Закрыть

Проверка симисторов: Проверка симисторов стиральных машин — Морской флот

Содержание

Схема прибора проверки тиристоров и симисторов » Паятель.Ру


Прибор предназначен для проверки работоспособности тиристоров и симисторов, он может приблизительно определить ток открывания управляющего электрода, а также способность открываться тиристоров, и для симисторов способность открываться при различных полярностях коммутируемого и управляющего напряжений. А так же на наличие пробоя.


Принципиальная схема устройства показана на рисунке. Для его работы требуется источник двуполярного напряжения ±12…17В, можно не стабилизированный. Контрольным устройством, регистрирующим открывание тиристора (симистора) служит автомобильная лампа накаливания Н1 (12V / 4W / 0,3 А) от передних габаритных огней машин серии «ВАЗ-08-099», «Москвич-2141».

Переключатель S1 служит для выбора полярности коммутируемого тока, а переключатель S2 для выбора полярности управляющего тока. Кнопка S3 — размыкающая, при нажатии на неё ток через испытуемый тиристор (симистор) прекращается и он переходит в закрытое состояние. Кнопка SK1 служит для подачи управляющего тока на управляющий электрод.

При помощи переключателя S4 можно ориентировочно определить ток отпирания, — постепенно переключать его от минимального тока к максимальному, пока не загорится пампа, на каком положении S4 это произошло, такой и будет ток отпирания управляющего электрода.

Для точного определения тока отпирания необходим мультиметр, переключенный на предел «200mA», мультиметр подключают к клеммам «mА», затем переводят S4 в положение «mА», и нажав кнопку SK1 перемещают движок переменного резистора R12 от положения максимального сопротивления к минимальному, наблюдая за лампой Н1 и показаниями мультиметра. Ток при котором лампа зажглась и есть отпирающий ток управляющего электрода.

На транзисторах VT1 и VT2 выполнены параметрические стабилизаторы управляющего тока. Испытуемые тиристоры и симисторы подключаются к клеммам Х1-Х3 при помощи проводов с наконечниками типа «Крокодил».

Параметрические стабилизаторы можно заменить интегральными типа 7808 (вместо VT1-VD1-R1) и 7908 (вместо VT2-VD2-R2).

Переключатели S1 и S2 — микротумблеры, S3 — П2К с удаленным фиксатором (используются размыкающие контакты), SK1 — П2К с удаленным фиксатором (используются замыкающие контакты). S4 — круговой приборный переключатель на восемь положений (1Н8П). Вместо автомобильной лампы можно использовать любую другую лампочку на 12-14В и ток 0,2-1 А.

Как проверить симистор в стиральной машине

Симисторы используются для передачи напряжения на внешние устройства, а также для защиты от перегорания во время нестабильной работы электросети. Такое оборудование может быть разной мощности, а для СМА чаще всего используются модели со средними показателями. Проверка симистора в стиральной машине помогает выявить неисправности и устранить неполадки в разных узлах техники:

  • при подключении насосов-помп;

  • при подаче потока воды внутрь барабана;

  • при подключении электромагнитов и некоторых других узлов.

Как устранить поломку

Чаще всего они выходят из строя из-за частых скачков напряжения в электросети. В одних случаях хватает 1-2 раз, в других система выдерживает больше нагрузок. Еще бывает, что эти детали перегорают из-за попадания воды или моющих средств на контакты. Поэтому в таких случаях необходимо знать, как проверить симистор в стиральной машине, какое для этого требуется оборудование и не привела ли поломка к выходу из строя и других узлов устройства.

Собственными силами в домашних условиях это выявить практически невозможно, особенно если у вас нет соответствующего опыта, навыков и оборудования для проверки. Рекомендуем вам не заниматься самостоятельным ремонтом. В противном случае такая замена симистора в стиральной машине может привести к еще большему числу неполадок или даже серьезным поломкам в системе. В отдельных случаях есть риск полностью вывести технику из строя без возможности дальнейшей ее починки.

Рекомендуем вам не заниматься ремонтом лично, а сразу вызывать мастера на дом. Наши специалисты в Москве оперативно приедут на вызов, проведут диагностику и определят, насколько серьезны неполадки в системе. Наши мастера отлично разбираются в ремонте, знают, чем заменить симистор, как это сделать правильно и быстро.

Назад к списку

Все своими руками Как проверить симистор

Опубликовал admin | Дата 9 января, 2013

     Симистор, по сути дела, трехэлектродный прибор, но если в тиристоре три p-n перехода, то в симисторе их четыре. Благодаря такой структуре симистора можно, в отличие от тиристора, управлять проводимостью в обоих направлениях с помощью одного управляющего электрода. Поэтому симистор чаще всего используют в качестве управляющих элементов в цепях переменного тока.

     Для открывания симистора

управляющий импульс подается на управляющий электрод относительно вывода 1, а полярность импульса зависит от полярности коммутируемого напряжения, прикладываемого между выводами 1 и 2. Если напряжение на выводе 2 плюсовое, симистор открывается импульсом напряжения любой полярности. При минусовом напряжении на выводе 2, управляющий импульс должен быть отрицательной полярности. Выключение симистора осуществляют, как и в случае с тиристором — снятием напряжения с вывода 2.

     Разобравшись с работой симистора, нетрудно теперь научиться проверять его с помощью несложной приставки (рис. 1). Переключатели SA1 и SA2 изменяют полярность управляющего и коммутируемого напряжения соответственно. Кнопка SB1 служит для подачи управляющих импульсов, a SB2 — для выключения симистора. Индикатором включения симистора служит автомобильная лампа накаливания HL1, рассчитанная на напряжение 12В.

     Питается приставка от сети 220в через трансформатор ТР1, имеющий две независимые вторичные обмотки, в качестве которого используется перемотанный выходной трансформатор кадров от старых телевизоров ТВК-110Л1. С трансформатора сматываются обе вторичные обмотки. Провод от одной из них – диаметром 0,64мм пойдет на намотку нужных нам обмоток. Обмотка II содержит 70 витков провода 0,64мм, а обмотка III – 95 витков этого же провода. В качестве переключателей SA можно использовать тумблеры или переключатели от старых блоков питания для комьютеров (Фото 1 ), в качестве SB – кнопки (Фото 2). Для монтажа деталей приставки можно использовать любой подходящий корпус из изоляционного материала. Монтаж выполнен навесным способом.


     При указанном на схеме положении контактов переключателей и нажатии на кнопку SB1 симистор откроется, индикаторная лампа загорится. Затем нажимают на кнопку SB2, симистор закрывается, лампа гаснет. Далее переключатель SA1 переводят в противоположное положение и вновь нажимают на кнопку SBI. Если симистор исправен, лампа загориться.
Переведя контакты переключателя SA2 в противоположное положение, нажимают на кнопку SB1 в одном и другом положениях подвижных контактов переключателя SA1. Индикаторная лампа должна светиться только в том случае, когда на управляющий электрод поступит минусовое напряжение относительно вывода 1.

Обсудить эту статью на — форуме «Радиоэлектроника, вопросы и ответы».

Просмотров:20 977


что такое, из чего состоит и как проверить

Доброго времени суток, уважаемые читатели нашего сайта! В данной статье мы решили рассказать вам о таком важном маленьком приборчике, без которого современную электронику представить себе очень сложно. Для того, чтобы понять, что такое симистор, давайте сначала поговорим немного о полупроводниках.

Что такое полупроводник?

Полупроводники – это нечто среднее между проводниками и диэлектриками (про них у нас есть отдельная статья, рекомендуем ознакомиться). Да, они проводят электрический ток, но проводят они их не так хорошо, как проводники. Физики любят говорить, что у них есть “определенный коэффицент” проводимости. Нам же больше нравится называть их такими веществами, которые достаточно плохо проводят ток. Так вот, из полупроводников изготавливают тиристоры. Что это такое?

Перейдем к тиристорам

Тиристоры – это штуки, которые очень напоминают электронные ключи, однако у них нет закрытого состояния? Как? А вот так! У них немного другое предназначение. По сути, это 2 транзистора, которые управляют мощностью нагрузки с помощью очень слабого сигнала. Обычные тиристоры состоят из 3 деталей – катода, управляющего электрода и анода.

Тиристор

Виды тиристоров

Давайте теперь узнаем, какие тиристоры существуют в природе и какие из них будут интересны нам в первую очередь:

  • динисторы (тиристоры, у которых всего 2 вывода – анод и катод)
  • триодный тиристор (с 3 выводами)
  • тетроидный тиристор (с 4 выводами)
  • симистор или симметричный тиристор (именно его мы сегодня изучим доскосконально)

Симистор? Впервые слышу

Симистор – это один из подвидов тиристоров, который обычно состоит из множества тиристоров. По-другому его также называют симметричный симистор.

Из чего состоит этот симистор?

Симистор очень часто физики представляют в виде пятислойного полупроводника. Также бывают и изображения в виде 2 тиристоров. При этом, управление сильно отличается от того, как управляется включенные триодные тиристоры потому их и выделили в отдельную группу. Давайте теперь узнаем, как работает управление.

Управление симистором

Дело в том, что у обыкновенного тиристора есть как катод, так и анод, причем каждый из них выполняет строго определенную функцию, а вот у симистора все немного иначе. Представим, что у нас есть и катод и анод, но когда симистор подключен и работает, то катод становится анодом, а анод – катодом. Вот такое чудесное превращение. Именно поэтому мы не можем сказать, что они здесь присутствуют в явном виде и будет просто называть их выходами (электродами). Для того, чтобы точно не ошибиться, давайте будет называть выходы симистора условными катодом и анодом. Еще немного теории.

У симистора управление работает следующим образом: на входе полярность может быть либо отрицательной – это первый вариант. Второй вариант – это тот, когда она совпадает с полярностью на аноде, что встречается реже. Далее все просто – задаем нужную силу тока и ее хватает для отпирания симистора. Обратите внимание, что для тока специально сделан управляющий электрод, именно им мы и пользуемся для этой цели.

Вуаля! Главная сложность для нас здесь – это подобрать идеальный ток, вот и все!

Симистор схема

Теперь, когда мы уже знаем достаточно много о структуре симисторов и том, каким образом они обычно управляются, пришло время посмотреть, как они выглядят на схемах и что здесь есть интересного. Взгляните, например, на эту схему:

Здесь нам стоит сразу отметить, какие есть условные обозначения, чтобы дальше без проблем разбираться во всех схемах. Симисторы обычно имеют 3 электрода, один из которых – это затвор. Его обозначают через английскую букву G. Что, уже гораздо больше понимания, верно? Отлично! Теперь давайте разберемся со схемой немного другого симистора. Замечаете отличия? Да, ведь здесь симистор составлен из целых 2 тиристоров!

Ага, а почему же тогда это симистор? Почему нельзя было сюда поставить схему обычного эквивалентного тиристора? А все дело в том, что управляется такая схема несколько иначе.

Регулятор на симисторе

Теперь пришло время нам обсудить, каким образом симистор регулирует напряжение. Это на самом деле очень интересно. Смотрите. Как только симистор начинает работать, на один из его электронов сразу же подается напряжение, которое всегда является переменным. Далее на управляющий электрод дается отрицательный ток, который и будет управлять процессом. Как будет преодолен порог включения (он всегда известен заранее, в этом и удобство), симистор откроется и ток начнет проходить через него. Отметим, что симистор перестанет работать в тот момент, когда ток поменяет полярность (другими словами он закроется). Далее все идет цикл за циклом и повторяется.

Ага, вроде понятно. А что влияет на скорость открытия и закрытия симистора? Что влияет на силу на выходе? Здесь все опять же очень просто. При нарастании входного напряжения импульс на выходе также увеличивается. Соответственно, если на входе маленькое напряжение – то и на выходе импульс будет короткий. Приведем в пример обыкновенную лампочку с симистором. Чем больше подаем напряжения – тем ярче лампочка. Здорово, не так ли?

Режимы работы симистора

Симистор может работать как под воздействием отрицательного тока, так и под воздействием положительного. Всего выделяют четыре основных режима работы: все зависит от полярности и входного напряжения.

В чем главные достоинства симистора

Давайте рассмотрим симистор как реле. В такой роли у него много существенных преимуществ:

  • дешево. Да, это тоже плюс. Ну а что? Когда вам нужно сразу много, то будет очень хорошо, если потратить нужно будет меньше
  • служит очень долго (конечно же, по сравнению с другими приборами этого класса)
  • надежность из-за отсутствия контактов

Но есть у него и минусы

Конечно, идеальных приборов пока не придумали, поэтому здесь мы тоже не в праве их скрывать:

  • сильная чувствительность к высоким температурам
  • работает только на низких частотах (уж слишком долго он открывается и закрывается)
  • иногда бывают внезапные срабатывания из-за естественного внешнего электромагнитного воздействия

Как проверить симистор?

Поговорив о положительных и отрицательных моментах симистора, мы плавно подвели наше с вами изучение симисторов к очень важному аспекту, а именно – к проверке. Вы можете сказать? Что это еще за проверка. Наверняка это что-то бесполезное. А мы вам ответим, что проверять симисторы – это очень важно, ведь на нем по сути держится весь электроприбор, и выявив брак или неисправность хотя бы в одном симисторе из партии, у вас есть шанс спасти целые электроприборы от серьезных поломок. Но и здесь новички задают вопрос.

А на фабриках, где изготавливают эти симисторы разве их не проверяют. Вопрос этот очень интересен, но ответ тоже довольно прост. На заводах нет времени на проверку каждого отдельного симистора, поэтому от силы проверке может подвергаться один прибор из партии. Поэтому давайте теперь уже поговорим о том, как же все-таки можно проверить на исправность этот замечательный прибор.

Существует сразу несколько эффективных способов проверки симистора. Давайте подробно разберемся с каждым из них. Для начала сразу скажем, что проверять симистор внутри схемы – это совершенно неверное действие. Вам сначала обязательно нужно извлечь его из платы, а потом уже работать с ним. Почему?

Тут все очень просто. Если вы будете проверять свой симистор и при этом он будет внутри схемы, то вы можете проверить его и он будет неисправен, но на самом деле будет неисправен соседний элемент, подключенный к нему параллельно. Поэтому нужно исключить все факторы, отключив симистор от схемы, выпаяв его. Отметим, что проверять нужно будет каждый отдельный элемент, иначе вы не сможете найти причину поломки. Сначала, как правило, проверяют силовые цепи, потом уже переходят к ключам, сделанным из полупроводниковых материалов. Как же можно проверить полупроводниковые ключи:

  1. проверка мультиметром (например прозвонкой или омметром). Это работает по следующему принципу: используем мультиметр в режиме измерения сопротивления Контактами присоединяем к нашему симистору, а затем смотрим полученные измерения. Дело в том, что у исправного симистора значение на омметре должно быть большим или очень большим.

    Вот так выглядит мультиметр

  2. проверка батарейкой в паре с лампочкой. На первый взгляд такая идея может показаться глупой и нерациональной, но на деле же это не так. Давайте узнаем, как это работает. Тут все немного сложнее, но все по порядку. Для начала нам нужно будет подсоединить лампочку одним контактом к катоду (условному) нашего симистора. Далее второй контакт лампочки подключается к “отрицательной” стороне батарейки. Останется только присоединить “плюсовой” конец к аноду. Если лампочка горит нормально, то значит и симистор полностью рабочий.

Мощность симистора

Теперь, когда мы уже достаточно много знаем о симисторах, пришло время перейти к технической части. Как? Уже? Ага, вы уже к этому готовы. Итак, самый главный аспект, который волнует всех покупателей этого замечательного прибора – это мощность. Конечно, под этим понимается обычно целая совокупность технических характеристик симистора. О них и пойдет речь. Отметим, что мы разберем характеристики на примере довольно популярной модели – BT139-800.

Сначала давайте узнаем. Что вообще из себя представляют технические характеристики. Больше всего нас будут волновать:

  • самое большое напряжение, которое только возможно
  • самое большое напряжение, когда симистор открыт
  • то напряжение, при котором симистор отпирается
  • самый маленький ток, при котором открывается симистор
  • температуры, при которых работает симистор
  • время отклика (срабатывания)

Ага, вроде бы мы обо всем этом уже говорили, поэтому не так уж и сложно. Хорошо. Теперь о каждой характеристике немного подробнее.

Время отклика (срабатывания)

Скорость срабатывания симистора – это тоже очень важный параметр. Почему? Когда в цепи много таких симисторов и если каждый будет долго срабатывать, то большой аппарат будет очень долго реагировать на каждую команду или даже вообще не сможет работать.

У тока тоже есть своя скорость, а если на его задержку еще будет накладываться куча других, то прибор может стать ну очень медленным, поэтому на это тоже нужно обращать внимание. Наш симистор срабатывает в среднем за 2 микросекунды и это очень хороший результат. Формально, это то время, которое пройдет с момента, когда симистор начинает открываться и уже открыт.

Температура тоже важна

Симисторы, конечно же, работают при достаточно обычных для нас температурах. Однако при помещении его в критические условия будет лучше, если этот диапазон будет очень широким. Наш симистор работает при температуре от МИНУС 40, до ПЛЮС 125 градус по Цельсию. В обычной жизни этот диапазон оптимален, поэтому тут добавить нечего.

Самое большее возможное напряжение

В симисторе BT139-800 это 800 вольт и других моделей этот параметр может отличаться. Не стоит считать, что это напряжение, при котором симистор отлично работает. Нет, напротив – это теоретическое напряжение, от которого симистор еще не выйдет из строя. То есть при идеальных условиях для конкретной модели этот симистор еще вытянет такое напряжение в цепи, однако при превышении его шансов на дальнейшую работоспособностью почти нет. Идем дальше.

Минимальный ток управления

Начнем с того, что этот ток принято измерять в миллиамперах. Разумеется, все зависит от того, как определена полярность симистора в данное время, а также от полярности входного напряжения. Наш симистор имеет мин ток управления от 5 до 22 миллиампер. Однако при проектировании схемы, в которой будет работать симистор, правильнее всего будет ориентироваться на максимальные значения тока. Для нашего симистора это значения, которые находятся между 35 и 70 миллиамперами.

Прибор для проверки тиристоров и симисторов

Приветствую, радиолюбители-самоделкины!

Тиристоры и симисторы — не такие уж и часто используемые в радиолюбительстве элементы, по крайней мере, когда речь идёт о низковольтных схемах. Однако они бывают незаменимы для коммутации мощных электроприборов в сети 220В, а также для создания различных регуляторов мощности. Их использование в радиолюбительских схемах обуславливает необходимость проверять эти элементы на работоспособность, особенно это касается б.у. элементов. Но в последнее время и свежекупленные в магазинах полупроводниковые приборы приходится проверять, ведь с целью получения дополнительной прибыли многие магазины пытаются продавать «левак», перемаркированные или вовсе нерабочие детали. К сожалению, мультиметром полноценно проверить тиристор или симистор не получится — максимум возможно прозвонить выводы на замыкание и определить лишь полностью выгоревший элемент. Поэтому имеет смысл собрать своими руками достаточно простой прибор, который позволит эффективно тестировать эти детали, актуален об будет для тех, кто часто использует тиристоры или симисторы. Схема тестера показана ниже:




В начале схемы можно увидеть трансформатор на 12В, именно от него схема будет брать питание. Использовать здесь большой и мощный трансформатор не обязательно, достаточно будет небольшого с максимальным током от 200 мА, выходное напряжение может варьироваться от 9 до 20В. Обратите внимание, что схема должна питаться именно от трансформатора, так как он выдаёт на выходе переменное напряжение — этот аспект важен для работы прибора, поэтому питать схему от различных сетевых адаптером и импульсных блоков питания нельзя. В качестве индикаторов в приборе выступают два светодиода — D3 и D4, они включены с различными полярностями, таким образом, если тестируемый элемент пропускает оба полупериода — гореть будут оба светодиода, если только положительный полупериод — один светодиод, если отрицательный — другой светодиод. Если же при проверки не загорится ни один светодиод, значит тестируемый тиристор или симистор не открывается вообще. Резисторы R3, R4 ограничивают ток через светодиоды, то есть задают их яркость. Резистор R5 является нагрузочным, создавая ток через тиристор около 0,1А.

Обратите внимание, что его мощность должна быть как минимум 1Вт, иначе резистор перегреется. Собрать 1Вт можно из нескольких маломощных резисторов, так, чтобы их суммарное сопротивление оказалось около 100 Ом. Также вместо этого резистора можно взять маломощную лампочку на 12В, её свечение будет дополнительным индикатором работоспособности тиристора/симистора, вместе со светодиодами. Кнопки SW2, SW3 позволяют управлять тестируемым тиристором/симистором, при нажатии на SW2 на управляющий электрод будет поступать отрицательный полупериод, при SW3 — положительный. Диоды можно брать практически любые, кроме указанных подойдут 1N4148, 1N4007. В правой нижней части схемы показано подключение испытываемых тиристора или симистора, важно правильно подключать тестируемый образец, если перепутать выводы схема, само собой, покажет, что элемент неработоспособен и появляется риск перебраковки. Однако, если тестер показал нормальную работу элемента, значит можно практически на 100% утверждать, что он исправен. На фотографии ниже показаны все элементы, необходимые для сборки прибора.



Для того, чтобы тестером было удобно пользоваться, необходимо поместить всю схему в корпусе, внутри корпуса же будет располагаться трансформатор, как видно по картинке ниже. Схема довольно проста, поэтому распаять всё можно даже навесным монтажом — резисторы и диоды закрепить на выводах кнопок, сами же кнопки с помощью гаек установить а лицевую панель корпуса. Светодиоды закрепить на корпусе с помощью специальных держателей, на их выводы припаять резисторы. В корпусе также нужно найти место для установки разъёма 220В для подключения трансформатора к сети, при этом в разрыв первичной обмотки можно установить выключатель. Но можно обойтись и без него, в этом случае прибор будет готов к работе сразу после втыкания вилки в розетку.



Ещё один немаловажный элемент на корпусе — контактная площадка для подключения тестируемого тиристора/симистора. Как правило, в корпусах ТО220 эти элементы имеют всегда одну и ту же маркировку, независимо от модели, поэтому имеет место быть «штатная» контактная площадка на корпусе, например, сделанная из штырькового разъёма. Однако не лишним будет и вывести три проводка с крокодилами для возможности подключения элементов в различных других корпусах. Таким образом, получился функциональный и надёжный прибор, выполненный в симпатичном корпусе. Удачной сборки!


Источник (Source)

Симистор принцип работы

Симистор. Описание, принцип работы, свойства и характеристики.

Справочные данные популярных отечественные симисторов и зарубежных
триаков. Простейшие схемы симисторных регуляторов мощности.

Ну что ж! На предыдущей странице мы достаточно плотно обсудили свойства и характеристики полупроводникового прибора под названием тиристор, неуважительно обозвали его “довольно архаичным”, пришло время выдвигать внятную альтернативу.
Симистор пришёл на смену рабочей лошадке-тиристору и практически полностью заменил его в электроцепях переменного тока.
История создания симистора также не нова и приходится на 1960-е годы, причём изобретён и запатентован он был в СССР группой товарищей из Мордовского радиотехнического института.

Итак:
Симистор, он же триак, он же симметричный триодный тиристор – это полупроводниковый прибор, являющийся разновидностью тиристора, но, в отличие от него, способный пропускать ток в двух направлениях и используемый для коммутации нагрузки в цепях переменного тока.

На Рис.1 слева направо приведены: топологическая структура симистора, далее расхожая, но весьма условная, эквивалентная схема, выполненная на двух тиристорах и, наконец, изображение симистора на принципиальных схемах.
МТ1 и МТ2 – это силовые выводы, которые могут обозначаться, как Т1&Т2; ТЕ1&ТЕ2; А1&А2; катод&анод. Управляющий электрод, как правило, обозначается латинской G либо русской У.

Глядя на эквивалентную схему, может возникнуть иллюзия, что симистор относительно горизонтальной оси является элементом абсолютно симметричным, что даёт возможность как угодно крутить его вокруг управляющего электрода. Это не верно.
Точно так же, как у тиристора, напряжение на управляющий электрод симистора должно подаваться относительно условного катода (МТ1, Т1, ТЕ1, А1).
Иногда производитель может обозначать цифрой 1 “анодный” вывод, цифрой 2 – “катодный”, поэтому всегда важно придерживаться обозначений, приведённых в паспортных характеристиках на прибор.

Полярность открывающего напряжения должна быть либо отрицательной для обеих полярностей напряжения на условном аноде, либо совпадать с полярностью “анодного” напряжения (т.е. быть плюсовой в момент прохождения положительной полуволны и минусовой – в момент прохождения отрицательной).

Приведём вольт-амперную характеристику тиристора и схему, реализующую самый простой способ управления симисторами – подачу на управляющий электрод прибора постоянного тока с величиной, необходимой для его включения (Рис.2).


Рис.2

Огромным плюсом симистора перед тиристором является возможность в штатном режиме работать с разнополярными полупериодами сетевого напряжения. Вольт-амперная характеристика является симметричной, надобности в выпрямительном мосте – никакой, схема получается проще, но главное – исключается элемент (выпрямитель), на котором вхолостую рассеивается около 50% мощности.

Давайте рассмотрим работу симистора при подаче на его управляющий вход постоянного тока отрицательной полярности (Рис.2 справа), ведь мы помним, что именно такая полярность открывающего напряжения является универсальной и для положительных, и для отрицательных полупериодов напряжения сети. На самом деле, всё происходит абсолютно аналогично описанной на предыдущей странице работе тиристора.
Повторим пройденный материал.

1. Для начала рассмотрим случай, когда управляющий электрод симистора отключен (S1 на схеме разомкнут, Iу на ВАХ равен 0). Тока через нагрузку нет (участки III на ВАХ), симистор закрыт, и для того, чтобы его открыть, необходимо поднять напряжение на “аноде” симистора настолько, чтобы возник лавинный пробой p-n-переходов полупроводника.
Оговоримся – зафиксировать нам этот процесс не удастся, потому что величина этого напряжения составляет несколько сотен вольт и, как правило, превышает амплитудное значение напряжения сети.
Тем не менее – при достижении этого уровня напряжения (точки II на ВАХ) симистор отпирается, падение напряжения между силовыми выводами падает до единиц вольт, нагрузка подключается к сети – наступает рабочий режим открытого симистора (участки I на ВАХ).
Чтобы закрыть симистор, нужно снизить протекающий через нагрузку ток (или напряжение на “аноде”) ниже тока удержания.

2. Для того чтобы снизить величину напряжения включения симистора, следует замкнуть S1 и, тем самым, подать на управляющий электрод ток, задаваемый значением переменного резистора R1. Чем больше ток Iу, тем при меньшем анодном напряжении происходит переключение симистора в проводящее состояние.
А при какой-то величине тока управляющего электрода, называемой током спрямления (на ВАХ не показано), горба на характеристике вообще не будет, и напряжение открывания симистора составит незначительную величину, исчисляемую единицами вольт.
Абсолютно так же, как и в прошлом пункте, чтобы закрыть симистор, необходимо снизить протекающий через нагрузку ток (или напряжение на “аноде”) ниже значения тока удержания.

То бишь – всё полностью аналогично тиристору. Для открывания симистора следует подать на управляющий электрод прибора постоянный ток с величиной, необходимой для его включения, для закрывания – снизить протекающий через нагрузку ток (или напряжение на “аноде”) ниже значения тока удержания.
Т.е. в нашем случае, представленном на Рис.2 – симистор будет открываться при замыкании S1 в каждый момент превышения “анодным” напряжением некоторого значения, зависящего от номинала R1, а закрываться с каждым полупериодом сетевого напряжения в момент приближения его уровня к нулевому значению.

Описанный выше способ управления симистором посредством подачи на управляющий электрод постоянного напряжения обладает существенным недостатком – требуется довольно большой ток (а соответственно и мощность) управляющего сигнала (по паспорту – до 250мА для КУ208). Поэтому в большинстве случаев для управления симисторами используется импульсный метод, либо метод, при котором открытый симистор шунтирует цепь управления, не допуская бесполезного рассеивания мощности на её элементах.

В качестве примера рассмотрим простейшую, но вполне себе работоспособную схему симисторного регулятора мощности, позволяющего работать с нагрузками вплоть до 2000 Вт.


Рис.3

Как можно увидеть, на схеме помимо симистора VS2 присутствует малопонятный элемент VS1 – динистор. Для интересующихся отмечу – на странице ссылка на страницу мы подробно обсудили принцип работы, свойства и характеристики приборов данного типа.

А теперь – как это всё работает?
В начале действия положительного полупериода симистор закрыт. По мере увеличения сетевого напряжения конденсатор С1 заряжается через последовательно соединённые резисторы R1 и R2. Причём увеличение напряжения на конденсаторе С1 отстаёт (сдвигается по фазе) от сетевого на величину, зависящую от суммарного сопротивления резисторов и номинала ёмкости С1. Чем выше значения резисторов и конденсатора – тем больше сдвиг по фазе.
Заряд конденсатора продолжается до тех пор, пока напряжение на нём не достигнет порога пробоя динистора (около 35 В). Как только динистор откроется (следовательно, откроется и симистор), через нагрузку потечёт ток, определяемый суммарным сопротивлением открытого симистора и нагрузки.
При этом симистор остаётся открытым до конца полупериода, т.е. момента, когда полуволна сетевого напряжения приблизится к нулевому уровню.
Переменным резистором R2 устанавливают момент открывания динистора и симистора, производя тем самым регулировку мощности, подводимой к нагрузке.

При действии отрицательной полуволны принцип работы устройства аналогичен.

Диаграммы напряжения на нагрузке при различных значениях переменного резистора приведены на Рис.3 справа.

Для предотвращения ложных срабатываний триаков, вызванных переходными процессами в индуктивных нагрузках (например, в электродвигателях), симисторы должны иметь дополнительные компоненты защиты. Это, как правило, демпферная RC-цепочка (снабберная цепь) между силовыми электродами триака, которая используется для ограничения скорости изменения напряжения (на схеме Рис.3 показана синим цветом).
В некоторых случаях, когда нагрузка имеет ярко выраженный ёмкостной характер, между силовыми электродами необходима индуктивность для ограничения скорости изменения тока при коммутации.

А под занавес приведём основные характеристики отечественных симисторов и зарубежных триаков.

ТипU макс, ВI max, АIу отп, мА
КУ208Г4005
BT 131-6006001
BT 134-5005004
BT 134-6006004
BT 134-600D6004
BT 136-500Е5004
BT 136-600Е6004
BT 137-600Е6008
BT 138-60060012
BT 138-80080012
BT 139-50050016
BT 139-60060016
BT 139-80080016
BTA 140-60060025
BTF 140-80080025
BT 151-650R65012
BT 151-800R80012
BT 169D40012
BTA/BTB 04-600S6004
BTA/BTB 06-600C6006
BTA/BTB 08-600B6008
BTA/BTB 08-600C6008
BTA/BTB 10-600B60010
BTA/BTB 12-600B60012
BTA/BTB 12-600C60012
BTA/BTB 12-800B80012
BTA/BTB 12-800C80012
BTA/BTB 16-600B60016
BTA/BTB 16-600C60016
BTA/BTB 16-600S60016
BTA/BTB 16-800B80016
BTA/BTB 16-800S80016
BTA/BTB 24-600B60025
BTA/BTB 24-600C60025
BTA/BTB 24-800B80025
BTA/BTB 25-600В60025
BTA/BTB 26-600A60025
BTA/BTB 26-600B60025
BTA/BTB 26-700B70025
BTA/BTB 26-800B80025
BTA/BTB 40-600B60040
BTA/BTB 40-800B80040
BTA/BTB 41-600B60041
BTA/BTB 41-800B80041
MAC8M6008
MAC8N8008
MAC9M6009
MAC9N8009
MAC12M60012
MAC12N80012
MAC15M60015
MAC12N80015

Симисторы с обозначение BTA отличаются от других наличием изолированного корпуса.
Падение напряжения на открытом симисторе составляет примерно 1-2 В и мало зависит от протекающего тока.

Обозначение и принцип действия симистора: объяснение для «чайников»

Полупроводниковые элементы применяются для создания различных устройств и техники. Некоторые из них выполняют функции электронных ключей, например, симисторы. Большинство радиолюбителей сталкивается с ремонтом различной техники, в которой он применяется. Для выполнения качественного ремонта следует получить подробную информацию о детали, выяснить ее структуру и принцип работы.

Общие сведения

Симистор (триак) является одним из видов тиристора и обладает большим количеством переходов p-n-типа. Его целесообразно применять в цепях переменного тока для электронного управления. Чтобы понять принцип работы симистора «чайникам» в этом вопросе, следует рассмотреть его структуру, функцию и сферы применения.

Информация о ключах

Ключи — устройства, которые применяются для коммутации или переключения в электрических цепях. Существует три их вида, и каждый из них обладает своими достоинствами и недостатками. Классифицируются ключи по типу переключения:

  1. Механические.
  2. Электромеханические.
  3. Электронные.

К механическим ключам относятся выключатели и рубильники. Применяются они в случаях необходимости ручной коммутации для замыкания одного или нескольких групп контактов. К виду электромеханических ключей следует отнести реле (контакторы). Электромагнитное реле состоит из магнита, представляющего катушку с подвижным сердечником. При подаче питания на катушку она притягивает сердечник с группой контактов: одни контакты замыкаются, а другие — размыкаются.

Среди достоинств применения электромеханических ключей можно выделить следующие: отсутствие падения напряжения и потери мощности на контактах, а также изолирование цепей нагрузки и коммутации. У этого типа ключей есть и недостатки:

  1. Число переключений ограниченно, поскольку контакты изнашиваются.
  2. При размыкании возникает электрическая дуга, которая приводит к разрушению контактов (электроэрозии). Невозможно применять во взрывоопасных средах.
  3. Очень низкое быстродействие.

Электронные ключи бывают на разной базе полупроводниковых элементов: транзисторах, управляемых диодах (тиристорах) и симметричных управляемых диодах (симисторах). Простейшим электронным ключом является транзистор биполярного типа с коллектором, эмиттером и базой, состоящего из 2 p-n-переходов. По структуре они бывают 2 типов: n-p-n и р-n-p.

Поскольку транзистор состоит из 2 p-n-переходов, то в зависимости от состояния, в которых они находятся, различают 4 режима работы: основной, инверсный, насыщения и отсечки. При активном режиме открыт коллекторный переход, а при инверсном — эмиттерный. При двух открытых переходах транзистор работает в режиме насыщения. При условии, что закрыты оба перехода, он будет работать в режиме отсечки.

Для использования транзистора необходимо всего 2 его состояния. Режим отсечки происходит при отсутствии тока базы, следовательно, при этом ток коллектора равен 0. При подаче достаточного значения тока на базу полупроводниковый прибор будет работать в режиме насыщения, т. е. в открытом состоянии.

Если рассматривать ключи на полевых транзисторах, то появляется возможность менять его проводимость при изменении величины напряжения на затворе, выполняющего функцию управляющего электрода. Управляя его работой при помощи воздействия на затвор, можно получить два состояния: открытое и закрытое. Ключи на полевых транзисторах обладают высоким быстродействием, чем на биполярных.

Электронные ключи, выполненные на тиристорах, обладают некоторыми особенностями. Тиристор является полупроводниковым радиоэлементом с p-n-p-n или n-p-n-p переходам и имеет 3, а иногда и 4 вывода. Состоит он из p-слоя (катода), n-слоя (анода) и управляющего электрода (базы). Его можно заменить 2 транзисторами разной структуры. Он представляет 2 ключа транзисторного типа, которые включены встречно. База одного транзистора подключается к коллектору другого.

При подаче на базу отпирающего тока управляемый диод откроется и останется в этом состоянии, пока величина тока не будет снижена до нулевого значения. При большом значении тока базы тиристор является обыкновенным полупроводниковым диодом, проводящим ток в одном направлении.

Он может функционировать в цепях переменного тока, но только на половину мощности. Для этих целей необходимо применять симистор.

Принцип работы симистора

Основным отличием симистора от тиристора является проводимость сразу в двух направлениях. Симистор можно заменить 2 тиристорами, которые имеют встречно-параллельное подключение на рисунке 1. На нем представлено условное графическое обозначение триака на электрических принципиальных схемах. В некоторой литературе можно встретить и другие названия: триак и симметричный управляемый диод.

Рисунок 1. Симистор (схема включения 2 тиристоров) и его графическое обозначение

Существует простой пример, который позволит понять даже «чайникам», как работает симистор. Дверь в гостинице можно открывать в двух направлениях, причем в нее могут войти и выйти сразу 2 человека. Этот простой пример показывает, что триак может пропускать ток сразу в двух направлениях (прямом и обратном), поскольку он состоит из 5 p-n-переходов. Управление его работой осуществляется при помощи базы.

Слои симисторного ключа, изготовленные из полупроводника, похожи на переход транзистора, но имеют еще 3 дополнительных области n-типа. Четвертый слой находится возле катода и является разделенным, поскольку анод и катод при движении тока выполняют некоторые функции, а при обратном направлении движения — меняются местами. Пятый слой находится возле базы.

При подаче сигнала на управляющий вывод произойдет отпирание симметричного управляющегося диода, поскольку его анод будет иметь положительный потенциал. В этом случае по верхнему тиристору потечет ток. При изменении полярности ток будет течь по нижнему тиристору (рисунок 1). Об этом свидетельствует его вольт-амперная характеристика (ВАХ) на рисунке 2. Она состоит из двух кривых, повернутых на 180 градусов.

Рисунок 2. ВАХ триака

Литерой «А» обозначено его закрытое состояние, а «В» — открытое. Urrm и Udrm — допустимые значения прямого и обратного напряжений. Idrm и Irrm — прямой и обратный токи.

Виды и сферы применения

Поскольку симистор является видом тиристора, то основным их отличием является параметры управляющего электрода (базы). Кроме того, они классифицируются по другим признакам:

  1. Конструкция.
  2. Величина тока, при которой наступает перегрузка.
  3. Характеристики базы.
  4. Значения прямых и обратных токов.
  5. Величина прямого и обратного напряжений.
  6. Тип электрической нагрузки. Бывают силовыми и обычными.
  7. Параметр силы тока, необходимой для открытия затвора.
  8. Коэффициент dv/dt или скорость, с которой происходит переключение.
  9. Производитель.
  10. Мощность.

Благодаря особенности пропускания тока в двух направлениях, их используют в цепях переменного тока, поскольку тиристор не может работать на полную мощность. Симметричные тиристоры получили широкое применение в таких устройствах:

  1. Приборах для регулировки яркости света или диммерах.
  2. Регуляторах оборотов для различного инструмента (лобзики, шуруповерты и т. д.).
  3. Электронной регулировке температур для индукционных плит.
  4. Холодильной аппаратуре для плавного запуска двигателя.
  5. Бытовой технике.
  6. Промышленности для освещения, плавного пуска приводов машин и механизмов.

Среди достоинств симисторов можно выделить незначительную стоимость, надежность и они не генерируют помехи (не используются контакты механического типа), а также длительный срок эксплуатации. К основным недостаткам следует отнести следующие: необходимость в дополнительном теплоотводе, невозможность использования на высоких частотах, а также влияние помех и шумов различного рода.

Для подавления помех следует подсоединить параллельно триаку, между катодом и анодом, цепочку из конденсатора и резистора с номиналами от 0,02 до 0,3 мкФ и от 45 до 500 Ом соответственно. Для применения в какой-либо схеме или устройстве следует знать основные технические характеристики, поскольку владение этой информацией поможет избежать множества трудностей перед начинающим радиолюбителем.

Технические характеристики

У триаков существуют характеристики, позволяющие применять их в какой-либо схеме. Кроме того, они отличаются также и производителем — бывают отечественные и импортные. Основное отличие импортных состоит в том, что нет необходимости подстраивать их работу при помощи дополнительных радиоэлементов, т. е. собирать дополнительную схему управления симистором. У симисторов существуют следующие характеристики:

  1. Величина максимального обратного и импульсного значений напряжений, на которые он рассчитан.
  2. Минимальное и максимальное значения тока, при котором происходит открытие его перехода, а также значение максимального импульсного тока, необходимого для его открытия.
  3. Период включения и выключения.
  4. Коэффициент dv/dt.

Характеристики в основном определяются по маркировке триаков с использованием справочника. В справочной информации имеется информация о том, как он выглядит, и дается его распиновка. При использовании триака следует учитывать такую характеристику, как dv/dt. Она показывает значения коэффициента, при котором не происходит самопроизвольное включение из-за скачков напряжения. Причинами такого включения могут служить помехи импульсного происхождения и падение напряжения при коммутации ключа. Кроме того, чтобы избежать последствий, следует применять RC-цепочку, а также ограничивающие диоды или варистор. Эта цепочка подсоединяется к эмиттеру и коллектору симистора.

При выборе триака следует обратить внимание на все характеристики, поскольку не имеет смысла использовать высоковольтный тип в схемах с низким напряжением. Например, если устройство работает от напряжения 36 В, то зарубежный симистор Zo607 с напряжением 600 В (его аналог — вта41600в) не следует применять.

Кроме того, в некоторых источниках можно встретить понятие бесснабберного симистора. Это тип, который применяется при индуктивных нагрузках. Примером такой модели являются m10lz47, mac12n и tg35c60.

Диагностика в схемах

В некоторых случаях радиолюбитель сталкивается с проверкой симистора, однако не всегда может ее корректно произвести. В случае выхода триака из строя его желательно выпаять из платы и произвести его проверку. Обычный цифровой мультиметр для этой цели не подойдет, поскольку его ток слишком мал, чтобы открыть переход детали. Для этого подойдет обыкновенный стрелочный омметр. Вариантов проверки всего два: использовать стрелочный прибор или собрать спецсхему для этой операции. Для осуществления проверки по первому варианту необходимо руководствоваться следующим алгоритмом:

  1. Включить прибор в режим измерения величины сопротивления.
  2. Подключить щупы тестера к эмиттеру и коллектору. Если прибор показывает бесконечное сопротивление, то деталь исправна. Остальные случаи указывают на ее неисправность.
  3. Соединить базу и вывод Т2. В этом случае сопротивление будет в пределах от 40 до 250 Ом. Если поменять местами щупы, то прибор снова покажет бесконечность. Это свидетельствует об исправности симистора.

Однако первый метод диагностики в некоторых случаях дает не совсем нужные и верные результаты. Очень часто проверенная таким способом деталь в схеме не работает. Это связано с тем, что герметичность ее корпуса нарушена. Недостаток метода — неточная диагностика. Для более точной диагностики следует проверить триак в работе (схема 1). Для этого необходимо использовать лампу накаливания и аккумулятор.

Схема 1. Проверка симметричного тиристора при помощи лампы накаливания и источника питания

В этой схеме симистор будет проверен под нагрузкой. При касании управляющего электрода, лампочка загорится и будет гореть некоторое время, пока не пропадет питание на аноде или ток на базе не будет малой величины. Недостаток метода — простая конструкция, при которой неудобно осуществлять проверку, поскольку следует напаивать провода на выводы триака. После проверки при неисправной детали следует произвести замену.

Таким образом, симисторы используются в управляемых устройствах в качестве электронных ключей, способных пропускать ток в двух направлениях. Их несложно проверить и желательно использовать специальную схему для этой операции.


Симисторы: принцип работы, проверка и включение, схемы

Существенный недостаток тиристоров заключается в том, что это однополупериодные элементы, соответственно, в цепях переменного тока они работают с половинной мощностью. Избавиться от этого недостатка можно используя схему встречно-параллельного включения двух однотипных устройств или установив симистор. Давайте разберемся, что представляет собой этот полупроводниковый элемент, принцип его функционирования, особенности, а также сферу применения и способы проверки.

Что такое симистор?

Это один из видов тиристоров, отличающийся от базового типа большим числом p-n переходов, и как следствие этого, принципом работы (он будет описан ниже). Характерно, что в элементной базе некоторых стран данный тип считается самостоятельным полупроводниковым устройством. Эта незначительная путаница возникла вследствие регистрации двух патентов, на одно и то же изобретение.

Описание принципа работы и устройства

Основное отличие этих элементов от тиристоров заключается в двунаправленной проводимости электротока. По сути это два тринистора с общим управлением, включенных встречно-параллельно (см. А на рис. 1) .

Рис. 1. Схема на двух тиристорах, как эквивалент симистора, и его условно графическое обозначение

Это и дало название полупроводниковому прибору, как производную от словосочетания «симметричные тиристоры» и отразилось на его УГО. Обратим внимание на обозначения выводов, поскольку ток может проводиться в оба направления, обозначение силовых выводов как Анод и Катод не имеет смысла, потому их принято обозначать, как «Т1» и «Т2» (возможны варианты ТЕ1 и ТЕ2 или А1 и А2). Управляющий электрод, как правило, обозначается «G» (от английского gate).

Теперь рассмотрим структуру полупроводника (см. рис. 2.) Как видно из схемы, в устройстве имеется пять переходов, что позволяет организовать две структуры: р1-n2-p2-n3 и р2-n2-p1-n1, которые, по сути, являются двумя встречными тринисторами, подключенными параллельно.

Рис. 2. Структурная схема симистора

Когда на силовом выводе Т1 образуется отрицательная полярность, начинается проявление тринисторного эффекта в р2-n2-p1-n1, а при ее смене — р1-n2-p2-n3.

Заканчивая раздел о принципе работы приведем ВАХ и основные характеристики прибора.

ВАХ симистора

Обозначение:

  • А – закрытое состояние.
  • В – открытое состояние.
  • UDRM (UПР) – максимально допустимый уровень напряжения при прямом включении.
  • URRM (UОБ) – максимальный уровень обратного напряжения.
  • IDRM (IПР) – допустимый уровень тока прямого включения
  • IRRM (IОБ) — допустимый уровень тока обратного включения.
  • IН (IУД) – значения тока удержания.

Особенности

Чтобы иметь полное представление о симметричных тринисторах, необходимо рассказать про их сильные и слабые стороны. К первым можно отнести следующие факторы:

  • относительно невысокая стоимость приборов;
  • длительный срок эксплуатации;
  • отсутствие механики (то есть подвижных контактов, которые являются источниками помех).

В число недостатков приборов входят следующие особенности:

  • Необходимость отвода тепла, примерно из расчета 1-1,5 Вт на 1 А, например, при токе 15 А величина мощности рассеивания будет около 10-22 Вт, что потребует соответствующего радиатора. Для удобства крепления к нему у мощных устройств один из выводов имеет резьбу под гайку.

Симистор с креплением под радиатор

  • Устройства подвержены влиянию переходных процессов, шумов и помех;
  • Не поддерживаются высокие частоты переключения.

По последним двум пунктам необходимо дать небольшое пояснение. В случае высокой скорости коммутации велика вероятность самопроизвольной активации устройства. Помеха в виде броска напряжения также может привести к этому результату. В качестве защиты от помех рекомендуется шунтировать прибор RC цепью.

RC-цепочка для защиты симистора от помех

Помимо этого рекомендуется минимизировать длину проводов ведущих к управляемому выводу, или в качестве альтернативы использовать экранированные проводники. Также практикуется установка шунтирующего резистора между выводом T1 (TE1 или A1) и управляющим электродом.

Применение

Этот тип полупроводниковых элементов первоначально предназначался для применения в производственной сфере, например, для управления электродвигателями станков или других устройств, где требуется плавная регулировка тока. Впоследствии, когда техническая база позволила существенно уменьшить размеры полупроводников, сфера применения симметричных тринисторов существенно расширилась. Сегодня эти устройства используются не только в промышленном оборудовании, а и во многих бытовых приборах, например:

  • зарядные устройства для автомобильных АКБ;
  • бытовое компрессорное оборудования;
  • различные виды электронагревательных устройств, начиная от электродуховок и заканчивая микроволновками;
  • ручные электрические инструменты (шуроповерт, перфоратор и т.д.).

И это далеко не полный перечень.

Одно время были популярны простые электронные устройства, позволяющие плавно регулировать уровень освещения. К сожалению, диммеры на симметричных тринисторах не могут управлять энергосберегающими и светодиодными лампами, поэтому эти приборы сейчас не актуальны.

Как проверить работоспособность симистора?

В сети можно найти несколько способ, где описан процесс проверки при помощи мультиметра, те, кто описывал их, судя по всему, сами не пробовали ни один из вариантов. Чтобы не вводить в заблуждение, следует сразу заметить, что выполнить тестирование мультиметром не удастся, поскольку не хватит тока для открытия симметричного тринистора. Поэтому, у нас остается два варианта:

  1. Использовать стрелочный омметр или тестер (их силы тока будет достаточно для срабатывания).
  2. Собрать специальную схему.

Алгоритм проверки омметром:

  1. Подключаем щупы прибора к выводам T1 и T2 (A1 и A2).
  2. Устанавливаем кратность на омметре х1.
  3. Проводим измерение, положительным результатом будет бесконечное сопротивление, в противном случае деталь «пробита» и от нее можно избавиться.
  4. Продолжаем тестирование, для этого кратковременно соединяем выводы T2 и G (управляющий). Сопротивление должно упасть примерно до 20-80 Ом.
  5. Меняем полярность и повторяем тест с пункта 3 по 4.

Если в ходе проверки результат будет таким же, как описано в алгоритме, то с большой вероятностью можно констатировать, что устройство работоспособное.

Заметим, что проверяемую деталь не обязательно демонтировать, достаточно только отключить управляющий вывод (естественно, обесточив предварительно оборудование, где установлена деталь, вызывающая сомнение).

Необходимо заметить, что данным способом не всегда удается достоверно проверку, за исключением тестирования на «пробой», поэтому перейдем ко второму варианту и предложим две схемы для тестирования симметричных тринисторов.

Схему с лампочкой и батарейкой мы приводить не будем в виду того, что таких схем достаточно в сети, если вам интересен этот вариант, можете посмотреть его в публикации о тестировании тринисторов. Приведем пример более действенного устройства.

Схема простого тестера для симисторов

Обозначения:

  • Резистор R1 – 51 Ом.
  • Конденсаторы C1 и С2 – 1000 мкФ х 16 В.
  • Диоды – 1N4007 или аналог, допускается установка диодного моста, например КЦ405.
  • Лампочка HL – 12 В, 0,5А.

Можно использовать любой трансформатор с двумя независимыми вторичными обмотками на 12 Вольт.

Алгоритм проверки:

  1. Устанавливаем переключатели в исходное положение (соответствующее схеме).
  2. Производим нажатие на SB1, тестируемое устройство открывается, о чем сигнализирует лампочка.
  3. Жмем SB2, лампа гаснет (устройство закрылось).
  4. Меняем режим переключателя SA1 и повторяем нажатие на SB1, лампа снова должна зажечься.
  5. Производим переключение SA2, нажимаем SB1, затем снова меня ем положение SA2 и повторно жмем SB1. Индикатор включится, когда на затвор попадет минус.

Теперь рассмотрим еще одну схему, только универсальную, но также не особо сложную.

Схема для проверки тиристоров и симисторов

Обозначения:

  • Резисторы: R1, R2 и R4 – 470 Ом; R3 и R5 – 1 кОм.
  • Емкости: С1 и С2 – 100 мкФ х 10 В.
  • Диоды: VD1, VD2, VD5 и VD6 – 2N4148; VD2 и VD3 – АЛ307.

В качестве источника питания используется батарейка на 9V, по типу Кроны.

Тестирование тринисторов производится следующим образом:

  1. Переключатель S3, переводится в положении, как продемонстрировано на схеме (см. рис. 6).
  2. Кратковременно производим нажатие на кнопку S2, тестируемый элемент откроется, о чем просигнализирует светодиод VD
  3. Меняем полярность, устанавливая переключатель S3 в среднее положение (отключается питание и гаснет светодиод), потом в нижнее.
  4. Кратковременно жмем S2, светодиоды не должны загораться.

Если результат будет соответствовать вышеописанному, значит с тестируемым элементом все в порядке.

Теперь рассмотрим, как проверить с помощью собранной схемы симметричные тринисторы:

  • Выполняем пункты 1-4.
  • Нажимаем кнопку S1- загорается светодиод VD

То есть, при нажатии кнопок S1 или S2 будут загораться светодиоды VD1 или VD4, в зависимости от установленной полярности (положения переключателя S3).

Схема управления мощностью паяльника

В завершении приведем простую схему, позволяющую управлять мощностью паяльника.

Простой регулятор мощности для паяльника

Обозначения:

  • Резисторы: R1 – 100 Ом, R2 – 3,3 кОм, R3 – 20 кОм, R4 – 1 Мом.
  • Емкости: С1 – 0,1 мкФ х 400В, С2 и С3 — 0,05 мкФ.
  • Симметричный тринистор BTA41-600.

Приведенная схема настолько простая, что не требует настройки.

Теперь рассмотрим более изящный вариант управления мощностью паяльника.

Схема управления мощностью на базе фазового регулятора

Обозначения:

  • Резисторы: R1 – 680 Ом, R2 – 1,4 кОм, R3 — 1,2 кОм, R4 и R5 – 20 кОм (сдвоенное переменное сопротивление).
  • Емкости: С1 и С2 – 1 мкФ х 16 В.
  • Симметричный тринистор: VS1 – ВТ136.
  • Микросхема фазового регулятора DA1 – KP1182 ПМ1.

Настройка схемы сводится к подбору следующих сопротивлений:

  • R2 – с его помощью устанавливаем необходимую для работы минимальную температуру паяльника.
  • R3 – номинал резистора позволяет задать температуру паяльника, когда он находится на подставке (срабатывает переключатель SA1),

Что такое симистор (триак), характеристики, схемы

В данной статье мы подробно разберем что такое симистор (триак), рассмотрим его схему и символ на схеме, кривые характеристики триака, а так же фазовый контроль симистора.

Введение

Будучи твердотельным устройством, тиристоры могут использоваться для управления лампами, двигателями или нагревателями и т.д. Однако одна из проблем использования тиристора для управления такими цепями заключается в том, что, подобно диоду, «тиристор» является однонаправленным устройством, что означает, что он пропускает ток только в одном направлении, от анода к катоду .

Для цепей переключения постоянного тока эта «однонаправленная» характеристика переключения может быть приемлемой, поскольку после запуска вся мощность постоянного тока подается прямо на нагрузку. Но в синусоидальных цепях переключения переменного тока это однонаправленное переключение может быть проблемой, поскольку оно проводит только в течение одной половины цикла (например, полуволнового выпрямителя), когда анод является положительным, независимо от того, что делает сигнал затвора. Затем для работы от переменного тока тиристором подается нагрузка только на половину мощности.

Чтобы получить двухволновое управление мощностью, мы могли бы подключить один тиристор внутри двухполупериодного мостового выпрямителя, который срабатывает на каждой положительной полуволне, или соединить два тиристора вместе в обратной параллели (спина к спине), как показано ниже. но это увеличивает как сложность, так и количество компонентов, используемых в схеме переключения.

Тиристорные конфигурации

Существует, однако, другой тип полупроводникового устройства, называемый «Триодный выключатель переменного тока» или «Триак» для краткости. Триаки также являются членами семейства тиристоров, и, как и кремниевые выпрямители, управляемые кремнием, они могут использоваться в качестве полупроводниковых переключателей питания, но что более важно, триаки являются «двунаправленными» устройствами. Другими словами, симистор может быть запущен в проводимость как положительными, так и отрицательными напряжениями, приложенными к его аноду, и положительными и отрицательными импульсами запуска, приложенными к его клемме затвора, что делает его двухквадрантным коммутирующим устройством, управляемым затвором.

Симистор ведет себя так же, как два обычных тиристоров, соединенных вместе в обратной параллельно (спина к спине) по отношению друг к другу и из — за этой конструкции два тиристоры имеют общий терминал Gate все в пределах одного трехтерминальной пакета.

Поскольку триак проводит в обоих направлениях синусоидальной формы волны, концепция анодной клеммы и катодной клеммы, используемая для идентификации главных силовых клемм тиристора, заменена обозначениями: MT 1 для главной клеммы 1 и MT 2 для главной клеммы 2.

В большинстве устройств переключения переменного тока клемма симисторного затвора связана с клеммой MT 1, аналогично взаимосвязи затвор-катод тиристора или взаимосвязи база-эмиттер транзистора. Конструкция, легирование PN и условные обозначения, используемые для обозначения триака, приведены ниже.

Схема и символ симистора

Теперь мы знаем, что «триак» — это четырехслойное PNPN в положительном направлении и NPNP в отрицательном направлении, трехполюсное двунаправленное устройство, которое блокирует ток в своем состоянии «ВЫКЛ», действующее как выключатель разомкнутой цепи, но в отличие от обычного тиристора, симистор может проводить ток в любом направлении при срабатывании одним импульсом затвора. Тогда симистор имеет четыре возможных режима срабатывания следующим образом.

  • Mode + Mode = положительный ток MT 2 (+ ve), положительный ток затвора (+ ve)
  • Mode — Mode = положительный ток MT 2 (+ ve), отрицательный ток затвора (-ve)
  • Mode + Mode = MT 2 отрицательный ток (-ve), положительный ток затвора (+ ve)
  • Mode — Mode = отрицательный ток MT 2 (-ve), отрицательный ток затвора (-ve)

И эти четыре режима, в которых может работать триак, показаны с использованием кривых характеристик триака IV.

Кривые характеристики триака IV

В квадранте tri триак обычно запускается в проводимость положительным током затвора, обозначенным выше как режим Ι +. Но это также может быть вызвано отрицательным током затвора, режим Ι–. Аналогичным образом, в квадранте Использование симистора

Симистор наиболее часто используется в полупроводниковых устройствах для коммутации и управления мощностью систем переменного тока, как симистор может быть включен «ON» либо положительным или отрицательным импульсом Gate, независимо от полярности питания переменного тока в то время. Это делает триак идеальным для управления лампой или нагрузкой двигателя переменного тока с помощью базовой схемы переключения триака, приведенной ниже.

Схема переключения симистора

Приведенная выше схема показывает простую схему переключения симистора с триггером постоянного тока. При разомкнутом переключателе SW1 ток не поступает в затвор симистора, и поэтому лампа выключена. Когда SW1 замкнут, ток затвора подается на триак от батареи V G через резистор R, и триак приводится в полную проводимость, действуя как замкнутый переключатель, и полная мощность потребляется лампой от синусоидального источника питания.

Поскольку батарея подает положительный ток затвора на триак всякий раз, когда переключатель SW1 замкнут, триак постоянно находится в режимах g + и ΙΙΙ + независимо от полярности клеммы MT 2 .

Конечно, проблема с этой простой схемой переключения симистора состоит в том, что нам потребовался бы дополнительный положительный или отрицательный источник питания затвора, чтобы запустить триак в проводимость. Но мы также можем активировать триак, используя фактическое напряжение питания переменного тока в качестве напряжения срабатывания затвора. Рассмотрим схему ниже.

Схема показывает триак, используемый как простой статический выключатель питания переменного тока, обеспечивающий функцию «ВКЛ» — «ВЫКЛ», аналогичную в работе предыдущей схеме постоянного тока. Когда переключатель SW1 разомкнут, триак действует как разомкнутый переключатель, и лампа пропускает нулевой ток. Когда SW1 замкнут, триак отключается от «ВКЛ» через токоограничивающий резистор R и самоблокируется вскоре после начала каждого полупериода, таким образом переключая полную мощность на нагрузку лампы.

Поскольку источник питания является синусоидальным переменным током, триак автоматически отключается в конце каждого полупериода переменного тока в качестве мгновенного напряжения питания, и, таким образом, ток нагрузки кратковременно падает до нуля, но повторно фиксируется снова, используя противоположную половину тиристора в следующем полупериоде, пока выключатель остается замкнутым. Этот тип управления переключением обычно называется двухполупериодным управлением, поскольку контролируются обе половины синусоидальной волны.

Поскольку симистор фактически представляет собой две SCR, подключенные друг к другу, мы можем продолжить эту схему переключения симистора, изменив способ срабатывания затвора, как показано ниже.

Модифицированная цепь переключения симистора

Как и выше, если переключатель SW1 разомкнут в положении A, то ток затвора отсутствует, а лампа выключена. Если переключатель находится в положении B, то ток затвора протекает в каждом полупериоде так же, как и раньше, и лампа получает полную мощность, когда триак работает в режимах Ι + и ΙΙΙ–.

Однако на этот раз, когда переключатель подключен к положению C, диод предотвратит срабатывание затвора, когда MT 2 будет отрицательным, так как диод имеет обратное смещение. Таким образом, симистор работает только в положительных полупериодах, работающих только в режиме I +, и лампа загорается при половине мощности. Затем, в зависимости от положения переключателя, нагрузка выключена при половине мощности или полностью включена .

Фазовый контроль симистора

Другой распространенный тип схемы симистической коммутации использует управление фазой для изменения величины напряжения и, следовательно, мощности, подаваемой на нагрузку, в данном случае на двигатель, как для положительной, так и для отрицательной половин входного сигнала. Этот тип управления скоростью двигателя переменного тока обеспечивает полностью переменное и линейное управление, поскольку напряжение можно регулировать от нуля до полного приложенного напряжения, как показано на рисунке.

Эта базовая схема запуска фазы использует триак последовательно с двигателем через синусоидальный источник переменного тока. Переменный резистор VR1 используется для управления величиной фазового сдвига на затворе симистора, который, в свою очередь, управляет величиной напряжения, подаваемого на двигатель, путем его включения в разное время в течение цикла переменного тока.

Вызывание напряжение симистора является производным от VR1 — C1 комбинации через Диак (Диак является двунаправленным полупроводниковым устройством , которое помогает обеспечить резкий триггер импульс тока, чтобы полностью включение симистора).

В начале каждого цикла C1 заряжается через переменный резистор VR1. Это продолжается до тех пор, пока напряжение на С1 не станет достаточным для запуска диака в проводимость, что, в свою очередь, позволяет конденсатору С1 разрядиться в затвор симистора, включив его.

Как только триак запускается в проводимость и насыщается, он эффективно замыкает цепь управления фазой затвора, подключенную параллельно ему, и триак берет на себя управление оставшейся частью полупериода.

Как мы видели выше, триак автоматически отключается в конце полупериода, и процесс запуска VR1-C1 снова запускается в следующем полупериоде.

Однако, поскольку для триака требуются разные величины тока затвора в каждом режиме переключения, например, Ι + и ΙΙΙ–, поэтому триак является асимметричным, что означает, что он не может запускаться в одной и той же точке для каждого положительного и отрицательного полупериода.

Эта простая схема управления скоростью симистора подходит не только для управления скоростью двигателя переменного тока, но и для диммеров ламп и управления электронагревателем, и на самом деле очень похожа на регулятор симистора, используемый во многих домах. Однако коммерческий симисторный диммер не должен использоваться в качестве регулятора скорости двигателя, так как, как правило, симисторные диммеры предназначены для использования только с резистивными нагрузками, такими как лампы накаливания.

Мы можем закончить эту про симистор, суммировав его основные пункты следующим образом:

  • «Триак» — это еще одно 4-слойное 3-контактное тиристорное устройство, аналогичное SCR.
  • Симистор может быть запущен в любом направлении.
  • Есть четыре возможных режима запуска для симистора, из которых 2 являются предпочтительными.

Управление электрическим переменным током с использованием симисторачрезвычайно эффективно при правильном использовании для управления нагрузками резистивного типа, такими как лампы накаливания, нагреватели или небольшие универсальные двигатели, обычно используемые в переносных электроинструментах и ​​небольших приборах.

Но помните, что эти устройства можно использовать и подключать непосредственно к источнику переменного тока, поэтому проверка цепи должна выполняться, когда устройство управления питанием отключено от источника питания. Пожалуйста, помните о безопасности!

Тимеркаев Борис — 68-летний доктор физико-математических наук, профессор из России. Он является заведующим кафедрой общей физики в Казанском национальном исследовательском техническом университете имени А. Н. ТУПОЛЕВА — КАИ

Симистор

Симметричный тиристор

Если проанализировать путь развития полупроводниковой электроники, то почти сразу становится понятно, что все полупроводниковые приборы созданы на переходах или слоях (n-p, p-n).

Простейший полупроводниковый диод имеет один переход (p-n) и два слоя.

У биполярного транзистора два перехода и три слоя (n-p-n, p-n-p). А что будет, если добавить ещё один слой?

Тогда мы получим четырёхслойный полупроводниковый прибор, который называется тиристор. Два тиристора включенные встречно-параллельно и есть симистор, то есть симметричный тиристор.

В англоязычной технической литературе можно встретить название ТРИАК (TRIAC – triode for alternating current).

Вот таким образом симистор изображается на принципиальных схемах.

У симистора три электрода (вывода). Один из них управляющий. Обозначается он буквой G (от англ. слова gate – “затвор”). Два остальных – это силовые электроды (T1 и T2). На схемах они могут обозначаться и буквой A (A1 и A2).

А это эквивалентная схема симистора выполненного на двух тиристорах.

Следует отметить, что симистор управляется несколько по-другому, нежели эквивалентная тиристорная схема.

Симистор достаточно редкое явление в семье полупроводниковых приборов. По той простой причине, что изобретён и запатентован он был в СССР, а не в США или Европе. К сожалению, чаще бывает наоборот.

Как работает симистор?

Если у тиристора есть конкретные анод и катод, то электроды симистора так охарактеризовать нельзя, поскольку каждый электрод является и анодом, и катодом одновременно. Поэтому в отличие от тиристора, который проводит ток только в одном направлении, симистор способен проводить ток в двух направлениях. Именно поэтому симистор прекрасно работает в сетях переменного тока.

Очень простой схемой, характеризующей принцип работы и область применения симистора, может служить электронный регулятор мощности. В качестве нагрузки можно использовать что угодно: лампу накаливания, паяльник или электровентилятор.


Симисторный регулятор мощности

После подключения устройства к сети на один из электродов симистора подаётся переменное напряжение. На электрод, который является управляющим, с диодного моста подаётся отрицательное управляющее напряжение. При превышении порога включения симистор откроется, и ток пойдёт в нагрузку. В тот момент, когда напряжение на входе симистора поменяет полярность, он закроется. Потом процесс повторяется.

Чем больше уровень управляющего напряжения, тем быстрее включится симистор и длительность импульса на нагрузке будет больше. При уменьшении управляющего напряжения длительность импульсов на нагрузке будет меньше. После симистора напряжение имеет пилообразную форму с регулируемой длительностью импульса. В данном случае, изменяя управляющее напряжение, мы можем регулировать яркость электрической лампочки или температуру жала паяльника.

Симистор управляется как отрицательным, так и положительным током. В зависимости от полярности управляющего напряжения рассматривают четыре, так называемых, сектора или режима работы. Но этот материал достаточно сложен для одной статьи.

Если рассматривать симистор, как электронный выключатель или реле, то его достоинства неоспоримы:

По сравнению с электромеханическими приборами (электромагнитными и герконовыми реле) большой срок службы.

Отсутствие контактов и, как следствие, нет искрения и дребезга.

К недостаткам можно отнести:

Симистор весьма чувствителен к перегреву и монтируется на радиаторе.

Не работает на высоких частотах, так как просто не успевает перейти из открытого состояния в закрытое.

Реагирует на внешние электромагнитные помехи, что вызывает ложное срабатывание.

Для защиты от ложных срабатываний между силовыми выводами симистора подключается RC-цепочка. Величина резистора R1 от 50 до 470 ом, величина конденсатора C1 от 0,01 до 0,1 мкф. В некоторых случаях эти величины подбираются экспериментально.

Основные параметры симистора.

Основные параметры удобно рассмотреть на примере популярного отечественного симистора КУ208Г. Будучи разработан и выпущен достаточно давно, он продолжает оставаться востребованным у любителей сделать что-то своими руками. Вот его основные параметры.

Максимальное обратное напряжение – 400V. Это означает, что он прекрасно может управлять нагрузкой в сети 220V и ещё с запасом.

В импульсном режиме напряжение точно такое же.

Максимальный ток в открытом состоянии – 5А.

Максимальный ток в импульсном режиме – 10А.

Наименьший постоянный ток, необходимый для открытия симистора – 300 мА.

Наименьший импульсный ток – 160 мА.

Открывающее напряжение при токе 300 мА – 2,5 V.

Открывающее напряжение при токе 160 мА – 5 V.

Время включения – 10 мкс.

Время выключения – 150 мкс.

Как видим, для открывания симистора необходимым условием является совокупность тока и напряжения. Больше ток, меньше напряжение и наоборот. Следует обратить внимание на большую разницу между временем включения и выключения (10 мкс. против 150 мкс.).

Оптосимистор.

Современная и перспективная разновидность симистора – это оптосимистор. Название говорит само за себя. Вместо управляющего электрода в корпусе симистора находится светодиод, и управление осуществляется изменением напряжения на светодиоде. На изображении показан внешний вид оптосимистора MOC3023 и его внутреннее устройство.


Оптосимистор MOC3023


Устройство оптосимистора

Как видим, внутри корпуса смонтирован светодиод и симистор, который управляется за счёт излучения светодиода. Выводы, отмеченные как N/C и NC, не используются, и не подключаются к элементам схемы. NC – это сокращение от Not Connect, которое переводится с английского как “не подключается”.

Самое ценное в оптосимисторе это то, что между цепью управления и силовой цепью осуществлена полная гальваническая развязка. Это повышает уровень электробезопасности и надёжности всей схемы.

Способы и схемы управления тиристором или симистором

Тиристоры нашли широкое применение в полупроводниковых устройствах и преобразователях. Различные источники питания, частотные преобразователи, регуляторы, возбудительные устройства для синхронных двигателей и много других устройств строились на тиристорах, а в последнее время их вытесняют преобразователи на транзисторах. Основной задачей для тиристора является включение нагрузки в момент подачи управляющего сигнала. В этой статье мы рассмотрим, как управлять тиристорами и симисторами.

Определение

Тиристор (тринистор) – это полупроводниковый полууправляемый ключ. Полууправляемый – значит, что вы можете только включать тиристор, отключается он только при прерывании тока в цепи или если приложить к нему обратное напряжение.

Он, подобно диоду, проводит ток только в одном направлении. То есть для включения в цепь переменного тока для управления двумя полуволнами нужно два тиристора, для каждой по одному, хотя не всегда. Тиристор состоит из 4 областей полупроводника (p-n-p-n).

Другой подобный прибор называется симистор – двунаправленный тиристор. Его основным отличием является то, что ток он может проводить в обе стороны. Фактически он представляет собой два тиристора соединённых параллельно навстречу друг другу.

Основные характеристики

Как и любых других электронных компонентов у тиристоров есть ряд характеристик:

Падение напряжения при максимальном токе анода (VT или Uос).

Прямое напряжение в закрытом состоянии (VD(RM) или Uзс).

Обратное напряжение (VR(PM) или Uобр).

Прямой ток (IT или Iпр) – это максимальный ток в открытом состоянии.

Максимально допустимый прямой ток (ITSM) — это максимальный пиковый ток в открытом состоянии.

Обратный ток (IR) — ток при определенном обратном напряжении.

Постоянный ток в закрытом состоянии при определенном прямом напряжении (ID или Iзс).

Постоянное отпирающее напряжение управления (VGT или UУ).

Ток управления (IGT).

Максимальный ток управления электрода IGM.

Максимально допустимая рассеиваемая мощность на управляющем электроде (PG или Pу)

Принцип работы

Когда на тиристор подают напряжение он не проводит ток. Есть два способа включит его – подать напряжение между анодом и катодом достаточное для открытия, тогда его работа ничем не будет отличаться от динистора.

Другой способ – это подать кратковременный импульс на управляющий электрод. Ток открытия тиристора лежит в пределах 70-160 мА, хотя на практике эта величина, как и напряжение которое нужно приложить к тиристору зависит от конкретной модели и экземпляра полупроводникового прибора и даже от условий, в которых он работает, таких, например, как температура окружающей среды.

Кроме управляющего тока, есть такой параметр как ток удержания – это минимальный ток анода для удержания тиристора в открытом состоянии.

После открытия тиристора управляющий сигнал можно отключать, тиристор будет открыт до тех пор, пока через него протекает прямой ток и подано напряжение. То есть в цепи переменного тиристор будет открыт в течении той полуволны напряжение которой смещает тиристор в прямом направлении. Когда напряжение устремится к нулю, снизится и ток. Когда ток в цепи упадет ниже величины тока удержания тиристора – он закроется (выключится).

Полярность управляющего напряжения должна совпадать с полярностью напряжения между анодом и катодом, что вы наблюдаете на осциллограммах выше.

Управление симистором аналогично хоть и имеет некоторые особенности. Для управления симистором в цепи переменного тока нужно два импульса управляющего напряжения – на каждую полуволну синусоиды соответственно.

После подачи управляющего импульса в первой полуволне (условно положительной) синусоидального напряжения ток через симистор будет протекать до начала второй полуволны, после чего он закроется, как и обычный тиристор. После этого нужно подать еще один управляющий импульс для открытия симистора на отрицательной полуволне. Это наглядно проиллюстрировано на следующих осциллограммах.

Полярность управляющего напряжения должна соответствовать полярности приложенного напряжения между анодом и катодом. Из-за этого возникают проблемы при управлении симисторами с помощью цифровых логических схем или от выходов микроконтроллера. Но это легко решается путем установки симисторного драйвера, о чем мы поговорим позже.

Распространенные схемы управления тиристорами или симисторами

Самой распространенной схемой является симисторный или тиристорный регулятор.

Здесь тиристор открывается после того как на конденсаторе будет достаточная величина для его открытия. Момент открытия регулируется с помощью потенциометра или переменного резистора. Чем больше его сопротивление – тем медленнее заряжается конденсатор. Резистор R2 ограничивает ток через управляющий электрод.

Эта схема регулирует оба полупериода, то есть вы получаете полную регулировку мощности почти от 0% и почти до 100%. Это удалось достичь, установив регулятор в диодном мосте, таким образом регулируется одна из полуволн.

Упрощенная схема изображена ниже, здесь регулируется лишь половина периода, вторая полуволна проходит без изменения через диод VD1. Принцип работы аналогичен.

Симисторный регулятор без диодного моста позволяет управлять двумя полуволнами.

По принципу действия почти аналогична предыдущим, но построена на симисторе с её помощью регулируются уже обе полуволны. Отличия заключаются в том, что здесь импульс управления подаётся с помощью двунаправленного динистора DB3, после того как конденсатор зарядится до нужного напряжения, обычно это 28-36 Вольт. Скорость зарядки также регулируется переменным резистором или потенциометром. Такая схема реализована в большинстве бытовых диммеров.

Такие схемы регулировки напряжения называется СИФУ – система импульсного фазового управления.

На рисунке выше изображен вариант управления симистором с помощью микроконтроллера, на примере популярной платформы Arduino. Симисторный драйвер состоит из оптосимистора и светодиода. Так как в выходной цепи драйвера установлен оптосимистор на управляющий электрод всегда подаётся напряжение нужной полярности, но здесь есть некоторые нюансы.

Дело в том, что для регулировки напряжения с помощью симистора или тиристора нужно подавать управляющий сигнал в определенный момент времени, так чтобы срез фазы происходил до нужной величины. Если наугад стрелять управляющими импульсами – схема работать конечно будет, но регулировок добиться не выйдет, поэтому нужно определять момент перехода полуволны через ноль.

Так как для нас не имеет значения полярность полуволны в настоящий момент времени – достаточно просто отслеживать момент перехода через ноль. Такой узел в схеме называют детектор нуля или нуль-детектор, а в англоязычных источниках “zero crossing detector circuit” или ZCD. Вариант такой схемы с детектором перехода через ноль на транзисторной оптопаре выглядит следующим образом:

Оптодрайверов для управления симисторами есть множество, типовые – это линейка MOC304x, MOC305x, MOC306X, произведенные компанией Motorola и другими. Более того – эти драйверы обеспечивают гальваническую развязку, что убережет ваш микроконтроллер в случае пробоя полупроводникового ключа, что вполне возможно и вероятно. Также это повысит безопасность работы с цепями управления, полностью разделив цепь на «силовую» и «оперативную».

Заключение

Мы рассказали базовые сведения о тиристорах и симисторах, а также управлении ими в цепях с «переменкой». Стоит отметить, что мы не затрагивали тему запираемых тиристоров, если вас интересует этот вопрос – пишите комментарии и мы рассмотрим их подробнее. Также не были рассмотрены нюансы использования и управления тиристорами в силовых индуктивных цепях. Для управления «постоянкой» лучше использовать транзисторы, поскольку в этом случае вы решаете, когда ключ откроется, а когда он закроется, повинуясь управляющему сигналу…

Ещё раз о проверке полупроводниковых приборов без демонтажа

В дополнение к статье «Проверка исправности транзисторов без демонтажа их из устройства» автор предлагает аналогичный способ проверки тиристоров, симисторов и диодных оптронов. Несложно распространить предложенный метод и на другие активные полупроводниковые трёхполюсники, например, транзисторные, тиристорные и резисторные оптроны.

Рис. 1. Схема проверки симисторов, пригодная и для тиристоров

 

Рис. 2. Осциллограмма напряжения

 

На рис. 1 приведена схема проверки симисторов, пригодная и для тиристоров. Осциллограмма на рис. 2 (синяя линия) показывает характер изменения напряжения между электродами 1 и 2 исправного симистора 2У208Г при импульсном токе в коммутируемой цепи около 0,13 А. Она почти симметрична относительно нулевой (красной) линии. При положительном напряжении на электроде 1 симистор скачком открывается при напряжении между главными электродами 2,5 В. При отрицательном напряжении между ними симистор открывается при напряжении -4 В. Падения напряжения разной полярности на симисторе в проводящем состоянии (на горизонтальных участках осциллограммы) немного различны по абсолютному значению — соответственно около +0,8 В и около -0,9 В.

Примечание. По описанной методике симистор проверяется только при двух из четырёх возможных комбинаций направлений тока в коммутируемой и управляющей цепях. Такую проверку нельзя считать полноценной.

На рис. 3 изображена схема проверки диодного оптрона. Номера его выводов показаны условно, у реальных диодных оптронов различных типов они могут быть другими. В оптроне и в устройстве, где он установлен, его входная цепь (излучающий ИК-диод) обычно электрически изолирована от выходной цепи (фотодиода). Но для предлагаемой проверки выводы катода излучающего диода и анода фотодиода нужно временно соединить, превратив оптрон в трёхполюсник.

Рис. 3. Схема проверки диодного оптрона

 

На рис. 4 показана осциллограмма, полученная при проверке оптрона 3ОД101Б с неисправным излучающим диодом. Она типична для полупроводникового диода (в данном случае фотодиода). В прямом для него направлении напряжение — около -0,5 В, в обратном повторяется полупериод контрольного напряжения синусоидальной формы амплитудой 2,7 В.

Рис. 4. Осциллограмма, полученная при проверке оптрона 3ОД101Б с неисправным излучающим диодом

 

Осциллограмма на рис. 5 снята с исправным диодным оптроном того же типа. Положительные полупериоды испытательного напряжения имеют на ней глубокие провалы, вызванные ростом фототока фотодиода под действием ИК-излучения. Глубина этих провалов может быть даже больше амплитуды испытательного напряжения, в результате чего напряжение на фотодиоде меняет знак.

Рис. 5. Осциллограмма с исправным диодным оптроном

 

Все осциллограммы сняты при скорости горизонтальной развёртки 5 мс/дел. и при коэффициенте отклонения по вертикали 1 В/дел. (см. рис. 2) или 0,5 В/дел. (см. рис. 4 и рис. 5).

В устройствах, где между выводами проверяемого прибора имеется конденсатор большой ёмкости, его можно не отключать, а заменить источник контрольного переменного напряжения частотой 50 Гц источником регулируемого вручную в нужных пределах напряжения постоянного тока. Для схемы, изображённой на рис. 1, это напряжение должно регулироваться от -6 В до +6 В, а для той, что на рис. 3, — от -3 В до +3 В.
Если имеется источник напряжения только одной полярности, то в нужные моменты (вблизи переходов через ноль) можно менять местами его выводы. Но входная цепь трёхполюсника во время этих операций должна оставаться зашунтированной резистором небольшого сопротивления. Осциллограф можно заменить обычным мультиметром, наблюдая его показания на входе и на выходе проверяемого трёх-полюсника или записывая их, чтобы потом построить графики.

Автор: В. Кильдюшев, г. Жуков Калужской обл.

Тестирование симистора

Тестирование симистора Тестирование симистора Тони ван Роон

Эти две процедуры тестирования предназначены для использования с цифровым мультиметром в Омах. испытательный полигон. Процедура тестирования была фактически предназначена для тестирования внутри микроволн (магнетронов), но не должно быть никакой разницы. в любой другой схеме. Проверить входную или выходную цепь.

Симистор — это электронный переключатель или реле. Симисторы бывают разных форм, размеров и цветов.Проверить стандартный терминал обозначения на рисунке ниже, где показано большинство типов симисторов, которые обычно используются в микроволновых печах, вместе со стандартными обозначениями клемм.

Расположенный снаружи или закрепленный внутри прибора или оборудования, симистор срабатывает, когда он получает электронику. «стробирующий» сигнал от схемы управления. Затем он переключается в закрытое или «включенное» состояние, обеспечивая, например, путь напряжения к первичной обмотке H.V. трансформатор в микроволновой печи и, таким образом, активация элементов управления готовкой. Или использовать в лабораторной водяной бане, в которой необходимо поддерживать определенную температуру. Зонд-датчик, который погружается в воду, отслеживает температуру и посылает сигнал затвора на симистор для включения любого из нагревательные или охлаждающие элементы. Большинство этих датчиков содержат только один или несколько диодов общих типов 1N4148 или 1N914.

Важная информация по технике безопасности

Работа с микроволновой печью — ОЧЕНЬ опасное занятие.Следовательно, В целях вашей личной безопасности, ПРЕЖДЕ чем проводить какие-либо испытания, устранение неполадок или ремонт, я настоятельно призываю вас внимательно прочтите, полностью поймите и будьте готовы соблюдать очень важные правила техники безопасности.

Если вы не уверены или не уверены в какой-либо из этих процедур безопасности или предупреждения; или если вы не уверены в их важности или вашей способности управлять ими, это будет в ваших силах Интерес оставить ремонт квалифицированному специалисту.

ПЕРВЫЙ и ВСЕГДА , перед попыткой ремонта, убедитесь, что устройство не подключено к розетке. Прежде чем прикасаться к каким-либо компонентам или проводке, ВСЕГДА РАЗРЯЖАЙТЕ ВЫСОКОВОЛЬТНЫЙ КОНДЕНСАТОР! Конденсатор высокого напряжения обычно поддерживает болезненно высокий заряд. даже после того, как духовку отключили от сети. В некоторых конденсаторах используется спускной резистор (внешний или внутренний), который позволяет заряду медленно стекать (или стекать) после того, как духовой шкаф отключен от сети.Не доверяйте дренажному резистору — он может быть открытым.
Если вы забудете разрядить конденсатор, ваши пальцы могут в конечном итоге обеспечить путь разряда. Вы только делаете это сделайте ошибку несколько раз, потому что, хотя поражение электрическим током болезненно, настоящее наказание наступает, когда вы рефлекторно дергаете ваша рука оставляет за собой слои кожи на бритвенных краях, которые служат напоминанием о том, что никогда больше не забывайте разрядить высоковольтный конденсатор.
Как разрядить высоковольтный конденсатор: конденсатор разряжается за счет короткого замыкания (прямое соединение) две клеммы конденсатора и от каждой клеммы к заземленной поверхности корпуса.Сделайте это, коснувшись лезвия отвертки с изолированной ручкой к одной клемме, затем сдвиньте ее по направлению к другой клемме, пока она не коснется контакта и подержите там несколько секунд. (Это может привести к довольно поразительному «хлопку»!) Повторите процедуру, чтобы создать короткое замыкание между каждой клеммой конденсатора и массой шасси. Если конденсатор имеет три вывода, используйте ту же процедуру. чтобы создать короткое замыкание между каждой клеммой, а затем между каждой клеммой и землей.
В более старых моделях, произведенных компанией Amana (как правило, до 1977 г.), в корпусе установлены красные круглые конденсаторы фильтра. основание магнетронной трубки, которая также может удерживать заряд.Заземлите каждую клемму магнетрона, создав короткое замыкание. заземлить шасси с помощью лезвия отвертки, как описано выше.

Симисторы с тремя выводами, большинство из которых показаны ниже, можно проверить, выполнив серию проверок сопротивления: изложены ниже.

Внутри цепи: Разрядите конденсаторы, или высоковольтные конденсаторы, закоротив их куском провода или изолированной отверткой. ПЕРЕД вы это сделаете однако убедитесь, что он ОТКЛЮЧЕН! На всякий случай это HV конденсатор, имейте в виду, что он может сильно потрескаться! Повторите процедуру пару раз, чтобы убедиться, что они полностью выписан.

Вот полная процедура тестирования для TEST-1:

1) Отключите прибор, оборудование или все, над чем вы работаете.

2) РАЗРЯДИТЕ ВЫСОКОВОЛЬТНЫЙ КОНДЕНСАТОР

3) Сначала определите клеммы. Три терминала обычно обозначаются как G (затвор), T1 и T2 (практическое правило: наименьший терминал — ворота; среднего размера — Т1; наибольший — Т2).

4) Осторожно отсоедините все жгуты. Припаянный варактор или демпфер может оставаться прикрепленным при условии, что он исправен. условие.

5) Установите и обнулите омметр на шкалу, способную показывать около 40 Ом.

6) Измерьте расстояние от ворот до T1 , запишите показания, затем поменяйте местами провода.

7) При каждом измерении нормальное значение будет в диапазоне от 10 до 200 Ом, в зависимости от модели симистора.

8) Затем установите измеритель на максимальное значение шкалы сопротивления. Каждое из следующих чтений должно давать нормальные показания. из бесконечности:
а.От Т1 до Т2.
б. От Т1 до ворот.
c. От каждого терминала до заземления шасси.

Эти значения являются приблизительными и могут отличаться в зависимости от производителя, но, как правило, любые результаты, которые значительно другое указывает на неисправный симистор.


Тест 2

Второй способ проверить симистор — это оценить его способность срабатывания затвора:

1) Отключите духовку.
2) РАЗРЯДИТЬ ВЫСОКОВОЛЬТНЫЙ КОНДЕНСАТОР.
3) Снимите все жгуты. Установите измеритель на шкалу, способную показывать около 50 Ом.
4) Присоедините отрицательный провод к T1 , а положительный провод к T2.
5) Теперь, используя лезвие отвертки, создайте кратковременное замыкание между T2 и затвором . Этот кратковременное прикосновение должно включить симистор, таким образом, показание измерителя составляет от 15 до 50 Ом.
6) Затем отключите один из выводов счетчика, затем снова подключите его. Измеритель должен выдать значение бесконечность .
7) И, наконец, поменяйте местами провода измерителя и повторите тесты. Результаты должны быть такими же.
8) После многих экспериментов с разными мультиметрами и симисторами я должен сделать вывод, что этот метод не всегда бывает успешным.

  • Любые ненормальные тесты указывают на неисправный симистор.
  • Сменные симисторы обычно можно приобрести у местного дистрибьютора запчастей (например, Sears) или в магазине электроники.

    Если хотите, создайте этот простой тестер SCR. Он также проверит ТРИАКИ с хорошими результатами. Простое «хорошо / плохо».

    Графические изображения и большая часть текста любезно предоставлены Microtech Electronics. Если у вас есть вопросы, задавайте Автор этой последовательности испытаний: J. Carlton Gallawa или посетите его веб-сайт по адресу «Microtech Electronics» , чтобы узнать больше о высокое напряжение, микроволновые печи или как стать закоренелым микроволновым техником!


    Вернуться на страницу «Схемы или гаджеты».
  • Как проверить TRIAC с диодным режимом?

    Тиристор — это четырехслойный полупроводниковый прибор, состоящий из чередующихся материалов типа P и N (PNPN). Четыре уровня действуют как бистабильные переключатели. Пока напряжение на устройстве не изменилось (то есть они смещены в прямом направлении), тиристоры продолжают проводить электрический ток. Наиболее распространенным типом тиристоров является выпрямитель с кремниевым управлением ( TRIAC ).
    Когда катод заряжен отрицательно относительно анода, ток не течет до тех пор, пока на затвор не будет подан импульс. Затем симистор начинает проводить и продолжает проводить до тех пор, пока напряжение между МТ1 и МТ2 не изменится на противоположное или не упадет ниже определенного порогового значения. Используя этот тип тиристора, можно переключать или регулировать большие мощности с помощью небольшого пускового тока или напряжения.

    ТРИАК — еще один важный член семейства тиристоров. По сути, это два параллельных SCR, настроенных в противоположных направлениях, с общим выводом затвора.
    DIAC работает в обоих направлениях, терминология анод-катод не используется. Два основных электрода называются
    • Главный терминал MT1 И
    • ГЛАВНЫЙ терминал MT2


    В то время как общий терминал называется воротами GATE (G)
    ПЕРВЫЙ РАЗ ИСПОЛЬЗУЯ ЦИФРОВОЙ МУЛЬТИМЕТР
    1. Никогда не превышайте предельные значения защиты, указанные в технических характеристиках для каждого диапазона измерения.
    2. Если шкала измеряемых значений заранее неизвестна, установите переключатель диапазонов в крайнее верхнее положение.
    3. Когда счетчик подключен к измерительной цепи, не прикасайтесь к неиспользуемым клеммам.
    4. Перед поворотом переключателя диапазонов для изменения функций отключите все провода от тестируемой цепи.
    5. Ни в коем случае не измеряйте сопротивление в цепи под напряжением.
    6. Всегда будьте осторожны при работе с напряжением выше 60 В постоянного тока или 30 В переменного тока RMS. ПРИ ИЗМЕРЕНИИ УПРАВЛЯЙТЕ ПАЛЬЦАМИ ЗА БАРЬЕРАМИ ЗОНДА,
    7. ПРЕЖДЕ ЧЕМ ПЫТАЙТЕСЬ ВСТАВИТЬ ТРАЗИСТОРЫ ДЛЯ ТЕСТИРОВАНИЯ, ВСЕГДА БУДЬТЕ, ЧТО ИСПЫТАТЕЛЬНЫЕ ПРОВОДЫ ОТКЛЮЧЕНЫ ОТ ЛЮБОЙ ЦЕПИ ИЗМЕРЕНИЯ.
    8. КОМПОНЕНТЫ
    9. НЕ ДОЛЖНЫ ПОДКЛЮЧАТЬСЯ К ВЧ-РОЗЕТКЕ ПРИ ИЗМЕРЕНИИ НАПРЯЖЕНИЯ С ПОМОЩЬЮ ТЕСТОВЫХ ПРОВОДОВ.


    Важно:
    1. Если измеряемое сопротивление превышает максимальное значение выбранного диапазона или вход не подключен, появляется индикация выхода за пределы диапазона «!» будет отображаться.
    2. При проверке внутрисхемного сопротивления убедитесь, что в проверяемой цепи отключено все питание и что все конденсаторы полностью разряжены.
    3. Для измерения сопротивления выше 1 МОм измерителю может потребоваться несколько секунд для получения стабильных показаний. Это нормально для измерений высокого сопротивления.
    ВЫБОР ДИОДНОГО РЕЖИМА ЦИФРОВОГО МУЛЬТИМЕТРА.
    ШАГ-1. Цифровой мультиметр означает цифровой мультиметр

    • Подключите положительный измерительный провод цифрового мультиметра к MT1
    • .
    • …………. Отрицательный измерительный провод к MT2 = СЧИТЫВАНИЕ DMM ВЫРАЖАЕТ OL ИЛИ «1» ИЛИ ОТКРЫТО (ЗНАЧИТ ПЕРЕГРУЗКУ)

    ШАГ-2.

    • Подключите Отрицательный измерительный провод к MT1
    • …………. положительный тестовый провод к MT2 = СЧИТЫВАНИЕ DMM ПОКАЗЫВАЕТ OL или 1 ИЛИ ОТКРЫТ
    • …………. Положительный измерительный провод к затвору = 0,1272 В.


    ШАГ-3.

    • Подключите положительный измерительный провод к MT1
    • …………. Отрицательный измерительный провод к MT2 = СЧИТЫВАНИЕ DMM ПОКАЗЫВАЕТ OL или 1 ИЛИ ОТКРЫТ
    • Подключите Отрицательный измерительный провод к MT1
    • …………. положительный измерительный провод к MT2 = СЧИТЫВАНИЕ DMM ВЫИГРЫВАЕТ OL или 1 (ЗНАЧИТ ПЕРЕГРУЗКУ) ИЛИ ОТКРЫТО

    Проверка: Если цифровой мультиметр показывает, что это ХОРОШО.
    Симистор-BT136-


    Проверьте свой симистор с помощью простой цепи Проверка: Если вы получаете значение 0000 или любое низкое значение, это устройство может быть НЕИСПРАВНОСТЬ и нуждается в замене.
    Отключите основное питание от цепи и отпустите импульсы с платы зажигания.
    проверьте импульс зажигания на затворе тиристора с помощью CRO.
    Если импульсы отсутствуют, проверьте импульсы перед преобразователем импульсов.
    Если импульсный трансформатор и другая цепь в порядке, то тиристор неисправен.
    Если амплитуда импульса больше, то сопротивление катора затвора ослабевает.
    Вышеупомянутая процедура — просто проверить устройство, не снимая с оборудования.

    ТЕСТИРОВАНИЕ ТИРАКА С ЦЕПЕЙ: —
    Для правильного метода проверки с защитой от неправильного обращения тиристорные модули должны сниматься отдельно и могут быть протестированы с помощью простого комплекта, включающего батарею 9 В, светодиод, соединенный последовательно с параллельным подключением 470E ниже.Нажмите переключатель-1, подключенный к источнику питания (9В). В результате светодиод загорится.

    Sencore SCR250 SCR и приспособление для тестирования TRIAC

    Это устройство включает полный тестовый провод, номер детали: 39G196

    Посмотреть фото полного тестового провода.

    Подробное описание

    Важное примечание. Другие аксессуары, руководства, кабели, данные калибровки, программное обеспечение и т. Д. Не входят в комплект поставки данного оборудования, если они не указаны в приведенном выше описании складских позиций.

    Характеристики:

    • Предназначен для использования с любым Z-метром Sencore
    • Испытания SCR чувствительного затвора и нормального затвора
    • Испытания TRIACS на утечку и правильное включение может использоваться с любым Z-метром Sencore для упрощения тестирования SCR и TRIAC. SCR250 динамически проверяет как чувствительный затвор, так и тиристоры нормального затвора на включение и утечку при нормальных условиях рабочего напряжения. SCR250 также динамически проверяет TRIACS на утечку и правильное включение как в прямом, так и в обратном направлении при нормальных уровнях рабочего напряжения.

      View It Live Request

      Покупка подержанного оборудования не всегда должна быть выстрелом в темноте. Мы знаем, что существует множество различий, когда дело доходит до бывшего в употреблении оборудования, и довольно часто выбор между различными частями затруднен, особенно когда оборудование не находится прямо перед вами.

      Ну, а что, если бы вы смогли увидеть оборудование до того, как его купили? Не просто изображение с веб-сайта производителя, но и фактическое оборудование , которое вы получите.

      С InstraView ™ мы на один шаг приближаем вас к проверке интересующего вас оборудования, не дожидаясь его появления у дверей.

      InstraView ™ работает в вашем веб-браузере и позволяет просматривать фактическое оборудование, которое вас интересует, перед покупкой. Вы можете увеличить масштаб, чтобы увидеть этикетки с серийным номером, или уменьшить масштаб, чтобы увидеть общее состояние оборудования.

      Это как если бы магазин пришел к вам!

      Форма запроса InstraView

      Для начала…

      1. Заполните форму запроса ниже

      2. Мы отправим вам электронное письмо, в котором вы узнаете, когда именно ваше оборудование будет доступно для просмотра

      Объект для проверки: 95714-1 — Sencore SCR250 SCR и приспособление для тестирования TRIAC

      Спасибо!
      Мы свяжемся с вами в ближайшее время.

      Artisan Scientific Corporation dba Artisan Technology Group не является аффилированным лицом или дистрибьютором Sencore. Изображение, описание или продажа продуктов с названиями, товарными знаками, брендами и логотипами предназначены только для идентификации и / или справочных целей и не указывают на какую-либо принадлежность или разрешение какого-либо правообладателя.

      Серия тренингов по электричеству и электронике ВМС (NEETS), Модуль 21, 2-21 — 2-30

      Модуль 21 — Методы и практика испытаний

      Страницы i — ix, От 1-1 до 1-10, От 1-11 до 1-20, 1-21 до 1-26, От 2-1 до 2-10, 2-11 до 2-20, 2-21 до 2-30, 2-31 до 2-40, 2-41 к 2-48, От 3-1 до 3-10, С 3-11 до 3-20, С 3-21 до 3-30, От 3-31 до 3-39, С 4-1 по 4-10, С 4-11 по 4-14, С 5-1 по 5-10, С 5-11 до 5-20, С 5-21 до 5-30, От 5-31 до 5-35, от AI-1 до AI-3, индекс



      разных звездных величин и частоты.Некоторые диоды могут быть повреждены чрезмерным током, создаваемым некоторыми настройками диапазона стандартного мультиметр. Поэтому при выполнении этого измерения следует использовать цифровой мультиметр.

      В-14. Какое практическое правило является приемлемым соотношением прямого и обратного сопротивления для диода?

      КРЕМНИЕВЫЕ ВЫПРЯМИТЕЛИ (SCR)

      Многие морские электронные устройства используют кремниевые выпрямители (SCR) для управления мощностью.Как и другие твердотельные компоненты, SCR подлежат до отказа. Вы можете проверить большинство тиристоров с помощью стандартного омметра, но вы должны понимать, как работает тиристор.

      Как показано на рисунке 2-12, SCR представляет собой трехэлементное твердотельное устройство, в котором прямое сопротивление может быть под контролем. На рисунке показаны три активных элемента: анод, катод и затвор. Хотя они могут отличаются внешне, все тринисторы работают одинаково.SCR действует как выпрямитель с очень высоким сопротивлением. как в прямом, так и в обратном направлениях, не требуя стробирующего сигнала. Однако, когда правильный стробирующий сигнал При применении тиристор работает только в прямом направлении, как и любой обычный выпрямитель. Чтобы проверить SCR, вы подключаете омметр между анодом и катодом, как показано на рисунке 2-12. Начать тест с R x 10 000 и постепенно уменьшайте значение. Тестируемый тиристор должен показывать очень высокое сопротивление независимо от омметра. полярность.Анод, который подключен к положительному проводу омметра, теперь необходимо замкнуть на затвор. Это заставит SCR проводить; в результате на омметре будет отображаться низкое сопротивление. Устранение короткого замыкания анод-затвор не остановит ток SCR; но удаление любого из проводов омметра приведет к тому, что SCR перестанет проводить — показание сопротивления вернется к предыдущему высокому значению. Некоторый SCR не будут работать при подключении омметра.Это связано с тем, что омметр не подает достаточный ток. Однако большинство SCR в оборудовании ВМФ можно проверить методом омметра. Если SCR чувствителен, R x Шкала 1 может подавать слишком большой ток на устройство и повредить его. Поэтому попробуйте протестировать его на более высоком шкалы сопротивления.

      Рисунок 2-12. — Проверка SCR омметром.


      2-21


      Q-15.При тестировании SCR с помощью омметра, SCR будет проводить, если какие два элемента закорочены все вместе?

      TRIAC

      Triac — торговая марка General Electric для кремния, двухполупериодный переключатель переменного тока, управляемый затвором, как показано на рисунке 2-13. Устройство предназначено для переключения с блокировки состояние в проводящее состояние для любой полярности приложенных напряжений и с положительным или отрицательным затвором срабатывание. Подобно обычному тиристору, симистор — отличное твердотельное устройство для управления током.Вы можете заставить симистор вести себя, используя тот же метод, что и для тиристора, но у симистора есть то преимущество, что он способен одинаково хорошо вести как в прямом, так и в обратном направлении.

      Рисунок 2-13. — Проверка симистора омметром.


      Чтобы проверить симистор с помощью омметра (шкала R x 1), вы подсоединяете отрицательный провод омметра к аноду 1. и положительный вывод к аноду 2, как показано на рисунке 2-13.Омметр должен показывать очень высокое сопротивление. Замкните затвор на анод 2; затем удалите это. Показание сопротивления должно упасть до низкого значения и оставаться низким до тех пор, пока любой из выводов омметра отключен от симистора. На этом первый тест завершен.

      Второй Тест включает в себя перестановку проводов омметра между анодами 1 и 2 так, чтобы положительный провод был подключен к аноду. 1, а отрицательный вывод подключен к аноду 2. Снова закоротите затвор на анод 2; затем удалите это.Сопротивление показания должны снова упасть до низкого значения и оставаться на низком уровне до тех пор, пока один из выводов омметра не будет отсоединен.

      В-16. Когда симистор правильно закрыт, каково направление (а) тока между анодами 1 и 2?

      Однопереходные транзисторы (UJT)

      Однопереходный транзистор (UJT), показанный на рис. 2-14, представляет собой твердотельный трехконтактный полупроводник, который демонстрирует стабильные характеристики холостого хода и отрицательного сопротивления.Эти характеристики позволяют UJT

      2-22


      , чтобы служить отличным генератором. Тестирование UJT — относительно простая задача, если вы рассматриваете UJT как Диод подключен к месту соединения двух резисторов, как показано на рисунке 2-15. Омметром измерьте сопротивление между базой 1 и базой 2; затем поменять местами провода омметра и снять еще одно показание. Чтения должны показывать одинаково высокое сопротивление независимо от полярности проводов измерителя.Подключите отрицательный провод омметра к эмиттер UJT. Используя положительный провод, измерьте сопротивление от эмиттера до базы 1, а затем от эмиттер на базу 2. Оба показания должны указывать на высокие сопротивления, которые примерно равны друг другу. Отсоедините отрицательный вывод от эмиттера и подсоедините к нему положительный вывод. Используя отрицательный вывод, Измерьте сопротивление от эмиттера к базе 1, а затем от эмиттера к базе 2.Оба чтения должны указывают на низкие сопротивления примерно равные друг другу.

      Рисунок 2-14. — Однопереходный транзистор.

      Рисунок 2-15. — Схема замещения однопереходных транзисторов.


      ИСПЫТАНИЯ ПОЛЕВОГО ТРАНЗИСТОРА ПЕРЕХОДА (JFET)

      Эффект поля перехода Транзистор (JFET) имеет схемы применения, аналогичные тем, которые используются в электронных лампах.JFET имеет чувствительный к напряжению характеристика с высоким входным сопротивлением. Вам следует ознакомиться с двумя типами полевых транзисторов JFET: p-канальное соединение и n-канальное соединение типов, как показано на рисунке 2-16. Показаны их эквивалентные схемы. на рисунках 2-17 и 2-18 соответственно. Единственное различие в вашем тестировании этих двух типов JFET заключается в полярность проводов измерителя.

      2-23



      Рисунок 2-16.- Соединительные полевые транзисторы.

      Рисунок 2-17. — Эквивалентная схема N-канального JFET.

      Рисунок 2-18. — Эквивалентная схема P-канального JFET.


      2-24


      Тест N-канала

      С помощью омметра, установленного на шкалу R x 100, измерьте сопротивление между стоком и истоком; затем поменять местами провода омметра и снять еще одно показание.Оба показания должны быть одинаковыми (в диапазоне от 100 до 10 000 Ом) независимо от полярности проводов измерителя. Подключите положительный счетчик ведет к воротам. С помощью отрицательного вывода измерьте сопротивление между затвором и стоком; затем измерьте сопротивление между затвором и источником. Оба показания должны указывать на низкое сопротивление и быть примерно так же. Отсоедините положительный провод от ворот и подключите отрицательный провод к воротам.С помощью плюсового провода измерьте сопротивление между вентилем и стоком; затем измерьте сопротивление между ворота и источник. Оба показания должны показывать бесконечность.

      Тест P-канала

      Использование омметром установить по шкале R x 100, измерить сопротивление между стоком и истоком; затем поменять местами омметр проводит и снимает еще одно показание. Оба значения должны быть одинаковыми (от 100 до 10 000 Ом) независимо от полярность проводов измерителя.Затем подключите положительный вывод измерителя к воротам. Используя отрицательный провод, измерьте сопротивление между затвором и сливом; затем измерьте его между затвором и источником. Оба чтения должны показать бесконечность. Отсоедините положительный провод от ворот и подключите отрицательный провод к воротам. С помощью плюсовой провод, измерьте сопротивление между затвором и стоком; затем измерьте его между воротами и источник. Оба показания должны указывать на низкое сопротивление и быть примерно равными.

      ТЕСТИРОВАНИЕ МОП-транзисторов

      Другой тип полупроводников, с которым вам следует ознакомиться, — это металл. оксидно-полупроводниковый полевой транзистор (MOSFET), как показано на рисунках 2-19 и 2-20. Вы, должно быть, очень Будьте осторожны при работе с полевыми МОП-транзисторами из-за их высокой степени чувствительности к статическому напряжению. Как раньше Упомянутый в этой главе паяльник должен быть заземлен. На верстак следует поставить металлическую пластину. и заземлен на корпус корабля через резистор сопротивлением 250 кОм — 1 МОм.Вам также следует носить браслет с прикрепите заземляющий провод и заземлите себя к корпусу корабля через резистор 250 кОм на 1 МОм. Вам следует Не допускайте контакта полевого МОП-транзистора с вашей одеждой, пластиком или целлофановыми материалами. Вакуум плунжер (присоска для припоя) нельзя использовать из-за высоких электростатических зарядов, которые он может генерировать. Удаление припоя путем впитывания рекомендуется. Также рекомендуется оборачивать полевые МОП-транзисторы металлической фольгой, когда они находятся вне цепи.Чтобы гарантировать безопасность тестируемого полевого МОП-транзистора, используйте портативный вольт-ом-миллиамперметр (ВОМ), чтобы измерить сопротивление полевого МОП-транзистора. измерения. VTVM никогда не должен использоваться для тестирования полевых МОП-транзисторов. Вы должны знать, что при тестировании полевого МОП-транзистора вы заземлены на корпус корабля или на землю станции. Использование VTVM может создать определенную угрозу безопасности. из-за входной мощности 115 вольт и 60 герц. Когда измерения сопротивления завершены и полевой МОП-транзистор правильно храните, не заземляйте пластину на верстаке и себя.Вы лучше поймете тестирование MOSFET если вы визуализируете это как эквивалент схемы с использованием диодов и резисторов, как показано на рисунках 2-21 и 2-22.

      2-25



      Рисунок 2-19. — MOSFET (тип истощения / улучшения).

      Рисунок 2-20. — MOSFET (тип расширения).

      Рисунок 2-21.- Эквивалентная схема MOSFET (типа истощения / увеличения).


      2-26



      Рисунок 2-22. — Эквивалентная схема MOSFET (расширенного типа).


      Q-17. Почему не рекомендуется использовать присоску для припоя при работе с полевыми МОП-транзисторами?

      MOSFET (Тип истощения / улучшения) Тест

      Используя омметр, установленный на шкалу R x 100, измерить сопротивление между стоком полевого МОП-транзистора и истоком; затем поменяйте местами провода омметра и возьмите другой чтение.Показания должны быть одинаковыми независимо от полярности проводов измерителя. Подключите положительный вывод омметр до ворот. Используя отрицательный провод, измерьте сопротивление между затвором и стоком и между ворота и источник. Оба показания должны показывать бесконечность. Отсоедините плюсовой провод от ворот и подключите отрицательный провод к воротам. Используя положительный провод, измерьте сопротивление между затвором и осушать; затем измерьте его между затвором и источником.Оба показания должны показывать бесконечность. Отключите отрицательный вывод от ворот и подключите его к подложке. Используя положительный провод, измерьте сопротивление. между субстратом и стоком и между субстратом и истоком. Оба эти чтения должны указывают на бесконечность. Отсоедините отрицательный вывод от подложки и подключите положительный вывод к подложке. Используя отрицательный провод, измерьте сопротивление между субстратом и стоком, а также между субстратом и водостоком. источник.Оба показания должны указывать на низкое сопротивление (около 1000 Ом).

      MOSFET (Расширение Тип) Тест

      С помощью омметра, установленного на шкалу R x 100, измерьте сопротивление между стоком. и источник; затем поменяйте местами провода и снимите еще одно показание между стоком и истоком. Оба чтения должен показывать бесконечность, независимо от полярности проводов измерителя. Подключите положительный вывод омметра к затвору. Используя отрицательный провод, измерьте сопротивление между затвором и стоком, а затем между затвором и стоком. источник.Оба показания должны указывать на бесконечность. Отсоедините положительный провод от ворот и подключите отрицательный вывод к воротам. Используя положительный провод, измерьте сопротивление между затвором и стоком, а затем между воротами и источником. Оба показания должны указывать на бесконечность. Отсоедините отрицательный провод от ворота и соедините с подложкой. Используя положительный провод, измерьте сопротивление между подложкой и сток и между субстратом и истоком.Оба показания должны указывать на бесконечность. Отключите отрицательный вывод от подложки и подключите положительный вывод к подложке. Используя отрицательный провод, измерьте сопротивление между подложкой и стоком и между подложкой и истоком. Оба чтения должны указывают на низкое сопротивление (около 1000 Ом).

      2-27



      ИСПЫТАНИЕ ИНТЕГРИРОВАННЫХ ЦЕПЕЙ (ИС)


      Интегральные схемы (ИС) составляют область микроэлектроники, в которой многие традиционные электронные компоненты объединены в модули высокой плотности.Интегральные схемы состоят из активных и пассивных компоненты, такие как транзисторы, диоды, резисторы и конденсаторы. Из-за их меньшего размера использование интегральные схемы могут упростить сложные системы за счет уменьшения количества отдельных компонентов и взаимосвязи. Их использование также может снизить энергопотребление, уменьшить общий размер оборудования и значительно снизить общую стоимость оборудования. Многие типы интегральных схем являются ESDS устройств, и с ними следует обращаться соответственно.

      В-18. Назовите два преимущества использования ИС.

      Ваш подход к тестированию ИС должен несколько отличаться от которые используются при тестировании электронных ламп и транзисторов. Физическая конструкция ИС — основная причина этого. другой подход. Наиболее часто используемые ИС производятся с 14 или 16 контактами, все из которых могут быть впаян прямо в схему. Отпаять все эти контакты может оказаться непростой задачей, даже если специальные инструменты, предназначенные для этого.После распайки всех контактов у вас будет утомительная работа по чистка и выпрямление их всех.

      Хотя на рынке есть несколько тестеров ИС, их приложения ограничены. Так же, как транзисторы должны быть удалены из проверяемой схемы, некоторые ИС также должны быть удалено, чтобы разрешить тестирование. Когда ИС используются вместе с внешними компонентами, внешние компоненты сначала следует проверить правильность работы. Это особенно важно в линейных приложениях, где изменение в цепи обратной связи может отрицательно повлиять на рабочие характеристики компонента.

      Любая линейная (аналог) ИС чувствительна к напряжению питания. Это особенно характерно для ИС, которые используют смещение и управление. напряжения в дополнение к напряжению питания. Если вы подозреваете, что линейная ИС неисправна, все напряжения, приходящие на IC должна быть проверена на принципиальной схеме производителя оборудования на наличие каких-либо специальных примечаний по напряжения. Справочник производителя также даст вам рекомендуемые напряжения для каждой конкретной ИС.

      Когда устраняя неисправности ИС (цифровых или линейных), вы не можете беспокоиться о том, что происходит внутри ИС. Ты не может проводить измерения или ремонт внутри ИС. Следовательно, вы должны рассматривать ИС как черный ящик. выполняющий определенную функцию. Однако вы можете проверить ИС, чтобы убедиться, что она может выполнять свои проектные функции. После проверки статического напряжения и внешних компонентов, связанных с ИС, вы можете проверить ее на наличие динамических характеристик. операция.Если он предназначен для работы в качестве усилителя, вы можете измерить и оценить его вход и выход. Если он должен функционировать как логический вентиль или комбинация вентилей, вам относительно легко определить, что входы требуются для достижения желаемой высокой или низкой производительности. Примеры различных типов ИС приведены в рисунок 2-23.

      Рисунок 2-23. — Типы микросхем.


      2-28


      Q-19.Почему вы должны рассматривать ИС как черный ящик?

      Цифровые ИС относительно просты для вас для устранения неполадок и тестирования из-за ограниченного числа задействованных комбинаций ввода / вывода. При использовании положительного логика, логическое состояние входов и выходов цифровой ИС может быть представлено только как высокое (также называется состоянием 1) или низким (также называемым состоянием 0). В большинстве цифровых схем высокий уровень — это устойчивый уровень 5 В постоянного тока, а низкий — уровень 0 В постоянного тока.Вы можете легко определить логическое состояние ИС, используя устройства для измерения высокого входного импеданса, такие как осциллограф. Из-за более широкого использования ИС в последнее время лет, множество единиц испытательного оборудования было разработано специально для тестирования ИС. Они описаны в следующие параграфы.

      В-20. Каковы два логических состояния ИС?

      ЛОГИЧЕСКИЕ ЗАЖИМЫ

      Логические зажимы, как показано на рис. 2-24, представляют собой подпружиненные устройства, предназначенные для закрепления на двухрядных ИС корпуса, в то время как ИС установлена ​​в его цепи.Это простое устройство, обычно имеющее 16 светодиодов. (Светодиоды) закреплены в верхней части зажимов. Светодиоды соответствуют отдельным контактам ИС и любому горящему светодиоду. представляет собой состояние высокой логики. Не горит светодиодный индикатор указывает на низкое логическое состояние. Логические зажимы не требуют внешнего питания соединения, и они маленькие и легкие. Их способность одновременно контролировать ввод и вывод ИС очень полезна при поиске неисправностей в логической цепи.

      Рисунок 2-24. — Логический клип.


      Q-21. Какой логический уровень показывает горящий светодиод на логическом зажиме?

      ЛОГИЧЕСКИЕ КОМПАРАТОРЫ

      Логический компаратор, как показано на рисунке 2-25, предназначен для обнаружения неисправные внутрисхемные DIP-микросхемы путем сравнения их с заведомо исправными микросхемами (эталонные микросхемы). Эталонная ИС установлен на небольшой печатной плате и вставлен в логический компаратор.Затем вы прикрепляете логику компаратор к тестируемой ИС с помощью измерительного провода, который подключен к подпружиненному устройству, похожему на внешний вид к логическому зажиму. Логический компаратор предназначен для обнаружения различий в логических состояниях эталонной ИС и Тестируемая ИС. Если какая-либо разница в логических состояниях действительно существует на каком-либо контакте, светодиод, соответствующий контакту в вопрос загорится по логическому компаратору. Логический компаратор питается от тестируемой ИС.

      2-29



      Рисунок 2-25. — Логический компаратор.


      Q-22. На что указывает горящий светодиод на логическом компараторе?

      ЛОГИЧЕСКИЕ ДАТЧИКИ

      Логические зонды, как показано на рисунке 2-26, чрезвычайно просты и полезны Устройства, соответствующие стандарту
      , помогут вам определить логическое состояние ИС. Логические зонды могут показать вам сразу является ли конкретная точка в цепи низким, высоким, разомкнутым или пульсирующим.Высокий уровень обозначается, когда свет на конец зонда горит, и когда индикатор гаснет, отображается низкий уровень. Некоторые датчики имеют функцию, которая обнаруживает и отображает высокоскоростные переходные импульсы длительностью до 5 наносекунд. Эти зонды обычно подключен непосредственно к источнику питания тестируемого устройства, хотя некоторые из них также имеют внутренние батареи. Поскольку большинство отказов ИС проявляются в виде точки в цепи, застрявшей на высоком или низком уровне, эти пробники обеспечивают быстрый и недорогой способ найти неисправность.Они также могут отображать один короткий импульс, который так сложно уловить на осциллографе. Идеальный логический пробник будет иметь следующие характеристики:

      Рисунок 2-26. — Логический зонд.


      1. Уметь определять устойчивый логический уровень

      2. Уметь определять последовательность логических уровней

      3. Уметь обнаруживать обрыв цепи

      4. Уметь обнаруживать высокоскоростной переходный импульс

      2-30



      NEETS Содержание

      • Введение в материю, энергию, и постоянного тока
      • Введение в переменный ток и трансформаторы
      • Введение в защиту цепей, Контроль и измерение
      • Введение в электрические проводники, электромонтаж Методики и схематическое чтение
      • Введение в генераторы и двигатели
      • Введение в электронную эмиссию, трубки, и блоки питания
      • Введение в твердотельные устройства и Блоки питания
      • Введение в усилители
      • Введение в генерацию волн и формирование волн Схемы
      • Введение в распространение и передачу волн Линии и антенны
      • Принципы СВЧ
      • Принципы модуляции
      • Введение в системы счисления и логические схемы
      • Введение в микроэлектронику
      • Принципы синхронизаторов, сервоприводов и гироскопов
      • Введение в испытательное оборудование
      • Принципы радиочастотной связи
      • Принципы работы радаров
      • Справочник техника, Главный глоссарий
      • Методы и практика испытаний
      • Введение в цифровые компьютеры
      • Магнитная запись
      • Введение в волоконную оптику

      Попробуйте симистор | Марка:

      Гюнтер Кирш / MAKE

      В мире существуют миллиарды симисторов.Почти в каждом диммере лампы, каждой электрической плите и многих контроллерах двигателей мощность регулируется симистором, ограничивающим часть каждого положительного и отрицательного импульса переменного тока.

      Когда я начал писать об этом вездесущем полупроводнике для второго тома моей энциклопедии электронных компонентов , я не ожидал найти что-то новое. Ведь симистор был изобретен более 50 лет назад. Каково же было мое удивление, когда я понял, что он может применяться в низковольтных устройствах постоянного тока.Да ведь им можно управлять даже с помощью Arduino! Тогда я и решил, что надо лично познакомиться с симистором.

      Тестирование, тестирование…

      Объединив пять кремниевых сегментов, симистор получил неожиданные возможности. Как транзистор, он переключает ток. В отличие от транзистора, он не делает различий между положительным и отрицательным. Вы можете пропустить через него электроны в любом направлении, и он вообще не будет возражать. Точно так же он будет реагировать либо на прямое, либо на отрицательное смещение на своем выводе затвора.Он также является «регенеративным», продолжая пропускать ток даже после снятия смещения затвора.

      Типичный симистор с идентифицированными затвором и основными выводами.

      Иногда треугольники в символе имеют открытый центр, и символ может быть перевернут или повернут. Эти вариации не имеют значения. Затвор обозначен буквой G, а основные входные / выходные клеммы обозначены A1 и A2 (или иногда T1 и T2 или MT1 и MT2). Если клеммы не обозначены на схеме, A1 всегда является ближайшим к затвору, а напряжение затвора всегда измеряется относительно A1.

      Условное обозначение симистора напоминает два подключенных друг к другу диода, что указывает на его функциональность.

      Пока затвор имеет тот же потенциал, что и A1, симистор блокирует ток в обоих направлениях. Когда напряжение затвора колеблется выше или ниже A1, симистор будет проводить ток в любом случае. Выше уровня, известного как ток фиксации, поток будет продолжаться, даже если напряжение затвора упадет до нуля. Поток продолжается до тех пор, пока он не упадет ниже уровня, известного как ток удержания. Эти параметры указаны как IL и IH в таблицах характеристик симистора.

      Тестовую схему можно безопасно смонтировать, потому что, хотя симисторы предназначены для работы с напряжением 110 В переменного тока или выше, многие из них будут работать с напряжением 12 В постоянного тока или меньше и могут переключать светодиоды вместо лампочек. Я выбрал BTB04-600SL, потому что он пропускает до 4 А переменного тока, но может срабатывать всего от 10 мА при 2 В постоянного тока. Многие симисторы имеют похожие характеристики.

      В простой низковольтной испытательной схеме постоянного тока используются два светодиода для отображения тока и триммеры, которые подают ток на затвор и между основными клеммами.

      Для обеспечения положительного и отрицательного тока я использовал пару батарей на 9 В. Вы можете заменить блок питания на раздельный, если он у вас есть. Подстроечный резистор 2K, обозначенный на схеме буквой «A», подает напряжение в диапазоне от +9 В до –9 В через резистор 330 Ом и пару светодиодов на клемму A2 симистора. Ваши светодиоды должны быть рассчитаны на прямой ток не менее 20 мА. Они ориентированы с противоположной полярностью, чтобы показать, в каком направлении течет ток.

      Простой тестовый макет для макетирования.

      Второй подстроечный резистор 2K, обозначенный «B», подает от +9 В до –9 В через резистор 680 Ом к клемме затвора.Значения резистора были выбраны таким образом, чтобы обеспечить достаточный ток затвора и ток фиксации, не перегорая светодиоды.

      Макетная планировка.

      Установите оба триммера посередине их диапазона и подключите питание. Поверните триммер «A» полностью в сторону положительного значения диапазона, и пока ничего не произойдет, потому что триммер «B» подает нейтральное напряжение на затвор. Теперь поверните «B» в любую сторону, чтобы применить положительное или отрицательное смещение затвора, и симистор начнет пропускать ток, загорая верхний светодиод.

      Все становится интереснее, когда триммер «B» возвращается в нейтральное положение. Это лишает симистор напряжения затвора, но он все еще продолжает проводить, потому что 20 мА, проходящие через него, чуть выше его тока фиксации. Вы даже можете отключить триммер «B», и это не имеет значения.

      Если симистор остается проводящим при полном отсутствии напряжения на затворе — как мы можем его остановить? Просто медленно поверните триммер «A» обратно в нейтральное положение, и когда ток на клемме A2 упадет ниже 10 мА, светодиод погаснет.

      Если вы повторите этот тест с триммером «A», подающим –9 В постоянного тока вместо + 9 В постоянного тока, загорится другой светодиод. Он может вести себя не так, как первый светодиод, потому что характеристика симистора не полностью симметрична.

      Что дальше?

      Симистор представляет собой фиксирующее устройство, что делает его идеальным для активации кнопкой. Отправьте импульс на затвор, и двигатель, запитанный через симистор, начнет работать и продолжит работу. Вы можете остановить его, отключив подачу питания или кратковременно отключив симистор, чтобы обнулить потенциал между его основными клеммами.Добавьте правильно подключенный переключатель DPDT, и ваша кнопка запуска может заставить двигатель 12 В постоянного тока вращаться вперед или назад.

      Возможная схема, позволяющая одним касанием автоматически реверсировать простой двигатель постоянного тока, для автомобильных аксессуаров или домашней автоматизации. S1 — реле с фиксацией. S2 запускает двигатель. S3 и S4 — это концевые выключатели, активируемые кулачком на валу двигателя. R1 и R2 могут быть 10K, действуя как делитель напряжения, чтобы установить начальное напряжение затвора, которое всегда отличается от напряжения на клемме A1.R3 будет выбран для обеспечения соответствующего напряжения и тока на затворе.

      Попробуйте сами, используя схему выше. Он запускает двигатель, автоматически останавливает его и реверсирует — и все это одним нажатием кнопки.

      Кнопка S2 включает симистор, который запускает двигатель. В конце своей дуги вращения кулачок замыкает концевой выключатель (S3 или S4), который переключает фиксирующее реле (S1) для реверсирования мощности. Большинство реле разрывают один контакт за мгновение до включения другого. Этого перерыва в отсутствии тока будет достаточно для отключения симистора, который отключает питание двигателя.Двигатель остановится на небольшом расстоянии от концевого выключателя, чтобы выключатель не тратил энергию впустую, продолжая подавать питание на катушку реле. Когда симистор снова запускается посредством S2, двигатель теперь вращается в противоположном направлении. S5 остановит симистор в любой момент, на короткое время отключив его, а S2 перезапустит его.

      Некоторые люди любят обманывать свои машины двигателями, открывающими капот или багажник, или выполнять аналогичные трюки. Эта схема хорошо подходит для этого приложения. Точно так же линейные приводы, такие как те, что продаются Firgelli, могут управлять гаджетами в доме, такими как открывающиеся или закрывающиеся шторы или развлекательный центр, который выходит изнутри шкафа.Часто для этих двигателей требуется 12 В постоянного тока, которые можно обеспечить с помощью дешевых адаптеров переменного тока, предназначенных для портативных компьютеров. Здесь снова можно использовать симистор для управления двигателем.

      Еще одним возможным применением может быть «тревожная кнопка» для остановки двигателя путем отключения питания через симистор в устройстве с батарейным питанием, таком как робот.

      Наконец, поскольку для затвора симистора требуется всего несколько мА, он может быть активирован микроконтроллером. Проверьте данные своего симистора; он, вероятно, совместим с Arduino.

      Слишком много лет игнорировали этот причудливый полупроводник. Какие еще приложения у него могут быть? Пусть ваше воображение станет концевым выключателем.

      принцип работы, схемы тестирования и включения

      Сначала потрудитесь узнать, как работает тиристор. Получите представление о разновидностях: симистор, динистор. Требуется правильно оценить результат теста. Ниже мы расскажем, как проверить тиристор мультиметром, мы даже дадим вам небольшую схему, которая поможет вам массово осуществить задуманное.

      Типы тиристоров

      Тиристор отличается от биполярного транзистора с большим количеством pn-переходов:

      1. Типичный тиристор с pn-переходами содержит три. Структуры с дырочной электронной проводимостью чередуются на манер зебры. Можно найти концепцию тиристора npnp. Контрольный электрод есть или отсутствует. В последнем случае мы получаем динистор. Он работает по напряжению, приложенному между катодом и анодом: при определенном пороговом значении открывается, начинается спад, обрывается ход электронов.Что касается тиристоров с электродами, то управление осуществляется либо по двум средним pn переходам — ​​со стороны коллектора или эмиттера. Принципиальное отличие продукции от транзистора в режиме неизменяемости после исчезновения управляющего импульса. Тиристор остается открытым до тех пор, пока ток не упадет ниже фиксированного уровня. Обычно называется удерживающим током. Позволяет строить экономичные схемы. Объясняет популярность тиристоров.
      2. Симисторы имеют разное количество pn переходов, становящихся как минимум на один.Способен пропускать ток в обоих направлениях.

      Начало проверки тиристора мультиметром

      Сначала поработаем расположение электродов, чтобы определить:

      • катод;
      • анод;
      • электрод управляющий (основание).

      Для открытия тиристорного ключа на катоде прибора поставлен минус (черный щуп мультиметра), плюс к аноду прикреплен якорь (красный щуп мультиметра). Тестер установлен в режим омметра.Низкое сопротивление открытого тиристора. Прекратите устанавливать предел 2000 Ом. Пришло время напомнить: тиристор можно управлять (открывать) положительными или отрицательными импульсами. В первом случае тонкой штыревой перемычкой замыкаем анод на основание, во втором — катод. Кое-где тиристор должен открыться, в результате сопротивление будет меньше бесконечности.

      Процесс тестирования сводится к пониманию того, как тиристор управляется напряжением. Отрицательный или положительный.Попробуйте и так, и так (если нет маркировки). Одна попытка сработает ровно, если тиристор исправен.

      Далее процесс отличается от проверки транзистора. Когда управляющий сигнал исчезнет, ​​тиристор останется открытым, если ток превысит порог удержания. Ключ может закрываться. Если ток не достигает порога удержания.

      1. Регистрируемые технические характеристики тока удержания тиристор. Потрудитесь загрузить полную документацию из Интернета, будьте в курсе вещей.
      2. Многое определяет мультиметр. Какое напряжение подается на щупы (обычно 5 вольт), какую мощность выдает. Проверить можно, подключив большой конденсатор. Нужно правильно подключить щупы к выходам прибора в режиме измерения сопротивления, дождаться, пока цифры на дисплее вырастут от нуля до бесконечности. Процесс зарядки конденсатора завершен. Теперь переходим в режим измерения постоянного напряжения, видим значение разности потенциалов на ножках конденсатора (мультиметр выдает в режиме измерения сопротивления).По вольт-амперной характеристике тиристора легко определить, достаточно ли значений для создания тока удержания.

      Динисторы проще назвать. Попробуйте открыть ключ. Это зависит от того, хватит ли мощности мультиметра для преодоления преграды. Для гарантированной проверки тиристора лучше собрать отдельную схему. Как показано на картинке. Схема образована следующими элементами:


      Почему выбирают питание +5 вольт.Напряжение легко найти на телефонном переходнике (зарядном устройстве). Присмотритесь: есть надпись типа 5V– / 420 mA. Выведите значения напряжения, тока (сразу посмотрите, хватит ли тиристора на удержание). Каждый знаток знает: +5 Вольт для подключения к шине USB. Теперь практически любой гаджет, компьютер снабжен портом (в другом формате). Избегайте проблем с питанием. На всякий случай рассмотрим момент поподробнее.

      Проверка тиристоров на разъеме мультиметра на транзисторы

      Многие задаются вопросом, можно ли прозвонить тиристор мультиметром через штатное гнездо транзисторов лицевой панели, обозначенное pnp / npn.Ответ положительный. Вам просто нужно подать правильное напряжение. Коэффициент усиления, отображаемый на дисплее, скорее всего, будет неправильным. Поэтому ориентируйтесь на цифры, избегайте. Посмотрим, как что-то делается. Если тиристор открывается с положительным потенциалом, необходимо подключить его к выводу B (основание) полу-npn. Анод наклеен на штифт С (коллектор), катод — на Е (эмиттер). Мощный тиристор мультиметром проверить вряд ли получится, для микроэлектроники техника подойдет.

      Где взять тестер питания

      Положение электродов мультиметра

      Телефонный адаптер дает ток 100 — 500 мА.Часто этого бывает недостаточно (при необходимости проверки тиристора КУ202Н мультиметром ток разблокировки составляет 100 мА). Где взять еще? Посмотрим на шину USB: третья версия будет выдавать 5 А. Чрезвычайно большой ток для микроэлектроники, ставит под сомнение силовые характеристики интерфейса. Распиновку смотрим в сети. Вот изображение, показывающее расположение типичных портов USB. Показаны два типа интерфейсов:

      1. Первый USB тип A характерен для компьютеров.Самый распространенный. Найдите на переходниках (зарядных устройствах) портативных плееров, iPad. Может использоваться как тиристор цепи тестирования источника питания.
      2. Второй тип В более терминальный. Подключены периферийные устройства, такие как принтеры, другая оргтехника. Найти как источник питания сложно, игнорируя факт недоступности, авторы проверили макет.

      Если перерезать USB-кабель — наверняка многие кинутся убивать старую технику, оторвут хвосты мышам — внутри + 5-вольтовый шнур питания традиционно красный, оранжевый.Информация поможет правильно прозвонить цепь, получить необходимое напряжение. Присутствует на выключенном системном блоке (подключен к розетке). Вот почему свет мыши продолжает гореть. На время теста компу будет достаточно для перехода в режим гибернации. Кстати, напрямую не доступен в Windows 10 (залезть по настройкам вы найдете в управлении питанием).


      Отображение порта USB

      Заручившись помощью схемы, проверить тиристор, не испаряясь.Рабочая точка устанавливается относительно земли порта, поэтому внешние устройства будут играть небольшую роль. Традиционно заземление персонального компьютера привязано к корпусу, куда идет провод входного фильтра гармоник. Цепь +5 вольт, заземление отвязано от шины. Достаточно отключить тестируемую схему от источника питания. Для проверки тиристора нужно будет припаять антенны на каждом выходе. Для подачи питания контрольный сигнал.

      Многие ползают по стулу, не понимая одного: тут мы рассказываем, как мультиметром прозвонить тиристор, а тут светодиод плюс все навороты? На место светодиода можно — еще лучше — включить щупы тестера, зарегистрировать ток.Можно использовать небольшое напряжение питания, но в то же время это всегда безопаснее. Что касается персонального компьютера, то он дает широкие возможности для тестирования любых элементов, в том числе тиристоров. Блок питания обеспечивает набор напряжений:

      1. +5 В идет на кулеры, многие другие системы. Собственно стандартное напряжение питания. Провода напряжения красные.
      2. Для питания многих потребителей используется напряжение +12 Вольт. Желтый провод (не путать с оранжевым).
      3. — осталось 12 вольт для совместимости с RS.Старый добрый COM-порт, через который программируются адаптеры сегодня в промышленных системах. Некоторые источники бесперебойного питания. Провод обычно синий.
      4. Оранжевый провод обычно имеет напряжение +3,3 В.

      Видите, разброс большой, главное актуальный. Электропитание компьютеров варьируется в районе 1 кВт. Открой любой тиристор! Пора заканчивать. Надеюсь, читатели теперь знают, как тиристор настраивается вместе с мультиметром. Иногда приходится повозиться. Вышеупомянутый тиристор КУ202Н имеет структуру pnpn, без блокировки.После исчезновения управляющего напряжения ключ не замыкается. Для выключения светодиода необходимо отключить питание. Разблокировка положительным напряжением. Подходит по выкройке. Единственный ток удержания составляет 300 мА. Случай, когда не всякое зарядное устройство для телефона подходит для эксперимента.

      Среди домашних мастеров и умельцев периодически возникает необходимость определения исправности тиристора или симистора, которые широко используются в бытовых приборах для изменения частоты вращения ротора электродвигателей, в регуляторах мощности, осветительной арматуре и в других устройствах.

      Как устроен диод и тиристор

      Прежде чем описывать способы проверки, напомним о тиристорном устройстве, которое недаром называют управляемым диодом. Это означает, что оба полупроводниковых элемента имеют практически одно и то же устройство и работают совершенно одинаково, за исключением того, что у тиристора есть ограничение — управление через дополнительный электрод посредством передачи через него электрического тока.

      Тиристор и диод пропускают ток в одном направлении, что во многих конструкциях советских диодов обозначается направлением угла треугольника на мнемоническом символе, расположенном непосредственно на корпусе.В современных диодах в керамическом корпусе для маркировки катода обычно наносят кольцевую полоску рядом с катодом.

      Проверьте работоспособность и тиристор, пропустив через них ток нагрузки. Для этой цели разрешается использовать лампы накаливания от старых карманных фонариков, нить которых светится от силы тока около 100 мА и менее. При прохождении тока через полупроводник лампа будет гореть, а при его отсутствии — нет.

      Подробнее о работе диодов и тиристоров читайте здесь:

      Как проверить исправность диода

      Обычно для оценки исправности диода используют омметр или другие приборы, которые имеют функцию измерения активного сопротивления.Подавая напряжение на электроды диода в прямом и обратном направлении, они определяют значение сопротивления. С разомкнутым pn. При переходе омметр покажет нулевое значение, а в замкнутом — бесконечное значение.

      Если омметр отсутствует, то исправность диода можно проверить при помощи батарейки и лампочки.


      Перед тем, как проверять диод таким способом, необходимо учесть его мощность. В противном случае ток нагрузки может разрушить внутреннюю структуру кристалла.Для оценки маломощных полупроводников рекомендуется вместо лампочки использовать светодиод и снизить ток нагрузки до 10-15 мА.

      Как проверить исправность тиристора

      Оценить работоспособность тиристора можно несколькими методами. Рассмотрим три самых распространенных и доступных в домашних условиях.

      Аккумулятор и световой метод


      При использовании этого метода следует также оценить токовую нагрузку 100 мА, создаваемую лампочкой на внутренних цепях полупроводника, и применить ее на короткое время, особенно для цепей управляющих электродов.

      На рисунке не показана проверка отсутствия короткого замыкания между электродами. Такой неисправности практически не возникает, но для полной уверенности в ее отсутствии следует попробовать пропустить ток через каждую пару всех трех электродов тиристора в прямом и обратном направлении. Это займет всего несколько секунд.

      При сборке схемы по первому варианту полупроводниковый переход устройства не пропускает ток, и свет не горит.В этом его главное отличие в работе от обычного диода.

      Для открытия тиристора достаточно приложить к управляющему электроду положительный потенциал источника. Этот вариант показан на второй диаграмме. Неповрежденное устройство разомкнет внутреннюю цепь, и ток потечет через нее. Это укажет на свечение лампочек накаливания.

      На третьей диаграмме показано отключение питания от управляющего электрода и прохождение тока через анод и катод.Это связано с удерживанием избыточного тока внутреннего перехода.

      Эффект удержания используется в схемах управления мощностью, когда для размыкания тиристора, регулирующего величину переменного тока, подается короткий импульс тока от фазовращателя к управляющему электроду.

      Зажигание лампочки в первом случае или отсутствие ее свечения во втором говорят о выходе из строя тиристора. Но потеря свечения при снятии напряжения с контакта управляющего электрода может быть вызвана тем, что величина тока, протекающего через цепь анод-катод, меньше предельного значения удержания.

      Разрыв цепи через анод или катод вызывает закрытие тиристора.

      Методика испытаний на самодельном приборе

      Для снижения риска повреждения внутренних цепей полупроводниковых переходов при проверке тиристоров малой мощности можно подбирать значения токов в каждой цепи. Для этого достаточно собрать простую электрическую схему.

      На рисунке показано устройство, рассчитанное на работу от 9-12 вольт. При использовании других напряжений питания следует произвести пересчет значений сопротивления R1-R3.

      Рис. 3. Схема устройства для проверки тиристоров

      Через светодиод HL1 достаточно тока около 10 мА. При частом использовании устройства для подключения электродов тиристора ВС желательно делать контактные розетки. Кнопка SA позволяет быстро переключать цепь управляющего электрода.

      Свечение светодиода перед нажатием кнопки SA или отсутствие его свечения — явный признак повреждения тиристора.

      Метод с помощью тестера, мультиметра или омметра

      Наличие омметра упрощает процесс проверки тиристора и напоминает предыдущую схему.В нем источником тока является аккумулятор устройства, а вместо свечения светодиода используется отклонение стрелки аналоговых моделей или цифровые показания на табло цифровых устройств. При указании большого сопротивления тиристор закрыт, а при малых значениях — открыт.


      Здесь оцениваются те же три этапа тестирования с выключенной кнопкой SA, кратковременным нажатием и затем снова отключенной. В третьем случае тиристор, вероятно, изменит свое поведение из-за небольшой величины испытательного тока: его недостаточно для удержания.

      Низкое сопротивление в первом случае и высокое во втором говорят о нарушениях полупроводникового перехода.

      Метод омметра позволяет проверить исправность полупроводниковых переходов без пайки тиристора от большинства печатных плат.

      Конструкцию симистора можно представить как состоящий из двух тиристоров, включенных противоположно друг другу. Его анод и катод не имеют строгой полярности, как у тиристора. Они работают с переменным электрическим током.

      Качество состояния симистора можно оценить с помощью описанных выше методов тестирования.

      Симистор — один из радиоэлементов «семейства» тиристоров. Два других: динистор — это двухэлектродное устройство, тринистор — трехэлектродное устройство. Фактически, симистор также является трехэлектродным устройством, но если в триисторе есть три pn перехода, то в симисторе их четыре. Поперечное сечение структуры кристалла тринистора показано на рис.1 слева и симистор справа.

      Благодаря такой конструкции симистора, в отличие от триристора, можно управлять проводимостью в обоих направлениях с помощью одного управляющего электрода. В результате симистор чаще всего используется как ключ в цепях переменного тока.

      Конструктивно симистор выполнен в том же корпусе, что и тринистор (рис. 2). Аналогично тринистору, одна крайняя область с проводимостью n-типа подключается к корпусу и служит выводом 2.Другая крайняя область (n-тип) подключена к выводу 1. Средняя область (p-тип) подключена к выходу управляющего электрода.

      При работе в каком-либо устройстве для размыкания симистора управляющий импульс подается на управляющий электрод относительно контакта 1, и полярность импульса зависит от полярности коммутируемого напряжения, приложенного между контактами 1 и 2. Если напряжение на выводе 2 положительное, симистор открывается импульсом напряжения любой полярности. При отрицательном напряжении на этом выводе управляющий импульс должен иметь отрицательную полярность.Выключение (замыкание) симистора осуществляется, как и в случае с тристором, снятием напряжения с вывода 2.

      Разобравшись с устройством и работой симистора, теперь легко научиться проверять это с помощью простой приставки (рис. 3).


      Переключатели SA1 и SA2 изменяют полярность управляющего и коммутируемого напряжения соответственно. Кнопка SB1 служит для подачи управляющих импульсов, а SB2 — для отключения симистора. Индикатор симистора — лампа накаливания HL1, рассчитанная на напряжение, которое приложено к выводу 2 симистора.Кормить приставку необходимо из двух отдельных источников.

      Для крепления навесных деталей можно использовать любой подходящий корпус из изоляционного материала, например пластиковую мыльницу (рис. 4).

      При указанном на схеме положении подвижных контактов переключателей и нажатии кнопки SB1 симистор размыкается, световой индикатор загорается. Затем нажимаем кнопку SB2, симистор замыкается, лампа гаснет. Далее подвижные контакты переключателя SA1 переводят в противоположное положение и снова нажимают кнопку SB1.Если симистор исправен, лампа будет мигать.

      С помощью домашнего тестера (мультиметра) можно проверить самые разные радиоэлементы. Для домашнего мастера, увлекающегося электроникой, это настоящая находка. Например, проверка тиристора мультиметром может избавить вас от необходимости искать новую деталь при ремонте электрооборудования.

      Это полупроводниковый прибор, выполненный по классической монокристаллической технологии. На кристалле их три или больше. pn переход с диаметрально противоположными установившимися состояниями.Основное применение тиристоров — электронный ключ. Эти радиоэлементы можно эффективно использовать вместо механических реле.

      Включение регулируемое, относительно плавное и без дребезга контактов. Нагрузка в основном направлении открытия p — n переходов контролируется в режиме управления, можно контролировать скорость увеличения рабочего тока.

      Кроме того, тиристоры, в отличие от реле, прекрасно интегрируются в электрические схемы любой сложности. Отсутствие искрящихся контактов позволяет использовать их в системах, где шум переключения недопустим.

      Деталь компактная, доступна в различных форм-факторах, в том числе для установки на радиаторы охлаждения.

      Тиристоры управляются внешним воздействием:

      • Электрический ток, подводимый к управляющему электроду;
      • Луч света, если используется фототиристор.

      В этом случае, в отличие от того же реле, нет необходимости постоянно посылать управляющий сигнал. Рабочий p-n переход будет открыт даже после окончания подачи управляющего тока.Тиристор закрывается, когда рабочий ток, протекающий через него, падает ниже порога удержания.

      Тиристоры доступны в различных модификациях, в зависимости от способа управления и дополнительных функций.

      • Диод прямой проводимости;
      • Диод обратной проводимости;
      • Диод симметричный;
      • Триод прямой проводимости;
      • Триод обратной проводимости;
      • Асимметричный триод.

      Существует разновидность триодного тиристора с двунаправленной проводимостью.

      Что такое симистор и чем он отличается от классических тиристоров?

      Симистор (или «симистор») — особая разновидность триодного симметричного тиристора. Основное преимущество — возможность проводить ток на рабочих pn переходах в обоих направлениях. Это позволяет использовать радиоэлемент в системах с переменным напряжением.

      Принцип работы и конструкция такие же, как у других тиристоров. При подаче тока менеджера pn соединение разблокируется и остается открытым до тех пор, пока рабочий ток не уменьшится.
      Популярное применение симисторов — стабилизаторов напряжения для систем освещения и бытовых электроинструментов.

      Работа этих радиодеталей напоминает принцип транзисторов, но детали не взаимозаменяемы.

      Разобравшись, что такое тиристор и симистор, научимся проверять эти детали на работоспособность.

      Как вызвать тиристор мультиметром?

      Сразу оговорюсь — исправность тиристора можно проверить без тестера.Например, с помощью лампочки от фонарика и пальчикового аккумулятора. Для этого последовательно включите источник питания, соответствующий напряжению лампочки, рабочих выводов тиристора и лампочки.

      Важно! Не забывайте, что обычный тиристор проводит ток только в одном направлении. Поэтому соблюдайте полярность.

      При подаче управляющего тока (достаточно батареек АА) — светится. Итак, схема управления в порядке.Затем отключите аккумулятор, не отключая источник рабочего тока. Если pn-переход в порядке и установлен на определенный ток удержания, свет останется включенным.

      Если у вас нет подходящей лампы и батарейки, следует знать, как проверить тиристор мультиметром.

        1. Переключатель тестера установлен в режим тонового набора. При этом на проволочных щупах появится достаточное напряжение для проверки тиристора. Рабочий ток не открывает pn переход, поэтому сопротивление на выводах будет высоким, ток не течет.На дисплее мультиметра отображается «1». Мы убедились, что рабочий п-н переход не нарушен;
        2. Проверить открытие перехода. Для этого соедините управляющий выход с анодом. Тестер дает ток, достаточный для размыкания спая, и сопротивление резко падает. На дисплее появятся цифры, отличные от единицы. Тиристор «открытый». Таким образом, мы проверили работоспособность элемента управления;

      1. Размыкаем управляющий контакт.При этом сопротивление должно снова стремиться к бесконечности, то есть на табло мы видим «1».

      Почему тиристор не оставался открытым?

      Дело в том, что мультиметр не выдает тока, достаточного для срабатывания тиристора по «току удержания». Этот пункт мы не можем проверить. Однако оставшиеся контрольные точки говорят о хорошем состоянии полупроводникового прибора. Если поменять полярность — тест не пройдет. Таким образом, убеждаемся, что обратного пробоя нет.

      Можно проверить чувствительность тиристора. В этом случае переводим переключатель тестера в режим омметра. Измерения производятся по ранее описанной методике. Только мы каждый раз меняем чувствительность прибора. Начнем с предела измерения вольтметра «х1».

      Чувствительные тиристоры сохраняют разомкнутое состояние при отключении управляющего тока, что фиксируем на приборе. Увеличьте предел измерения до «x10». В этом случае ток на измерительных выводах тестера уменьшается.

      Если при отключении управляющего тока переход не замыкается, мы продолжаем увеличивать предел измерения до тех пор, пока тиристор не сработает по току удержания.

      Важно! Чем меньше ток удержания, тем чувствительнее тиристор.

      При проверке деталей из одной партии (или с одинаковыми характеристиками) выбирайте более чувствительные элементы. Такие тиристоры имеют более гибкие возможности управления, соответственно, более широкую область применения.

      Освоив принцип проверки тиристора — несложно догадаться, как проверить симистор мультиметром.

      Важно! При наборе необходимо учитывать, что этот полупроводниковый ключ имеет симметричную двустороннюю проводимость.

      Проверка симистора мультиметром

      Схема подключения для поверки аналогична. Можно использовать лампу накаливания или мультиметр с широким диапазоном измерений в режиме омметра. После прохождения тестов с одной полярностью переключаем щупы тестера на обратную полярность.

      Рабочий симистор должен показать очень похожие результаты тестирования.Необходимо проверить открытие и удержание p — n перехода в обоих направлениях по всей шкале измерительного диапазона мультиметра.

      Если радиокомпонент, который необходимо проверить, находится на печатной плате — отпаивать его для проверки не нужно. Достаточно отпустить управляющий выход. Важный! Не забудьте обесточить проверяемый электроприбор.

      В заключение посмотрите видео: Как проверить тиристор мультиметром.

      Для коммутации электрических сетей переменного тока используются различные элементы. Чаще всего используются мощные симисторы, которые необходимы для конструкции трансформаторов и зарядных устройств.

      Симисторы — это разновидность тиристоров, аналогичных кремниевым выпрямителям в корпусе. Но в отличие от тиристоров, которые являются однонаправленными устройствами, т.е. они пропускают ток только в одном направлении, а симисторы — двусторонние. С их помощью можно передавать ток в обоих направлениях. Они имеют пять тиристорных слоев, которые снабжены электродами.На первый взгляд отечественные симисторы напоминают pn структуру, но имеют несколько участков с проводимостью n-типа. Последняя область, расположенная после этого слоя, имеет прямое соединение с электродом, что обеспечивает высокую проводимость сигнала. Иногда их также сравнивают с выпрямителями, но стоит помнить, что диоды передают электрический сигнал только в одном направлении.

      Фото — использовать тиристор

      Симистор

      считается идеальным устройством для использования в коммутационных сетях, поскольку он может контролировать ток через обе половины переменного цикла.Тиристор управляет только половиной цикла, а вторая половина сигнала не используется. Благодаря такой особенности работы симистор отлично передает сигналы от любых электрических устройств; вместо реле часто используется симистор. Но пока этот симистор редко используется в сложных электрических устройствах, таких как трансформаторы, компьютеры и т. Д.


      Фото — симистор

      Видео: как работает симистор

      Принцип действия

      Принцип работы симистора очень похож на тиристорный, но его легче понять, исходя из работы тринисторного аналога этого компонента электрических сетей.Обратите внимание, что четвертый полупроводниковый компонент разделен, что позволяет выполнять следующие функции:

      1. Монитор катода и анода;
      2. При необходимости поменяйте их местами, что позволяет менять полярность работы.

      В этом случае работу устройства можно рассматривать как комбинацию двух противоположно направленных тиристоров, но работающих по полному циклу, т.е. не обрывающих сигналы. Обозначение на схеме, соответствующее двум подключенным тиристорам:

      Фото — тринистор аналог симистора

      Согласно чертежу на электрод, которым является контроллер, передается сигнал, позволяющий размыкать контакт детали.В тот момент, когда положительное напряжение на аноде, соответственно, на катоде станет отрицательным, электрический ток начнет протекать через тринистор, который находится на схеме слева. Исходя из этого, если полярность полностью изменена, что меняет местами заряды катода и анода, ток, передаваемый через контакты, будет проходить через правый тринистор.

      Здесь последний слой на симисторе отвечает за полярность напряжения. Он контролирует напряжение на контактах и, сравнивая его, направляет ток на определенный триристор.Прямо пропорционально этому, если сигнал не подан, то все тринисторы закрыты и устройство не работает, то есть не передает никаких импульсов.

      Если есть сигнал, есть подключение к сети и ток должен куда-то течь, то симистор в любом случае проводится полярностью направления, в данном случае продиктованным зарядом и полярностью полюсов, катод и анод.

      Обратите внимание: на приведенной выше диаграмме показана вольт-амперная характеристика (ВАХ) симистора на рисунке 3.Каждая из кривых имеет параллельное направление, но в другом направлении. Они повторяют друг друга под углом 180 градусов. Такой график говорит о том, что симистор является аналогом динистора, но при этом участки, через которые динисторы не передают сигнал, очень легко преодолеваются. Параметры устройства можно регулировать, подавая ток разного напряжения, это позволит разблокировать контакты в нужном направлении, просто изменив полярность сигнала. На чертеже места, которые могут отличаться, отмечены пунктирными линиями.


      Фото — симисторы

      Благодаря этому ВАХ становится понятно, почему стабилизированный тиристор получил такое название. Симистор — означает «симметричный» тиристор, в некоторых учебниках и магазинах его можно назвать симистором (зарубежный вариант).

      Сфера использования

      Двунаправленность делает симисторы очень удобными переключателями для цепей переменного тока, позволяя им управлять большими токами электрической энергии, проходящей через небольшие контактные полюса. Кроме того, вы даже можете контролировать процентное соотношение индуктивного тока нагрузки.


      Фото — работа симистора

      Устройства используются в радиотехнике, электротехнике, механике и других отраслях, где может потребоваться контроль тока. Оптосимисторы часто используются в системах охранной сигнализации и диммерах, где для правильной работы устройств требуется полный цикл, а не полпериода. Хотя довольно часто использование этой радиокомпоненты оказывается неэффективным. Например, для работы небольшого микроконтроллера или трансформатора иногда лучше подключить тиристоры малой мощности, которые будут одинаково обеспечивать работу обоих периодов.

      Проверка, распиновка и использование симисторов

      Для того, чтобы использовать прибор в работе, нужно уметь проверять симистор мультиметром или «прозвонить» его. Для проверки необходимо оценить характеристики контролируемых кремниевых диодов. Такие выпрямители позволяют скорректировать нужные показания и проверить. Отрицательный контакт омметра подключается к катоду, а положительный — к аноду. После нужно одеть индикатор омметра на единицу, а электрод сравнения соединить с выходом анода.Если данные будут в пределах от 15 до 50 Ом, то деталь работает нормально.


      Фото — управление световыми симисторами

      Но при этом при отключении контактов от анода омметр должен оставаться на приборе. Убедитесь, что простой измерительный прибор не показывает остаточного сопротивления, иначе он укажет, что деталь не работает.

      В повседневной жизни симисторы часто используются для создания приборов, продлевающих срок службы различных устройств.Например, для ламп накаливания или счетчиков можно сделать регулятор мощности (нужен тиристор MAC97A8 или ТК).


      Фото — схема регулятора мощности на симисторе

      На схеме показано, как собрать регулятор мощности. Обратите внимание на элементы DD1.1.DD1.3, где указан генератор, за счет этой части вырабатывается около 5 импульсов, которые представляют собой полупериоды одиночного сигнала. Импульсы управляются резисторами, а выпрямительный диодный транзистор контролирует момент включения симистора.


      Фото — Измерение симистора

      Этот транзистор открыт, исходя из этого сигнал подходит на вход генератора, при этом симисторы и остальные транзисторы закрыты. Но если в момент размыкания контактов состояние генератора не меняется, то кумулятивными элементами будет генерироваться небольшой импульс для запуска цоколя. Такую схему диммера на симисторе можно использовать для управления работой осветительных приборов, стиральной машины, оборотов пылесоса или ламп накаливания с датчиком движения.Используйте тестер, чтобы проверить работоспособность схемы и можете ли ее использовать.


      Фото — работа симистора

      Для улучшения системы можно организовать управление симистором через оптрон, чтобы элемент можно было запускать только после сигнала. Учтите, что при пролистывании барабана движения происходят очень резко, значит неисправен электронный модуль. Чаще всего горит симистор, импортные проводники часто не выдерживают скачков напряжения.Чтобы заменить его, просто выберите ту же деталь.


      Фото — тиристорное зарядное устройство

      Аналогично по схеме можно собрать зарядное устройство на симисторе, в зависимости от требований нужно просто купить маломощные или силовые детали КУ208Г, КР1182ПМ1, Z0607, BT136, BT139 (BTB — VTB, BTA — BTA будет тоже работают). В условиях отечественного импорта используются симисторы зарубежного производства, цены на которые несколько выше.

      ТВЕРДЫХ УСТРОЙСТВ: ТЕСТИРОВАНИЕ ТРИАКА | оборудование hvac

      ИСПЫТАНИЕ ТРИАКА

      Симистор можно проверить омметром.Для проверки симистора подключите выводы омметра к MT2 и MT1. Омметр должен показывать отсутствие обрыва. Если вывод затвора коснется MT2, симистор должен включиться, и омметр покажет обрыв цепи через симистор. Когда вывод затвора отсоединен от MT2, симистор может продолжать проводить или отключаться в зависимости от того, подает ли омметр достаточный ток, чтобы поддерживать устройство выше его уровня удерживающего тока. Это тестирует половину симистора. Чтобы проверить другую половину симистора, поменяйте местами подключения проводов омметра.Омметр снова должен показывать отсутствие обрыва. Если снова коснуться ворот к MT2, омметр должен показать непрерывность через устройство. Вторая половина симистора протестирована. Следующая пошаговая процедура может использоваться для проверки симистора.

      1. Используя соединительный диод, определите, какой вывод омметра положительный, а какой отрицательный. Омметр покажет целостность цепи только тогда, когда положительный провод подключен к аноду, а отрицательный провод подключен к катоду, Рисунок 56–7.

      2. Подсоедините положительный провод омметра к MT2, а отрицательный провод к MT1. Омметр должен показывать отсутствие обрыва через симистор, рисунок 56–8.

      3. С помощью перемычки подключите затвор симистора к MT2. Омметр должен показывать прямой диодный переход, рисунок 56–9.

      4.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *