности . Обозначены буквой L. Катушки индуктивности накапливают энергию в магнитном поле при протекании электрического тока.
  • Светодиоды . Светодиоды. Маркированный светодиод. Светодиоды преобразуют электрическую энергию в свет.
  • Резисторы . Обозначены R. Резисторы уменьшают протекающий ток, регулируют уровни сигналов, делят напряжения и ограничивают линии передачи. Они также могут рассеивать ватты электроэнергии в виде тепла.
  • Переключатели Маркировка S. Вы используете переключатели каждый день. Так же, как выключатель света или зажигание вашего автомобиля, эти выключатели используются для включения или выключения вещей.
  • Транзисторы . Маркировка Q. Транзисторы относятся к типу полупроводников. Они усиливают и исправляют сигналы. Почему они представлены буквой Q? Потому что, когда они впервые вошли в обиход (1950-е годы), трансформаторы уже имели обозначение (T). Кроме того, люди, честно говоря, не знали, будут ли они достаточно полезны, чтобы оставаться рядом. Так что (Q) казался достаточно хорошим.

Обозначения компонентов печатной платы

Многие печатные платы имеют встроенные «обманки». Ссылочные обозначения, напечатанные на поверхности печатной платы, помогут вам идентифицировать каждый компонент.

Вот список некоторых общих позиционных обозначений. Однако важно понимать, что это всего лишь руководство. Некоторые разработчики печатных плат используют только часть этого списка или могут использовать код для другого типа компонента. Вывод: всегда используйте позиционные обозначения как подсказки, а не как определенный идентификатор.

ATT

BT

CB

D

G

J

L

MOV

9 0002 PS

Q

R

T

TC

TR

VR

XTAL

ZD

Аттенюатор

Аккумулятор 9000 3

Автоматический выключатель

Диод

Генератор

Перемычка или гнездо

Катушка индуктивности

Металлооксидный варистор

Блок питания

Транзистор

Резистор

Трансформатор

Термопара

Транзистор

Переменный резистор

Кристалл

Стабилитрон

BR

C

DC

F

IC

K

Светодиод

LS

P

POT

S или SW

TB

TP

U

X

Z

Мостовой выпрямитель

Конденсатор

Направленный ответвитель

Предохранитель

Интегральная схема

Реле или контактор

Light-emi Диод

Громкоговоритель

Вилка

Потенциометр

Переключатель

Клеммная колодка

Контрольная точка

Интегральная схема

Преобразователь

Стабилитрон

90 010 Печатные платы: Визуально соответствующие детали

Посмотрим правде в глаза: большинство из нас учатся визуально. С этой целью мы заканчиваем этот пост несколькими визуальными читами. Используйте этот список в качестве сравнительной таблицы, когда вы запутались в какой-то конкретной части.

Помните: печатные платы используются десятилетиями. Так же как и их присоединенные компоненты. Технология (и внешний вид этой технологии) значительно изменилась за это время. Сравните эти платы от 1970-х по сравнению с концом 1990-х:

Плата детектора уровня сигнала GE 193x Плата связи GE IS200VCMIh3B

Конденсаторы (C)

Первоначально называемые конденсаторами, конденсаторы накапливают энергию в электростатическом поле. Они используются в электронных схемах для блокировки постоянного тока и пропускания переменного тока.

Почему это может быть полезно? Сглаживает выходы блока питания. Он стабилизирует напряжение и поток мощности. И это позволяет настраивать резонансные цепи (например, радиоприемники на определенные частоты).0003 Электролитические конденсаторы Elcap. Используется в CC0 1. 0.

Диоды (D)

Типы диодов. CC By-SA 3.0

Диод — это тип полупроводника. Ток может проходить только в одном направлении. Именно для этого и используются диоды: для управления направлением тока.

Существует много видов диодов. На картинке (справа) вы видите несколько вариантов полупроводниковых диодов, включая мостовой выпрямитель (внизу), сигнальный диод, выпрямитель и стабилитрон. Окрашенная полоса часто указывает, в каком направлении движутся электроны, когда диод проводит ток.

Другие виды диодов включают светодиоды (светоизлучающие диоды) и фотодиоды. Фотодиоды улавливают энергию фотонов света.

