Номинальный ток электродвигателя трехфазного тока таблица. Характеристики асинхронных двигателей
Содержание:При работе с различными электротехническими устройствами довольно часто возникает вопрос, что такое пусковой ток. В самом простом варианте ответа это будет такой ток, который потребен при запуске электродвигателя или другого устройства. Его значение может в несколько раз превышать номинальное, требующееся в нормальном устойчивом режиме работы. Таким образом, для того чтобы раскрутить ротор, электродвигатель должен приложить гораздо больше энергии по сравнению с работой при постоянном числе оборотов. Снизить пусковые токи можно с помощью специальных систем гашения и устройств плавного пуска.
Пусковые токи электродвигателей
В каждом приборе, устройстве или механизме возникают процессы, называемые пусковыми. Это особенно заметно при начале движения, когда необходимо тронуться с места. В этот момент для первоначального толчка требуется значительно больше усилий, чем при дальнейшей работе данного механизма.
Точно такие же явления затрагивают и электрические устройства — электродвигатели, электромагниты, лампы и другие. Наличие пусковых процессов в каждом из них зависят от того, в каком состоянии находятся рабочие элементы. Например, нить накаливания обычной лампочки в холодном состоянии обладает сопротивлением, значительно меньшим, чем при нагревании в рабочем режиме до 1000 0 С. То есть, у лампы, мощностью 100 Вт сопротивление нити во время работы составит около 490 Ом, а в выключенном состоянии этот показатель снижается до 50 Ом. Поэтому при высоком пусковом токе лампочки иногда перегорают. От всеобщего перегорания их спасает сопротивление, возрастающее при нагревании. Постепенно оно достигает постоянного значения и способствует ограничению рабочего тока до нужной величины.
Влияние пусковых токов в полной мере затрагивает все виды электродвигателей, широко применяющихся во многих областях. Для того чтобы правильно эксплуатировать электроприводы нужно знать их пусковые характеристики.
Существует два основных параметра, оказывающих влияние на пусковой ток. Скольжение является связующим звеном между частотой вращения ротора и скоростью вращения электромагнитного поля. Снижение скольжения происходит от 1 до минимума по мере набора скорости. Пусковой момент является вторым параметром, определяющим степень механической нагрузки на валу. Эта нагрузка имеет максимальное значение в момент пуска и становится номинальной после того, как произошел полный разгон механизма.Следует учитывать особенности асинхронных электродвигателей, которые при пуске становятся эквивалентны трансформатору с короткозамкнутой вторичной обмоткой. Она обладает совсем небольшим сопротивлением, поэтому величина пускового тока при скачке может достичь многократного превышения по сравнению с номиналом. В процессе дальнейшей подачи тока в обмотки, сердечник ротора начинает по нарастающей насыщаться магнитным полем. Возникает ЭДС самоиндукции, под действием которой начинает расти индуктивное сопротивление цепи.
В процессе эксплуатации может возникнуть проблема, связанная с увеличенными пусковыми токами. Причиной их возникновения, чаще всего, становится перегрев электродвигателей, перегруженные электрические сети в момент пуска, а также ударные механические нагрузки в подключенных устройствах и механизмах, таких как редукторы и другие. Для решения этой проблемы предусмотрены специальные приборы, представленные частотными преобразователями и устройствами плавного пуска. Они выбираются с учетом особенностей эксплуатации того или иного электродвигателя. Например, используются в основном для агрегатов, соединенных с вентиляторами. С их помощью достигается ограничение пускового тока до двух номиналов. Это вполне нормальный показатель, поскольку во время обычного пуска ток превышает номинальное значение в 5-10 раз.
Ограничение достигается за счет измененного напряжения в обмотках.Обычные двигатели переменного тока получили широкое распространение в промышленном производстве, благодаря очень простой конструкции и низкой стоимости. Их серьезным недостатком считается тяжелый запуск, который существенно облегчается частотными преобразователями. Наиболее ценным качеством этих устройств является способность к поддержке пускового тока в течение одной минуты и более. Самые современные приборы позволяют не только регулировать пуск, но и оптимизировать его по заранее установленным эксплуатационным характеристикам.
Пусковой ток аккумуляторной батареи
Аккумулятор не зря считается одним из важных элементов автомобиля. Его основная функция заключается в подаче напряжения на имеющееся электрооборудование. В основном это стартер, освещение и другие устройства. Для того чтобы успешно решать эту задачу, в аккумуляторе должно происходить не только накопление, но и сохранение заряда в течение длительного времени.
Одним из основных параметров батареи является пусковой ток. Данная величина соответствует параметрам тока, который протекает в стартере в момент его пуска. Пусковой ток непосредственно связан с режимом работы автомобиля. Если транспортное средство эксплуатируется очень часто, особенно в холодных условиях, в этом случае батарея должна иметь большой пусковой ток. Его номинальный параметр обычно находится в соответствии с мощностью источника питания, выдаваемой в течение 30 секунд при температуре минус 18 0 С. Он появляется в тот момент, когда ключ поворачивается в замке зажигания и начинает работать стартер. Измерение токового значения производится в амперах.
Пусковые токи могут быть совершенно разными у аккумуляторов, одинаковых по своему внешнему виду и основным характеристикам. На этот фактор существенное влияние оказывают физические свойства материалов для изготовления и конструктивные особенности каждого изделия. Например, возрастание тока может наблюдаться, если свинцовые пластины становятся пористыми, повышается их количество, используется ортофосфорная кислота. Завышенная величина тока не оказывает негативного влияния на оборудование, она лишь способствует повышению надежности пуска.
Полный ток нагрузки Ia, подаваемый на двигатель, рассчитывается по следующим формулам:
где
Ia: полный ток (А)
Pn: номинальная мощность (кВт)
U: междуфазное напряжение для 3-фазного двигателя и напряжение между зажимами для 1-фазного двигателя (В). 1-фазные двигатели могут подсоединяться на фазное или линейное напряжение
cos φ : коэффициент мощности, т.е. входная мощность (кВт)/входная мощность(кВА)
Сверхпереходный ток и уставка защиты
- Пиковое значение сверхпереходного тока может быть крайне высоким. Обычно это значение в 12-15 раз превышает среднеквадратическое номинальное значение Inm. Иногда это значение может в 25 раз превышать значение Inm.
- Выключатели, контакторы и термореле рассчитываются на пуски двигателей при крайне высоких сверхпереходных токах (сверхпереходное пиковое значение может в 19 раз превышать среднеквадратическое номинальное значение Inm).
- При внезапных срабатываниях защиты от сверхтоков при пуске это означает выход пускового тока за нормальные пределы. В результате могут достигаться предельные значения параметров распределительных устройств, срок службы может укорачиваться и даже некоторые устройства могут выходить из строя. Во избежание такой ситуации необходимо рассмотреть вопрос о повышении номинальных параметров распределительных устройств.
- Распределительные устройства рассчитываются на обеспечение защиты пускателей двигателей от КЗ. В зависимости от риска, таблицы показывают комбинации выключателя, контактора и термореле для обеспечения координации типа 1 или 2.
Пусковой ток двигателя
Хотя рынок предлагает двигатели с высоким КПД, на практике их пусковые токи приблизительно такие же, как у стандартных двигателей.
Применение пускателей с соединением треугольником, статических устройств для плавного пуска или регулируемых приводов позволяет снизить значение пускового тока (например, 4 Ia вместо 7,5 Ia).
Компенсация реактивной мощности (квар), подаваемой на асинхронные двигатели
Как правило, по техническим и финансовым соображениям выгоднее снижать ток, подаваемый на асинхронные двигатели. Это может обеспечиваться за счет применения конденсаторов, без влияния на выходную мощность двигателей.
Применение этого принципа для оптимизации работы асинхронных двигателей называется «повышением коэффициента мощности» или «компенсацией реактивной мощности».
Как обсуждается в Главе Компенсация реактивной мощности и фильтрация гармоник , полная мощность (кВА), подаваемая на двигатель, может значительно снижаться путем использования параллельно подключенных конденсаторов. Снижение входной полной мощности означает соответствующее снижение входного тока (так как напряжение остается постоянным).
Компенсация реактивной мощности особенно рекомендуется для двигателей с длительными периодами работы при пониженной мощности.
Как указывается выше,
Поэтому, снижение входной полной мощности (кВА) приводит к увеличению (т. е. улучшению) значения cos φ.
Ток, подаваемый на двигатель, после компенсации реактивной мощности рассчитывается по формуле:
где: cos φ – коэффициент мощности до компенсации, cos φ’ – коэффициент мощности после компенсации, Ia – исходный ток.
Рис. A4 ниже показывает (в зависимости от номинальной мощности двигателя) стандартные значения тока для нескольких значений напряжения питания.
кВт | л.с. | 230 B | 380 — 415 B | 400 B | 440 — 480 B | 500 B | 690 B |
---|---|---|---|---|---|---|---|
A | A | A | A | A | A | ||
0,18 0,25 0,37 | — — | 1,0 1,5 1,9 | — — — | 0,6 0,85 1,1 | — — — | 0,48 0,68 0,88 | 0,35 0,49 0,64 |
— 0,55 — | 1/2 — 3/4 | — 2,6 — | 1,3 — 1,8 | — 1,5 — | 1,1 — 1,6 | — 1,2 — | — 0,87 — |
— 0,75 1,1 | 1 — — | — 3,3 4,7 | 2,3 — — | — 1,9 2,7 | 2,1 — — | — 1,5 2,2 | — 1,1 1,6 |
— — 1,5 | 1-1/2 2 — | — — 6,3 | 3,3 4,3 — | — — 3,6 | 3,0 3,4 — | — — 2,9 | — — 2,1 |
2,2 — 3,0 | — 3 — | 8,5 — 11,3 | — 6,1 — | 4,9 — 6,5 | — 4,8 — | 3,9 — 5,2 | 2,8 — 3,8 |
3,7 4 5,5 | — — — | — 15 20 | — 9,7 — | — 8,5 11,5 | — 7,6 — | — 6,8 9,2 | — 4,9 6,7 |
— — 7,5 | 7-1/2 10 — | — — 27 | 14,0 18,0 — | — — 15,5 | 11,0 14,0 — | — — 12,4 | — — 8,9 |
11 — — | — 15 20 | 38,0 — — | — 27,0 34,0 | 22,0 — — | — 21,0 27,0 | 17,6 — — | 12,8 — — |
15 18,5 — | — — 25 | 51 61 — | — — 44 | 39 35 — | — — 34 | 23 28 — | 17 21 — |
22 — — | — 30 40 | 72 — — | — 51 66 | 41 — — | — 40 52 | 33 — — | 24 — — |
30 37 — | — — 50 | 96 115 — | — — 83 | 55 66 — | — — 65 | 44 53 — | 32 39 — |
— 45 55 | 60 — — | — 140 169 | 103 — — | — 80 97 | 77 — — | — 64 78 | — 47 57 |
— — 75 | 75 100 — | — — 230 | 128 165 — | — — 132 | 96 124 — | — — 106 | — — 77 |
90 — 110 | — 125 — | 278 — 340 | — 208 — | 160 — 195 | — 156 — | 128 — 156 | 93 — 113 |
— 132 — | 150 — 200 | — 400 — | 240 — 320 | — 230 — | 180 — 240 | — 184 — | — 134 — |
150 160 185 | — — — | — 487 — | — — — | — 280 — | — — — | — 224 — | — 162 — |
— 200 220 | 250 — — | — 609 — | 403 — — | — 350 — | 302 — — | — 280 — | — 203 — |
— 250 280 | 300 — — | — 748 — | 482 — — | — 430 — | 361 — — | — 344 — | — 250 — |
— — 300 | 350 400 — | — — — | 560 636 — | — — — | 414 474 — | — — — | — — — |
315 — 335 | — 540 — | 940 — — | — — — | 540 — — | — 515 — | 432 — — | 313 — — |
355 — 375 | — 500 — | 1061 — — | — 786 — | 610 — — | — 590 — | 488 — — | 354 — — |
400 425 450 | — — — | 1200 — — | — — — | 690 — — | — — — | 552 — — | 400 — — |
475 500 530 | — — — | — 1478 — | — — — | — 850 — | — — — | — 680 — | — 493 — |
560 600 630 | — — — | 1652 — 1844 | — — — | 950 — 1060 | — — — | 760 — 848 | 551 — 615 |
670 710 750 | — — — | — 2070 — | — — — | — 1190 — | — — — | — 952 — | — 690 — |
800 850 900 | — — — | 2340 — 2640 | — — — | 1346 — 1518 | — — — | 1076 — 1214 | 780 — 880 |
950 1000 | — — | — 2910 | — — | — 1673 | — — | — 1339 | — 970 |
Рис. A4: Номинальная мощность и токи
Приветствую вас, дорогие читатели. Прежде, чем разбираться с методиками подключения и характеристиками токов моторов асинхронного типа, не лишним будет вспомнить о том, что это такое.
Движком асинхронного типа зовут машину особого вида, которая преобразует энергию электричества в механическую. Главным рабочим принципом такого устройства считают вот какие свойства. Проходя по статорным обмоткам, переменный ток, состоящий из трех фаз, создает условия для появления вращающегося магнитного поля. Это поле и заставляет ротор вращаться.
Естественно, что при подключении двигателя надо учитывать все эти факторы, ведь вращение ротора будет производиться в ту сторону, в которую вращается магнитное поле. Частота вращения ротора, однако, ниже частоты вращения возбуждающего поля. По конструкции эти машины бывают самыми различными (то есть предназначенными для работы в разных условиях).
Как рабочие, так и пусковые характеристики таких устройств на много превосходят такие же показатели моторов однофазного типа.
Любой из таких моторов имеет две основные части – подвижную (роторную) и неподвижную (статорную). На обеих частях имеются обмотки. Разница между ними может быть лишь в типе обмотки ротора: она может иметь роторные кольца, либо быть короткозамкнутой. Подключение движков, имеющих короткозамкнутый ротор и мощность до двух сотен киловатт, производится напрямую к сети. Моторы же большей мощности необходимо подключать, сперва, к пониженному напряжению и лишь потом переключать на номинал (с целью снижения в несколько раз пускового тока).
Подключение асинхронного двигателя
Статорная обмотка практически любого такого устройства имеет шесть выводов (из них три – начала и три – концы). В зависимости от того, какова питающая сеть мотора, эти выводы соединяют либо в «звезду», либо в «треугольник». С этой целью корпус каждого мотора имеет коробку, в которой выведены начальные и конечные провода обмоток (они обозначаются, соответственно, С1, С2, С3 и С4, С5, С6).
Подключение звездой
Так называют метод соединения обмоток, при котором все три обмотки имеют одну общую точку (нейтраль). Линейное напряжение такого соединения выше фазного в 1,73 раза. Положительным качеством этого вида соединений считают малые токи пуска, хотя мощностные потери при этом довольно значительны.
Метод соединения в треугольник отличается тем, что при этом методе соединение выполняется таким образом, что конец одной обмотки становится началом следующей.
Подключение треугольником
При этом, соединении фазное и линейное напряжения одинаковы, следовательно, при линейном напряжении в 220 вольт, правильным соединением обмоток будет именно треугольник. Положительной стороной этого соединения является большая мощность, тогда как отрицательной – большие токи пуска.
Для выполнения реверса (смены направления вращения) трехфазного движка асинхронного типа, достаточно поменять местами выводы двух его фаз. На производстве это делается при помощи пары магнитных пускателей с зависимым включением.
Значительные величины токов пуска у асинхронных моторов являются весьма нежелательным явлением, потому как они могут привести к эффекту нехватки напряжения для других видов оборудования, подключенного к той же сети. Это стало причиной того, что подключая и налаживая двигатели этого типа, появляется задача минимизации токов пуска и повышения плавности запуска моторов методом использования специализированного оборудования. Наиболее эффективым типом таких приспособлений считаются софтстартеры и частотные преобразователи. Одним из наиболее ценных их качеств считают то, что они способны поддержать ток запуска мотора довольно долгое время (обычно больше минуты).
Помимо стандартного способа включения моторов асинхронного типа, существуют и методы включения их в питающую сеть, имеющую лишь одну фазу.
Конденсаторный пуск асинхронного двигателя
Для этого, в основном, применяют конденсаторный способ включения. Конденсатор может устанавливаться как один, так и пара (один пусковой, а второй рабочий). Пара кондеров ставится тогда, когда есть надобность в процессе пуска-работы менять емкость, что делают при помощи подключения-отключения одного из кондеров (пускового). Для этого, как правило, применяются емкости бумажного исполнения, поскольку они не имеют полярности, а при работе на переменном токе это очень важно.
Для расчета рабочего конденсатора существует следующая формула:
Пусковой конденсатор должен иметь емкость в пару-тройку раз большую емкости рабочего и рабочее напряжение в полтора раза превышающее напряжение питания.
Пусковой и рабочий конденсаторы соединяют параллельно, причем так, что параллельно пусковому, включено шунтирующее сопротивление и одним концом пусковой кондер включается через ключ. При пуске двигателя ключ замыкают, поднимая ток запуска, затем, размыкают.
Однако, не нужно забывать, что к однофазной сети можно подключить далеко не каждый движок. Кроме того, мощность мотора в таком подключении будет составлять лишь 0.5-0.6 мощности трехфазного включения.
Пусковые токи асинхронного двигателя
Теперь приведу таблицу допустимых значений токов холостого хода трехфазных моторов:
Мощность электромотора, кВт | Ток холостого хода, в процентах от номинального, | |||||
при скорости вращения, об. /мин. | ||||||
3000 | 1500 | 1000 | 750 | 600 | 500 | |
0.12 – 0.55 | 60 | 75 | 85 | 90 | 95 | — |
Прежде, чем производить замеры тока на двигателях, их необходимо обкатать (опробовать на холостом ходу 30-60 минут — движки мощностью меньше 100 кВт и от 2 часов движки, чья мощность выше 100 кВт). Данная таблица носит справочный характер, следовательно, реальные данные могут расходиться с этими процентов на 10-20.
Токи пуска двигателя можно вычислить, применив следующую пару формул:
Iн=1000Рн/(Uн*cosф*√nн),
где Рн — номинал мощности мотора, Uн — номинал его напряжения, nн — номинал его КПД.
где Iн — номинал тока, а Кп — кратность постоянного тока к номиналу (обычно указана в паспорте мотора).
Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на , буду рад, если вы найдете на моем еще что-нибудь полезное. Всего доброго.
Как определить ток электродвигателя – таблица токов
Определение:
Номинальный ток — это допустимые производителем рабочий ток трехфазного электродвигателя для токопроводящих деталей и нагрева изоляции, при котором электромеханическое устройство работает продолжительное время без перегрева обмотки.
Пусковой ток — это потребляемый электрическим устройством максимальный входной импульсный ток при запуске асинхронного двигателя с короткозамкнутым ротором. Вот почему, пусковые токи электродвигателей больше номинальных и могут превышать их в несколько и более раз.
Ток холостого хода электродвигателя — это режим работы без нагрузки на валу от присоединяемого привода. В данном режиме потребляется меньше электрической энергии и поэтому исключено повышение температур выше заявленных изготовителем, что позволит провести диагностику и определить исправность устройства. Ток асинхронного двигателя на холостом ходу в зависимости от мощности и оборотов электромотора составляет 20 — 95% от номинального.
Для того чтобы самостоятельно определить ток электродвигателя без измерений нужно на корпусе устройства найти информационную табличку о токах, мощности, оборотах и напряжению. Если шильдик поврежден — найдите паспорт электромотора. В нем производитель указывает основные параметры: номинальные и пусковые токи асинхронного двигателя.
Если информация по характеристикам отсутствует и найти ток нагрузки электродвигателя не получилось, воспользуйтесь статьей — как определить мощность и обороты электродвигателя без бирки.
Как определить ток электродвигателя если известна мощность?
Как найти номинальный ток двигателя
Зная паспортную мощность, не составит труда рассчитать значения токов электродвигателя. Допустим, нам не известен номинальный ток двигателя 45 кВт – как в таком случае определить ток двигателя по мощности? При подключении к трехфазной сети 380 Вольт определение тока производится по формуле точного расчета:
Iн = 45000/√3(380*0,92*0,85) = 45000/514,696 = 87,43А
- Iн — сила тока асинхронного двигателя
- Pн — номинальная мощность двигателя 45 киловатт
- √3 — квадратный корень из трех = 1,73205080757
- Uн — напряжение сети 380В
- η — коэффициент полезного действия 92% (в расчетах 0,92)
- сosφ — коэффициент мощности 0,85
Как определить номинальный ток электродвигателя, если коэффициент мощности и КПД неизвестны? В этой ситуации, найти номинальный ток двигателя с небольшой погрешностью мы сможем по соотношению – два ампера на одни киловатт. Определить силу тока электродвигателя используя формулу:
Как определить пусковой ток двигателя
Пусковые токи электродвигателей, можно найти и рассчитать по формуле:
Iп — значение тока при запуске асинхронного двигателя, которое необходимо узнать
Iн — уже рассчитанный номинальный ток
К — кратность пускового тока двигателя (найти в паспорте)
Как определить ток электродвигателей АИР?
Если известна маркировка, например у электромотора АИР200L4 Iн = 84,9 Ампер, а соотношение тока Iп/Iн = 7,2. Найдите значение токов в таблицах:
Электродвигатель | Iн, А | Iп/Iн | Мотор | Iн, А | Iп/Iн |
АИР56A2 | 0,5 | 5,3 | АИР160M2 | 34,7 | 7,5 |
АИР56B2 | 0,73 | АИР180S2 | 41 | ||
АИР63А2 | 1 | 5,7 | АИР180M2 | 55,4 | |
АИР63B2 | 2,05 | АИР200M2 | 67,9 | ||
АИР71A2 | 1,17 | 6,1 | АИР200L2 | 82,1 | |
АИР71B2 | 2,6 | 6,9 | АИР225M2 | 100,0 | |
АИР80A2 | 3,46 | 7 | АИР250S2 | 135 | 7 |
АИР80B2 | 4,85 | АИР250M2 | 160 | 7,1 | |
АИР90L2 | 6,34 | 7,5 | АИР280S2 | 195 | 6,6 |
АИР100S2 | 8,2 | АИР280M2 | 233 | 7,1 | |
АИР100L2 | 11,1 | АИР315S2 | 277 | ||
АИР112M2 | 14,9 | АИР315M2 | 348 | ||
АИР132M2 | 21,2 | АИР355S2 | 433 | ||
АИР160S2 | 28,6 | АИР355M2 | 545 |
Двигатель | Iн, А | Iп/Iн | Электромотор | Iн, А | Iп/Iн |
АИР56A4 | 0,5 | 4,6 | АИР160S4 | 30 | 7,5 |
АИР56B4 | 0,7 | 4,9 | АИР160M4 | 36,3 | |
АИР63A4 | 0,82 | 5,1 | АИР180S4 | 43,2 | |
АИР63B4 | 2,05 | АИР180M4 | 57,6 | 7,2 | |
АИР71A4 | 1,17 | 5,2 | АИР200M4 | 70,2 | |
АИР71B4 | 2,05 | 6 | АИР225M4 | 103 | |
АИР80A4 | 2,85 | АИР250S4 | 138,3 | 6,8 | |
АИР80B4 | 3,72 | АИР250M4 | 165,5 | ||
АИР90L4 | 5,1 | 7 | АИР280S4 | 201 | 6,9 |
АИР100S4 | 6,8 | АИР280M4 | 240 | ||
АИР100L4 | 8,8 | АИР315S4 | 288 | ||
АИР112M4 | 11,7 | АИР315M4 | 360 | ||
АИР132S4 | 15,6 | АИР355S4 | 360 | ||
АИР132M4 | 22,5 | АИР355M4 | 559 |
Электродвигатель | Iн, А | Iп/Iн | Мотор | Iн, А | Iп/Iн |
АИР63A6 | 0,8 | 4,1 | АИР160M6 | 31,6 | 7 |
АИР63B6 | 1,1 | 4 | АИР180M6 | 38,6 | |
АИР71A6 | 1,3 | 4,7 | АИР200M6 | 44,7 | |
АИР71B6 | 1,8 | АИР200L6 | 59,3 | ||
АИР80A6 | 2,3 | 5,3 | АИР225M6 | 71 | |
АИР80B6 | 3,2 | 5,5 | АИР250S6 | 86 | |
АИР90L6 | 4 | АИР250M6 | 104 | ||
АИР100L6 | 5,6 | 6,5 | АИР280S6 | 142 | 6,7 |
АИР112MA6 | 7,4 | АИР280M6 | 169 | ||
АИР112MB6 | 9,75 | АИР315S6 | 207 | ||
АИР132S6 | 12,9 | АИР315M6 | 245 | ||
АИР132M6 | 17,2 | АИР355S6 | 292 | ||
АИР160S6 | 24,5 | АИР355M6 | 365 |
Эл двигатель | Iн, А | Iп/Iн | Электромотор | Iн, А | Iп/Iн |
АИР71B8 | 1,1 | 3,3 | АИР180M8 | 34,1 | 6,6 |
АИР80A8 | 1,49 | 4 | АИР200M8 | 41,1 | |
АИР80B8 | 2,17 | АИР200L8 | 48,9 | ||
АИР90LA8 | 2,43 | АИР225M8 | 60 | 6,5 | |
АИР90LB8 | 3,36 | 5 | АИР250S8 | 78 | 6,6 |
АИР100L8 | 4,4 | АИР250M8 | 92 | ||
АИР112MA8 | 6 | 6 | АИР280S8 | 111 | 7,1 |
АИР112MB8 | 7,8 | АИР280M8 | 150 | 6,2 | |
АИР132S8 | 10,3 | АИР315S8 | 178 | 6,4 | |
АИР132M8 | 13,6 | АИР315M8 | 217 | ||
АИР160S8 | 17,8 | АИР355S8 | 261 | ||
АИР160M8 | 25,5 | 6,5 | — | — | — |
* Для перехода ко всем характеристикам товара — нажмите на маркировку.
Таблица токов холостого хода асинхронного электродвигателя
Мощность электродвигателя, кВт | Процентное соотношение от номинального тока | |||||
Токи асинхронного двигателя на холостом ходу при известной частоте вращения вала, об/мин | ||||||
3000 | 1500 | 1000 | 750 | 600 | 500 | |
0,12 — 0,55 | 60 | 75 | 85 | 90 | 95 | — |
0,75 — 1,5 | 50 | 70 | 75 | 80 | 85 | 90 |
2,2 — 5,5 | 45 | 65 | 70 | 75 | 80 | 85 |
7,5 — 11 | 40 | 60 | 65 | 70 | 75 | 80 |
15 — 22 | 30 | 55 | 60 | 65 | 70 | 75 |
30 — 55 | 20 | 50 | 55 | 60 % | 65 | 70 |
75 — 110 | 20 | 40 | 45 | 50 | 55 | 60 |
Чтобы рассчитать ток при холостом ходе двигателя 55 кВт — в правой колонке таблице найдите нужную мощность, а в левом номинальную скорость вращения, например 750 оборотов. Руководствуясь данными из таблицы токов холостого хода мы получаем значение в 60 процентов от номинального. Итого: ток холостого хода будет равен 4,26 Ампер.
Не получилось определить силу тока двигателя?
Если у Вас не получилось самостоятельно рассчитать ток трехфазного электродвигателя или Вы не смогли найти мотор из каталога с нужными параметрами — обратитесь к нам для получения бесплатной консультации. Мы всегда готовы помочь правильно подобрать и купить электродвигатель АИР под технический процесс Вашего производства.
Ампер полной нагрузки — трехфазные двигатели переменного тока
Онлайн-калькуляторы и таблицы, которые помогут вам определить правильное сечение провода
Указанные ниже напряжения являются стандартными номинальными напряжениями двигателя. В том числе индукционного типа трехфазные двигатели переменного тока синхронного типа.
Беличья клетка индукционного типа и ротор с обмоткой (ампер) | Единичный коэффициент мощности синхронного типа (А) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
HP | 115 Вольт | 200 вольт | 208 вольт | 230 вольт | 460 вольт | 575 Вольт | 2300 Вольт | 230 вольт | 460 вольт | 575 Вольт | 2300 Вольт |
½ | 4,4 | 2,5 | 2,4 | 2,2 | 1,1 | 0,9 | — | — | — | — | — |
¾ | 6,4 | 3,7 | 3,5 | 3,2 | 1,6 | 1,3 | — | — | — | — | — |
1 | 8,4 | 4,8 | 4,6 | 4,2 | 2. 1 | 1,7 | — | — | — | — | — |
1½ | 12 | 6,9 | 6,6 | 6 | 3 | 2,4 | — | — | — | — | — |
2 | 13,6 | 7,8 | 7,5 | 6,8 | 3,4 | 2,7 | — | — | — | — | — |
3 | — | 11 | 10,6 | 9,6 | 4,8 | 3,9 | — | — | — | — | — |
5 | — | 17,5 | 16,7 | 15,2 | 7,6 | 6.1 | — | — | — | — | — |
7½ | — | 25,3 | 24,2 | 22 | 11 | 9 | — | — | — | — | — |
10 | — | 32,2 | 30,8 | 28 | 14 | 11 | — | — | — | — | — |
15 | — | 48,3 | 46,2 | 42 | 21 | 17 | — | — | — | — | — |
20 | — | 62,1 | 59,4 | 54 | 27 | 22 | — | — | — | — | — |
25 | — | 78,2 | 74,8 | 68 | 34 | 27 | — | 53 | 26 | 21 | — |
30 | — | 92 | 88 | 80 | 40 | 32 | — | 63 | 32 | 26 | — |
40 | — | 120 | 114 | 104 | 52 | 41 | — | 83 | 41 | 33 | — |
50 | — | 150 | 143 | 130 | 65 | 52 | — | 104 | 52 | 42 | — |
60 | — | 177 | 169 | 154 | 77 | 62 | 16 | 123 | 61 | 49 | 12 |
75 | — | 221 | 211 | 192 | 96 | 77 | 20 | 155 | 78 | 62 | 15 |
100 | — | 285 | 273 | 248 | 124 | 99 | 26 | 202 | 101 | 81 | 20 |
125 | — | 359 | 343 | 312 | 156 | 125 | 31 | 253 | 126 | 101 | 25 |
150 | — | 414 | 396 | 360 | 180 | 144 | 37 | 302 | 151 | 121 | 30 |
200 | — | 552 | 528 | 480 | 240 | 192 | 49 | 400 | 201 | 161 | 40 |
125 | — | 359 | 343 | 312 | 156 | 125 | 31 | 253 | 126 | 101 | 25 |
150 | — | 414 | 396 | 360 | 180 | 144 | 37 | 302 | 151 | 121 | 30 |
200 | — | 552 | 528 | 480 | 240 | 192 | 49 | 400 | 201 | 161 | 40 |
400 | — | — | — | — | 477 | 382 | 95 | — | — | — | — |
450 | — | — | — | — | 515 | 412 | 103 | — | — | — | — |
500 | — | — | — | — | 590 | 472 | 118 | — | — | — | — |
Примечание. Для синхронных двигателей с коэффициентом мощности 0,9 и 0,8 указанные в таблице ампер следует умножить на коэффициент 1,1 и 1,25 соответственно.
Сечение проводов двигателя
NEC требует, чтобы цепи, питающие одиночные двигатели, имели номинальную токовую нагрузку не менее 125% от номинальной токовой нагрузки двигателя при полной нагрузке. Промежуточные цепи, содержащие два или более двигателей, должны иметь провод, в котором номинальная токовая нагрузка провода должна составлять не менее 125 % от тока полной нагрузки самого большого двигателя плюс сумма токов полной нагрузки для остальных двигателей. Например, если в цепи есть три двигателя на 15 А, мощность номинал провода, питающего цепь, должен превышать 15 + 15 + (15 * 1,25) = 48,75 Ампер. Существуют исключения из этого требования, которые включают в себя блокировки двух или более двигателей, чтобы предотвратить их одновременную работу. Как правило, номинальное напряжение системы для двигателя будет выше напряжения, указанного на паспортной табличке, чтобы компенсировать любое падение напряжения в цепи.
115 | 120 |
230 | 240 |
460 | 480 |
575 | 600 |
4000 | 4 160 |
6 600 | 6 900 |
13 200 | 13 800 |
Для получения более подробной информации о размерах проводов и устройств защиты цепей для двигателей см. Таблицу размеров проводов и защиты цепей двигателя и Калькулятор размера проволоки.
См. таблицы размеров проводов из списка ниже.
Максимально допустимая сила тока для проводников в кабелепроводе, кабеле или заземлении (30°C) Максимально допустимая сила тока для проводников на открытом воздухе (30°C) Максимально допустимая сила тока для проводников в кабелепроводе, кабеле или заземлении (40°C) Максимально допустимая сила тока для проводников на открытом воздухе (40°C)
Ознакомьтесь с Условиями использования и Политикой конфиденциальности для этого сайта. Ваше мнение очень ценится. Дайте нам знать, как мы можем улучшить.
- Домашняя страница
- Таблица размеров проволоки
- Список калькуляторов и описания
- Калькулятор размера проволоки
- Усовершенствованный калькулятор размера проволоки
- Калькулятор силы тока провода
- Усовершенствованный калькулятор силы тока проводов 908:35
- Калькулятор дугового разряда
- Калькулятор падения напряжения
- Калькулятор длины цепи
- Калькулятор закона Ома
- Калькулятор размера провода двигателя
- Калькулятор сечения заземляющего провода
- Калькулятор расстояния между опорами кабелепровода
- Калькулятор цветового кода резистора
- Список таблиц и описания
- Максимальная допустимая нагрузка для токонесущих проводников в кабелепроводе при 30°C Таблица
- Максимальная допустимая нагрузка для токонесущих проводников на открытом воздухе при 30°C Таблица
- Максимальная допустимая нагрузка для токонесущих проводников в кабелепроводе при 40°C Таблица
- Максимальная допустимая нагрузка для токонесущих проводников на открытом воздухе при 40°C Таблица
- Ток полной нагрузки для трехфазных двигателей переменного тока Таблица Сечения проводов и защита цепи трехфазного двигателя переменного тока модели
- Таблица 908:35
- Таблицы дугового разряда Таблица размеров заземляющего проводника
- Расстояние между жесткими опорами кабелепровода Таблица Таблица поправочных коэффициентов тока провода
Ток при полной нагрузке, ток двигателя, размер выключателя, размер пускателя NEMA, ток нагревателя, размер провода AWG и размер кабелепровода для трехфазных электродвигателей
Главная › Поддерживать › Ресурсы › Электрические ссылки › Электрические столы › 3-фазные двигатели переменного токаДля трехфазных электродвигателей используйте эту таблицу для расчета тока полной нагрузки (амперы), размер выключателя, размер пускателя NEMA, ток нагревателя, размер провода AWG и размер кабелепровода с учетом мощности двигателя (л. с.) и напряжения (В).
Двигатель Мощность в л.с. | Двигатель Вольт | Двигатель Ампер | Размер Отбойный молоток | НЕМА Размер Стартер | Нагреватель Ампер | Размер Провод AWG | Размер Кабелепровод |
---|---|---|---|---|---|---|---|
1 | 230 В | 4,2 | 15 | 00 | 4,830 | 12 | 3/4″ |
460 В | 2.1 | 15 | 00 | 2,415 | 12 | 3/4″ | |
1 1/2 | 230 В | 6,0 | 15 | 00 | 6. 900 | 12 | 3/4″ |
460 В | 3,0 | 15 | 00 | 3.450 | 12 | 3/4″ | |
2 | 230 В | 6,8 | 15 | 0 | 7,820 | 12 | 3/4″ |
460 В | 3,4 | 15 | 00 | 3.910 | 12 | 3/4″ | |
3 | 230 В | 9,6 | 15 | 0 | 11. 040 | 12 | 3/4″ |
460 В | 4,8 | 15 | 0 | 5,520 | 12 | 3/4″ | |
5 | 230 В | 15,2 | 15 | 1 | 17.480 | 12 | 3/4″ |
460 В | 7,6 | 15 | 0 | 8.740 | 12 | 3/4″ | |
7 1/2 | 230 В | 22,0 | 40 | 1 | 25.300 | 10 | 3/4″ |
460 В | 11,0 | 30 | 1 | 12. 650 | 12 | 3/4″ | |
10 | 230 В | 28,0 | 50 | 2 | 32.200 | 10 | 3/4″ |
460 В | 14,0 | 30 | 1 | 16.100 | 12 | 3/4″ | |
15 | 230 В | 42,0 | 70 | 2 | 48.300 | 6 | 1″ |
460 В | 21,0 | 40 | 2 | 24.150 | 10 | 3/4″ | |
20 | 230 В | 54,0 | 100 | 3 | 62. |