Предохранители (F)

Предохранители обеспечивают защиту от перегрузки по току. Они защищают провода и дорожки печатных плат и предохраняют их от плавления или возгорания.

Предохранитель на 250 В защищает эту печатную плату GE DS200DPCBG1AAA Mark V.

Многие предохранители для печатных плат выглядят так же, как в приведенном выше примере: плавкий предохранитель с осевыми выводами в прозрачной или полупрозрачной трубке, установленный немного выше поверхности платы. Другими вариантами являются предохранители Flat-Pak, тонкопленочные чипы и предохранители с радиальными выводами.

Интегральные схемы (U)

Примеры интегральных схем. CC by 4.o Fairchild RAM 2102, 1976.

Интегральные схемы могут называться по-разному, включая IC, чип или микрочип. Эти небольшие компоненты изготовлены из пластин полупроводникового материала. Они выполняют множество функций, включая микропроцессор, таймер, память, усилитель, счетчик и осциллятор.

В печатной плате GE Mark VI IS200VCMIh3BB используется ряд различных интегральных схем (в центре платы).

Интегральные схемы используются с начала 19 века.60-х, хотя микропроцессор и микроконтроллер появились лишь десятилетие спустя.

Если вам нужна дополнительная информация об микросхемах на вашей плате, найдите таблицы данных, относящиеся к конкретной микросхеме. Вы можете найти их, выполнив поиск информации по номеру детали и другой информации, напечатанной на верхней части чипа.

Джемперы (J)

Джемперы различных цветов и типов. Контакты перемычки слева. Изображение CC из Википедии.

Перемычки замыкают электрическую цепь, позволяя печатной плате выполнять определенную функцию. Большинство перемычек имеют три контакта. Небольшая пластиковая крышка, называемая блоком перемычек, может в любой момент закрыть два из этих контактов.

Ряд красных перемычек находится на переднем краю этой платы Mark IV DS3800DMPK1C1B.

Перемычки регулируют ресурсы устройства и вручную настраивают периферийные устройства.

Обычно на печатных платах встречаются два разных типа перемычек. Первый — это перемычки типа Берга, о которых мы рассказали выше. Второе — проволочные перемычки. Провода-перемычки имеют штыревые контакты на каждом конце и могут соединять две точки на плате без пайки.

Реле (К)

Реле электронно или электромеханически размыкают и замыкают цепи. Эти устройства могут быть нормально открытыми (НО) или нормально закрытыми (НЗ). Это представляет состояние реле, когда оно обесточено. Подача тока изменит состояние реле.

Реле могут защищать оборудование от перегрузки по току, минимального тока, обратного тока и перегрузок, предотвращая повреждение оборудования.

Катушки индуктивности (L)

Различные виды катушек индуктивности и трансформаторов. CC BY-SA 3.0 FIEK-Компьютерике

Катушка индуктивности, которую иногда называют дросселем или катушкой, представляет собой пассивный компонент с двумя выводами, используемый для накопления энергии в магнитном поле при подаче электрического тока.

В печатных платах используются катушки индуктивности для генерации, фильтрации сигналов, стабилизации тока и подавления электромагнитных помех.

Катушки индуктивности имеют магнитный сердечник (обычно из феррита, иногда из железа), который увеличивает магнитное поле и его индуктивность.

Катушка индуктивности золотого цвета находится на левой стороне GE IS210AEPSG1AFC 9.0036 Металлооксидные варисторы (MOV)

В печатных платах используется несколько типов резисторов, зависящих от напряжения. Одним из наиболее распространенных является MOV или варистор на основе оксида металла. MOV могут проводить большую мощность в течение короткого промежутка времени. Это делает их отличными для подавления скачков напряжения. Вы найдете MOV, используемые в таких приложениях, как линейная защита, защита от скачков напряжения и защита от переключения.

Плата DS3800NPCS от General Electric оснащена четырьмя MOV (красный, в центре).

Потенциометры (POT) или (R)

Потенциометр представляет собой регулируемый делитель напряжения. Этот компонент представляет собой трехконтактный резистор, который использует вращающийся или скользящий контакт для управления напряжением. До того, как цифровая электроника стала нормой, потенциометры были повсюду, их использовали в радиоприемниках и телевизорах в качестве регуляторов громкости.

К некоторым печатным платам прикреплены лицевые панели. Если вы видите это, ищите ручки с переменной настройкой, установленные на лицевой панели. Эти компоненты почти всегда крепятся к потенциометру на поверхности платы.

Трансформаторы (T)

Трансформаторы обменивают напряжение на ток, не влияя на общую электрическую мощность. Они буквально преобразуют электричество высокого напряжения с малым током в электричество с большим током, электричество низкого напряжения или наоборот.

Плата GE 531X184IPTAEG1 имеет шесть трансформаторов, расположенных вдоль верхнего края.

Почему это важно? С одной стороны, это повышает безопасность. Во-вторых, это позволяет использовать его на местном уровне, «уменьшая» мощность высокого напряжения. Представьте, что случилось бы, например, с вашим компьютером, если бы питание поступало прямо из электросети. Его бы поджарить.

То же самое может произойти, если подать питание непосредственно на хрупкие компоненты печатной платы. Но трансформаторы сохраняют детали в безопасности.

Транзисторы (Q)

Транзисторы имеют три контакта. Они регулируют ток. Они также могут переключать электронные сигналы или усиливать входной сигнал в более мощный выходной сигнал. Сделанные из кремния, транзисторы, по сути, представляют собой два NP-диода, вставленных спиной к спине.

Эти типы транзисторов часто появляются в виде компонентов на печатных платах.

Транзисторы были изобретены в 1947 в Bell Laboratories. С тех пор транзисторные устройства постепенно уменьшались в размерах. Современные исследователи создали транзисторы атомного масштаба размером с один атом.

Резисторы (R)

Если бы вам нужно было угадать, что делают резисторы, что бы вы сказали? Вы можете предположить что-то вроде «они сопротивляются». И вы будете правы.

Резисторы сопротивления току. Это буквально их работа. Это пассивные двухполюсные компоненты. Сопротивляя току, резисторы защищают другие компоненты от проблем с перегрузкой по току, таких как чрезмерное накопление тепла.

Резистор используется для уменьшения тока или разделения напряжения. Он также может терминировать линии передачи и регулировать уровни сигнала.

Чтобы узнать больше о резисторах, ознакомьтесь с нашим кратким руководством по цветовой маркировке резисторов. Он расскажет вам больше об этих компонентах.

Как найти дополнительную информацию о компонентах вашей печатной платы

Если вам все еще нужна дополнительная информация о ваших печатных платах после этого руководства, часто есть другие доступные ресурсы.

Если вы работаете с промышленной печатной платой, найдите соответствующее руководство. Даже к более старому оборудованию часто есть руководства, загруженные где-то в Интернете. Найдите их, используя строку поиска «Inurl:pdf manual» и ваш поисковый запрос. Например, если бы я хотел найти руководство для платы GE IS200DSPX, я бы вбил в Google «Inurl:pdf manual GE IS200DSPX». Вы будете удивлены тем, как часто вы будете получать результаты таким образом.

Вы можете использовать ту же строку поиска для поиска спецификаций для отдельных частей печатной платы. Введите «Inurl: pdf datasheet», а затем искомый запрос. На многих компонентах их производитель и индивидуальный номер детали напечатаны сверху или сбоку. Это отличный способ точно узнать, для чего предназначена каждая отдельная интегральная схема.

У вас есть вопросы о сменных печатных платах GE? Мы можем помочь! AX Control поддерживает один из самых больших складских запасов сменных плат GE Speedtronic. Поговорите с нашей командой сегодня.

Нужен ремонт? Мы делаем это. Хотите гарантийные запчасти? Мы можем предоставить их. Хотите поддержать устойчивые методы? AX Control сокращает количество отходов благодаря нашей программе обмена кредитами.

Описание спецификаций стабилитрона » Electronics Notes

Как и любой другой электронный компонент, стабилитрон / диод опорного напряжения имеет свои характеристики, указанные для того, чтобы можно было выбрать правильное устройство для любой конкретной электронной схемы.


9Учебное пособие по стабилитрону/опорному диоду 0366 Включает:
Стабилитрон Теория работы стабилитрона Технические характеристики стабилитрона Схемы на стабилитронах

Другие диоды: Типы диодов


В технических описаниях электронных компонентов указывается множество различных параметров или спецификаций для конкретного компонента и, в данном случае, для стабилитронов или диодов опорного напряжения — эти параметры определяют характеристики диода в определенных пределах, и их исследование является неотъемлемой частью любой процесс проектирования электронных схем.

При выборе подходящего стабилитрона опорного напряжения для любой заданной позиции в цепи необходимо убедиться, что он соответствует предъявляемым требованиям. Понимание технических характеристик является ключом к выбору подходящего устройства.

Маркировка стабилитронов, символы и контуры упаковки

Существует множество различных параметров, которые можно увидеть в спецификациях стабилитронов, приведенных в технических описаниях. Некоторые из наиболее важных из них приведены ниже.

Диоды Зенера

можно использовать для множества целей в схемотехнике, но, в частности, они находят широкое применение в источниках питания, где они могут обеспечивать стабильное опорное напряжение.

На самом деле, хотя эти диоды чаще называют диодами Зенера, многие из них основаны на другой форме пробоя, и поэтому эти электронные компоненты называются диодами опорного напряжения.

Зенер IV характеристики

ВАХ стабилитрона/диода опорного напряжения является ключом к его работе. В прямом направлении диод работает как любой другой полупроводниковый диод с напряжением включения около 0,6 В для кремниевого диода.

Однако это в обратном направлении, где его конкретные рабочие параметры могут быть использованы, поскольку он имеет очень плоское напряжение пробоя, которое может использоваться во многих электронных схемах от регуляторов напряжения до ограничителей напряжения и многих других.

Стабилитрон имеет нормальную прямую характеристику, при которой ток возрастает после достижения начального напряжения включения. Обычно это 0,6 В для кремниевых диодов — практически все стабилитроны являются кремниевыми диодами.

Стабилитрон вольтамперная характеристика

При увеличении напряжения в обратном направлении сначала протекает очень небольшой ток. Только после достижения обратного напряжения пробоя ток начинает течь, как показано на диаграмме. Как только достигается обратное напряжение пробоя, напряжение остается относительно постоянным независимо от тока, протекающего через диод.

Технические характеристики стабилитрона

При просмотре спецификации стабилитрона можно увидеть много параметров этих электронных компонентов, которые будут включены. Каждый параметр детализирует отдельный аспект работы стабилитрона опорного напряжения.

Глядя на каждую отдельную характеристику, можно понять характеристики диода и убедиться, что он будет работать правильно в любой заданной электронной схеме.

Для достижения требуемой производительности схемы каждый компонент в проекте должен работать вместе, чтобы обеспечить требуемую общую производительность. Это, очевидно, включает в себя характеристики стабилитрона, и понимание его рабочих параметров является ключом к выбору требуемого компонента.

Технические характеристики стабилитронов, как и любых других компонентов электроники, обычно доступны на веб-сайте производителя. Также у дистрибьюторов электронных компонентов часто есть подробная информация о спецификациях компонентов, а иногда и ссылка на спецификацию на веб-сайте производителя.

Также следует отметить, что для компонентов, которые могут быть получены от нескольких производителей, характеристики могут незначительно различаться у разных производителей. Для любых критических параметров целесообразно использовать фактические данные производителя, чей продукт используется.

Часто может потребоваться второй источник и другие источники, чтобы обеспечить определенный уровень страхования от того, что конкретный поставщик или производитель прекратит свою деятельность, а деталь устареет. В этом случае параметры спецификации для всех производителей должны быть тщательно проверены, чтобы убедиться, что они соответствуют требованиям для конкретной конструкции электронной схемы.

Напряжение Вз

Спецификация напряжения Зенера или обратного напряжения диода часто обозначается буквами Vz. Напряжения доступны в широком диапазоне значений, обычно следующих диапазонам E12 и E24, хотя не все диоды связаны этим соглашением.

В некоторых случаях электронные компоненты со значениями E12 могут быть немного дешевле, и они могут быть более широко доступны, чем компоненты с такими диапазонами, как диапазон E24.

Значения обычно начинаются примерно с 2,4 В, хотя не все диапазоны простираются до таких низких значений. Значения ниже этого недоступны, потому что ниже этого напряжения диоды не пробиваются. Диапазоны могут простираться до любого места в диапазоне от 47 В до 200 В, в зависимости от фактического диапазона стабилитрона. Максимальные напряжения для вариантов SMD часто составляют около 47 В.


Значения напряжения стабилитрона в диапазоне E12
 
1,0 1,2 1,5
1,8 2,2 2,7
3,3 3,9 4,7
5,6 6,8 8,2

В диапазоне E24 доступно в два раза больше значений, чем в E12, что дает гораздо больший выбор значений. В некоторых случаях это может быть полезно, поскольку можно выбрать более точные значения, уменьшая потребность в корректировке, когда точное значение не соблюдается.


Значения напряжения стабилитрона в диапазоне E24
 
1,0 1,1 1,2
1,3 1,5 1,6
1,8 2,0 2,2
2,4 2,7 3,0
3,3 3,6 3,9
4,3 4,7 5,1
5,6 6,2 6,8
7,5 8,2 9,1
     

Текущая спецификация

Ток IZM стабилитрона представляет собой максимальный ток, который может протекать через стабилитрон при его номинальном напряжении VZ.

Обычно для работы диода также требуется минимальный ток. По грубому эмпирическому правилу это может составлять от 5 до 10 мА для типичного устройства мощностью 400 мВт с выводами. Ниже этого уровня тока диод не выходит из строя в достаточной степени, чтобы поддерживать заявленное напряжение.

Лучше всего, чтобы стабилитрон работал выше этого минимального значения с некоторым запасом, но без вероятности того, что он будет рассеивать слишком много энергии, когда стабилитрон должен пропускать больший ток.

Номинальная мощность

Все стабилитроны имеют номинальную мощность, которую нельзя превышать, поэтому это важная спецификация. На самом деле различные серии стабилитронов или диодов опорного напряжения определяются мощностью, которую они могут рассеивать.

Определяет максимальную мощность, которая может рассеиваться корпусом, и представляет собой произведение напряжения на диоде на протекающий через него ток.

Например, многие устройства с небольшими выводами имеют рассеиваемую мощность 400 мВт или 500 мВт при 20°C, но доступны более крупные устройства с гораздо более высокими уровнями рассеивания.

Также доступны варианты

для поверхностного монтажа, но, как правило, они имеют более низкий уровень рассеивания мощности ввиду размера корпуса и их способности отводить тепло.

Общие номинальные мощности для устройств с выводами включают 400 мВт (наиболее распространенный), 500 мВт, 1 Вт, 3 Вт, 5 Вт и даже 10 Вт. Доступны даже версии на 50 Вт, но они часто устанавливаются на шпильки, чтобы диод можно было установить на радиатор. для отвода выделяемого тепла.

Значения для устройств поверхностного монтажа могут составлять около 200, 350, 500 мВт, а отдельные устройства могут достигать мощности до 1 Вт.

Использование мощных стабилитронов приведет к увеличению затрат в результате того, что более крупные устройства будут более дорогими, а также потребуется дополнительное оборудование для монтажа устройств и отвода тепла. Это помимо повышенного энергопотребления.

Иногда можно использовать альтернативные методы, чтобы использовать стабилитроны с меньшим энергопотреблением и повысить эффективность, хотя может быть необходимо сбалансировать это с увеличением сложности.

Сопротивление Зенера Rz спецификация

ВАХ стабилитрона не полностью вертикальна в области пробоя. Это означает, что при небольших изменениях тока будет небольшое изменение напряжения на диоде. Изменение напряжения при заданном изменении тока есть сопротивление диода. Это значение сопротивления, часто называемое сопротивлением, обозначается как Rz.

Сопротивление стабилитрона

Обратная крутизна показанного наклона называется динамическим сопротивлением диода, и этот параметр часто указывается в спецификациях производителей. Обычно крутизна не сильно меняется для различных уровней тока при условии, что они примерно в 0,1–1 раз превышают номинальный ток Izt.

Допустимое отклонение напряжения

Поскольку диоды маркируются и сортируются в соответствии с диапазонами значений E12 или E24, типичные допуски для диода составляют ±5%. В некоторых таблицах данных напряжение может указываться как типичное, а затем указываться максимальное и минимальное значения.

Температурная стабильность:

Для многих схем важна температурная стабильность стабилитрона. Хорошо известно, что напряжение диода зависит от температуры. Фактически два механизма, которые используются для обеспечения пробоя в этих диодах, то есть пробой Зенера и ударная ионизация, имеют противоположные температурные коэффициенты, и один эффект преобладает ниже примерно 5 В, а другой выше. Соответственно, диоды с напряжением около 5 В, как правило, обеспечивают наилучшую температурную стабильность.

Температурная характеристика стабилитрона

На приведенном примере видно, что существует заметная разница между спецификацией обратного напряжения стабилитрона при 0°C и 50°C. Это необходимо учитывать, если цепь и оборудование, в которых должен использоваться стабилитрон, подвержены изменению температуры.

Спецификация температуры перехода

Для обеспечения надежности диода ключевое значение имеет температура диодного перехода. Несмотря на то, что корпус может быть достаточно прохладным, активная область может быть намного горячее. В результате некоторые производители указывают рабочий диапазон для самого соединения.

Для большинства конструкций электронных схем обычно сохраняется подходящий запас между максимальной ожидаемой температурой внутри оборудования и перехода. Внутренняя температура оборудования снова будет выше, чем температура снаружи оборудования. Температуру всего компонента и, в частности, соединения можно рассчитать, зная охлаждение, температуру окружающей среды и т. д.

Необходимо следить за тем, чтобы отдельные электронные компоненты не нагревались слишком сильно, несмотря на приемлемую температуру окружающей среды снаружи оборудования. Обычно оставляют хороший запас, чтобы гарантировать, что на надежность всей электронной схемы не повлияет перегрев диода опорного напряжения. Если температура будет высокой, то его надежность упадет, и это может оказать существенное влияние на общую надежность оборудования.

Пакет

Стабилитроны

поставляются в различных корпусах. Основной выбор — между устройствами для поверхностного монтажа и традиционными выводными.

Независимо от того, монтируется ли он на поверхности или с выводами, выбранный корпус часто определяет уровень рассеивания тепла. В некоторых случаях, когда диод способен к очень высокому уровню рассеяния, в корпусе может быть предусмотрена возможность крепления болтами к радиатору.

Какими бы ни были требования и уровни рассеяния, доступные варианты будут подробно описаны в технических характеристиках.

Пример технических характеристик стабилитрона

Чтобы дать некоторое представление о характеристиках, ожидаемых от стабилитрона, ниже приведен реальный пример. Приведены основные параметры, которые потребуются в схемотехнике.

  • Освинцованный стабилитрон BZY88 Этот диод описывается как миниатюрный стабилитрон для регулируемых цепей питания, защиты от перенапряжения, подавления дуги и других функций в различных областях. В качестве примера взята версия 5V1 (5,1 Вольт).
Типовые характеристики / технические характеристики стабилитрона BZY88
Характеристика Типичное значение Блок Детали
Рассеиваемая мощность постоянного тока 400 мВт @ Tl = 50°C: снижение мощности выше 50°C 3,2 мВт/°C
Температура перехода от -65 до +175 °С
Напряжение Vz при 5 мА 4,8 мин.
5,1 тип.
5,4 макс.
В  
Zzt при 5 мА 76 Ом  
ИК @VR 1 @ 2.0 мкА  

Параметры, приведенные в техническом описании этого распространенного стабилитрона/диода опорного напряжения, дают полезное представление о технических характеристиках электронных компонентов.

Хотя они относятся только к небольшому диоду и используются во многих элементах электронных схем с меньшей мощностью, такие же данные приведены для других стабилитронов и диодов опорного напряжения с аналогичными или более высокими уровнями рассеиваемой мощности и т. д.

Зенеровские диоды / диоды опорного напряжения представляют собой электронные компоненты, которые широко используются во многих электронных схемах и, в частности, в различных формах конструкции источников питания. Эти электронные компоненты дешевы и широко доступны у всех дистрибьюторов электронных компонентов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *