Расчёт сопротивления проводника | Частная школа. 8 класс
Конспект по физике для 8 класса «Расчёт сопротивления проводника». От каких параметров зависит сопротивление проводника. Что такое удельное сопротивление проводника. Для чего используют реостаты.
Конспекты по физике Учебник физики Тесты по физике
Опыты показывают, что разные проводники обладают разным сопротивлением. С какими свойствами нужно выбрать проводник, чтобы при заданном значении напряжения обеспечить необходимую силу тока в цепи?
ЗАВИСИМОСТЬ СОПРОТИВЛЕНИЯ ПРОВОДНИКА ОТ ЕГО ДЛИНЫ
В цепь, состоящую из источника тока, лампочки, амперметра и ключа, включён проводник в виде нихромовой проволоки длиной 1 м и площадью поперечного сечения 0,4 мм2 (зажимы 1 и 2). Если замкнуть цепь, то лампочка загорится, а показания амперметра составят 1 А. Что произойдёт, если увеличить длину нихромовой проволоки в 2 раза, добавив в цепь проволоку такой же длины и сечения (зажимы 1 и 3)?
Замкнув цепь, заметим, что показания амперметра уменьшились в 2 раза. При этом яркость лампочки также уменьшилась. Если длину проводника увеличить в 3 раза, то сила тока уменьшится в 3 раза. Итак, увеличение длины проводника, включённого в цепь, приводит к уменьшению силы тока в цепи. По закону Ома сила тока обратно пропорционально сопротивлению проводника: I = U/R. Таким образом, чем больше длина проводника, тем больше его сопротивление, или можно сказать, что сопротивление проводника прямо пропорционально его длине: R ~ I.
ЗАВИСИМОСТЬ СОПРОТИВЛЕНИЯ ПРОВОДНИКА ОТ ПЛОЩАДИ ЕГО ПОПЕРЕЧНОГО СЕЧЕНИЯ
Продолжим опыт. В цепь включим два нихромовых проводника длиной по 1 м и площадями поперечного сечения 0,4 и 0,1 мм2 соответственно (зажимы 1—2 и 4—5). Поочерёдно включая их в цепь, заметим, что показания амперметра больше для проводника с большей площадью поперечного сечения.
Таким образом, чем больше площадь поперечного сечения проводника (при условии, что их длина и материал, из которого они изготовлены, одинаковы), тем больше сила тока в цепи. Это означает, что сопротивление проводника обратно пропорционально площади его поперечного сечения: R ~ 1 /S.
ЗАВИСИМОСТЬ СОПРОТИВЛЕНИЯ ПРОВОДНИКА ОТ МАТЕРИАЛА, ИЗ КОТОРОГО ОН ИЗГОТОВЛЕН
До сих пор мы проводили опыты с проводниками из одного материала, различающимися лишь размерами. Как вы думаете, будет ли зависеть сопротивление от материала, из которого изготовлен проводник?
Воспользуемся выше приведённой цепью. Подключим в неё два проводника длиной по 1 м и площадью поперечного сечения по 0,4 мм2, один из которых изготовлен из меди, а другой из нихрома (зажимы 1—2 и 8—9). Поочерёдно включая их в цепь, мы заметим, что показания амперметра больше, когда в цепь включён медный проводник, чем когда в цепь включён проводник из нихрома. Это означает, что сопротивления проводников, изготовленных из разных материалов, различны. Следовательно, сопротивление зависит от материала, из которого изготовлен проводник.
youtube.com/embed/NtI7DzrVsts?feature=oembed» frameborder=»0″ allow=»accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture» allowfullscreen=»»>УДЕЛЬНОЕ СОПРОТИВЛЕНИЕ ПРОВОДНИКА
Итак, сопротивление проводника прямо пропорционально его длине и обратно пропорционально его сечению. Коэффициент пропорциональности, отражающий зависимость сопротивления от свойств материала, обозначается буквой р и называется удельным сопротивлением проводника. Таким образом, можно записать: R = pl/S.
Удельное сопротивление проводника — это физическая величина, которая показывает, каким сопротивлением обладает изготовленный из данного вещества проводник длиной 1 м и площадью поперечного сечения 1
Единицей сопротивления в СИ является Ом. Поэтому единицей удельного сопротивления является Ом • м (ом-метр). На практике часто используется внесистемная единица Ом • мм2/м.
Значения удельного сопротивления для разных проводников получают опытным путём. Результаты измерений занесены в справочные таблицы.
Из всех металлов наименьшим удельным сопротивлением обладают серебро и медь. Это лучшие проводники электричества. Фарфор и эбонит имеют такое большое удельное сопротивление, что почти не проводят электрический ток.
Для изготовления проводов чаще всего используют алюминий, железо или медь.
Удельное сопротивление вещества зависит от его температуры. Например, для металлов с ростом температуры растёт и удельное сопротивление. Этот факт приходится учитывать на практике при точных расчётах спиралей электронагревательных приборов. У электролитов, наоборот, при повышении температуры удельное сопротивление уменьшается.
Для решения ряда практических задач часто требуется либо увеличивать, либо уменьшать силу тока в цепи. Изменение силы тока в цепи происходит при изменении сопротивления.
Прибор, позволяющий плавно регулировать силу тока в цепи, называют реостатом. В ползунковом реостате проволока намотана на керамический цилиндр. Над обмоткой расположен металлический стержень, по которому может перемещаться ползунок. Перемещая ползунок по стержню, можно увеличивать или уменьшать сопротивление реостата, включённого в цепь.
Сопротивление проводника не зависит от значений тока и напряжения, а определяется его геометрическими размерами и зависит от материала, из которого он изготовлен.
Вы смотрели Конспект по физике для 8 класса «Расчёт сопротивления проводника».
Вернуться к Списку конспектов по физике (Оглавление).
Просмотров: 4 156
Зависимость сопротивления проводника от его длины и поперечного сечения
7-10 классы
Студенты
средний адрес
Также часть:
TESS advanced «Электричество / Электроника EEP1»
Кат. номер 15281-88 | Тип: Set
Время доставки: В наличии
Наименование
Кат.номер
Количество
Коммутационная панель, 4 мм гнезда
Кат.номер 06033-00
1
Блок электропроводки, G1
Кат.номер 39120-00
3
Универсальный держатель, G1
Кат.номер 39115-02
2
Соединительный проводник, 19 A, 25 см, красный
Кат.номер 07313-01
1
Соединительный проводник,19 A, 25 см, синий
Кат.номер 07313-04
1
Соединительный проводник, 15 A, 50 см, красный
Кат.номер 07314-01
2
Соединительный проводник,19 A, 50 см, синий
Кат.номер 07314-04
2
Константановая проволока 15,6 Oм/м, d=0,2 мм, l=100 м
Кат.номер 06100-00
1
Константановая проволока
Кат.номер 06102-00
1
PHYWE Источник питания пост. ток: 0…12 В, 2 A / перемен. ток: 6 В, 12 В, 5 A
Кат. номер 13506-93
1
Аналоговый мультиметр, 600 В AC/DC, 10A AC/DC, 2 MΩ, защита от перегрузки
Кат.номер 07021-11
Бесплатная доставка от 300,- €
Nach oben
Информация
- Контактное лицо
- Условия сотрудничества
- Декларация о конфиденциальности
- Вводные данные
Обслуживание
- Краткий обзор услуг
- Скачать
- Каталоги
- Вебинары и Видео
- Связаться со службой поддержки клиентов
Компания
- О нас
- Качественная политика
- Безопасность в классе
Please note
* Prices subject to VAT.
We only supply companies, institutions and educational facilities. No sales to private individuals.
Please note: To comply with EU regulation 1272/2008 CLP, PHYWE does not sell any chemicals to the general public. We only accept orders from resellers, professional users and research, study and educational institutions.
Пожалуйста, введите имя, под которым должна быть сохранена Ваша корзина.
Сохраненные корзины вы можете найти в разделе
Название корзины
15.3 Сопротивление и удельное сопротивление – Физика Колледжа Дугласа 1104 Индивидуальный учебник – зима и лето 2020
Глава 15 Электрический ток, сопротивление и закон Ома
Резюме
- Объясните понятие удельного сопротивления.
- Используйте удельное сопротивление для расчета сопротивления определенных конфигураций материала.
- Используйте термический коэффициент удельного сопротивления для расчета изменения сопротивления в зависимости от температуры.
Сопротивление объекта зависит от его формы и материала, из которого он состоит. Цилиндрический резистор на рис. 1 легко анализировать, и таким образом мы можем получить представление о сопротивлении более сложных форм. Как и следовало ожидать, электрическое сопротивление цилиндра [латекс]\boldsymbol{R}[/латекс] прямо пропорционально его длине [латекс]\жирный символ{L}[/латекс], аналогично сопротивлению трубы потоку жидкости. . Чем длиннее цилиндр, тем больше столкновений зарядов с его атомами произойдет. Чем больше диаметр цилиндра, тем больший ток он может пропускать (опять же аналогично потоку жидкости по трубе). На самом деле, [латекс]\boldsymbol{R}[/латекс] обратно пропорциональна площади поперечного сечения цилиндра [латекс]\жирный символ{А}[/латекс].
Рисунок 1. Однородный цилиндр длиной L и площадью поперечного сечения A . Его сопротивление потоку тока аналогично сопротивлению трубы потоку жидкости. Чем длиннее цилиндр, тем больше его сопротивление. Чем больше его площадь поперечного сечения A , тем меньше его сопротивление.[латекс]\boldsymbol{R =}[/латекс] [латекс]\boldsymbol{\frac{\rho L}{A}}[/латекс].
В таблице 1 приведены репрезентативные значения [латекс]\жирныйсимвол{\ро}[/латекс]. Материалы, перечисленные в таблице, разделены на категории проводников, полупроводников и изоляторов на основе широких групп удельного сопротивления. Проводники имеют наименьшее удельное сопротивление, а изоляторы — наибольшее; полупроводники имеют промежуточное сопротивление. Проводники имеют разную, но большую плотность свободного заряда, в то время как большинство зарядов в изоляторах связаны с атомами и не могут свободно перемещаться. Полупроводники занимают промежуточное положение, имея гораздо меньше свободных зарядов, чем проводники, но обладая свойствами, из-за которых количество свободных зарядов сильно зависит от типа и количества примесей в полупроводнике. Эти уникальные свойства полупроводников используются в современной электронике, что будет рассмотрено в последующих главах. 9{11}}[/латекс]
Пример 1.
Расчет диаметра резистора: нить накала фарыНить накала автомобильной фары изготовлена из вольфрама и имеет морозостойкость [латекс]\boldsymbol{0,350 \;\Omega}[/латекс]. Если нить представляет собой цилиндр длиной 4,00 см (можно свернуть в спираль для экономии места), то каков ее диаметр?
Стратегия
Мы можем преобразовать уравнение [латекс]\boldsymbol{R = \frac{\rho L}{A}}[/latex], чтобы найти площадь поперечного сечения [латекс]\boldsymbol{A}[/latex] нить из предоставленной информации. Тогда его диаметр можно найти, предполагая, что он имеет круглое поперечное сечение.
Решение
Площадь поперечного сечения, полученная перестановкой выражения сопротивления цилиндра, приведенного в [латекс]\жирный символ{R = \frac{\rho L}{A}}[/latex],
[латекс]\boldsymbol{A =}[/латекс] [латекс]\boldsymbol{\frac{\rho L}{R}}[/латекс] 9{-5} \;\textbf{m}} \end{array}.[/latex]
Обсуждение
Диаметр чуть меньше одной десятой миллиметра. Он заключен в кавычки только до двух цифр, потому что [латекс]\жирныйсимвол{\ро}[/латекс] известен только до двух цифр.
Удельное сопротивление всех материалов зависит от температуры. Некоторые даже становятся сверхпроводниками (нулевое сопротивление) при очень низких температурах. (См. рис. 2.) И наоборот, удельное сопротивление проводников увеличивается с повышением температуры. Поскольку атомы вибрируют быстрее и преодолевают большие расстояния при более высоких температурах, электроны, движущиеся через металл, совершают больше столкновений, что фактически увеличивает удельное сопротивление. При относительно небольших изменениях температуры (около 100ºC или менее) удельное сопротивление [латекс]\boldsymbol{\rho}[/латекс] зависит от изменения температуры [латекс]\жирныйсимвол{\Delta T}[/латекс], как это выражается в следующем уравнении
[латекс]\boldsymbol{ \rho = \rho_{0} (1 + \alpha \Delta T)},[/latex]
, где [latex]\boldsymbol{\rho_0}[/latex] — исходное удельное сопротивление, а [latex]\boldsymbol{\alpha}[/latex] — температурный коэффициент удельного сопротивления . (См. значения [латекс]\жирныйсимвол{\альфа}[/латекс] в таблице 2 ниже.) Для больших изменений температуры [латекс]\жирныйсимвол{\альфа}[/латекс] может меняться, или нелинейное уравнение может быть нужно найти [латекс]\boldsymbol{\rho}[/латекс]. Обратите внимание, что [латекс]\жирныйсимвол{\альфа}[/латекс] положителен для металлов, что означает, что их удельное сопротивление увеличивается с температурой. Некоторые сплавы были разработаны специально, чтобы иметь небольшую температурную зависимость. Манганин (состоящий из меди, марганца и никеля), например, имеет [латекс]\boldsymbol{\alpha}[/латекс] близок к нулю (до трех цифр по шкале в таблице 2), поэтому его удельное сопротивление лишь незначительно зависит от температуры. Это полезно, например, для создания эталона сопротивления, не зависящего от температуры.
Рис. 2. Сопротивление образца ртути равно нулю при очень низких температурах — это сверхпроводник примерно до 4,2 К. Выше этой критической температуры его сопротивление делает резкий скачок, а затем увеличивается почти линейно с температурой.Таблица 2: Температурные коэффициенты удельного сопротивления [латекс]\boldsymbol{\alpha}[/латекс] |
Отметим также, что [латекс]\жирныйсимвол{\альфа}[/латекс] имеет отрицательное значение для полупроводников, перечисленных в таблице 2, что означает, что их удельное сопротивление уменьшается с повышением температуры. Они становятся лучшими проводниками при более высокой температуре, потому что повышенное тепловое возбуждение увеличивает количество свободных зарядов, доступных для переноса тока. Это свойство уменьшения [латекса] \boldsymbol{\rho}[/латекса] с температурой также связано с типом и количеством примесей, присутствующих в полупроводниках.
Сопротивление объекта также зависит от температуры, так как [латекс]\boldsymbol{R_0}[/латекс] прямо пропорционально [латекс]\жирныйсимвол{\ро}[/латекс]. Для цилиндра мы знаем [латекс]\boldsymbol{R = \rho L/A}[/latex], и поэтому, если [латекс]\boldsymbol{L}[/латекс] и [латекс]\boldsymbol{A}[ /латекс] не сильно меняются с температурой, [латекс]\boldsymbol{R}[/латекс] будет иметь ту же температурную зависимость, что и [латекс]\жирныйсимвол{\rho}[/латекс]. (Изучение коэффициентов линейного расширения показывает, что они примерно на два порядка меньше типичных температурных коэффициентов удельного сопротивления, поэтому влияние температуры на [латекс]\boldsymbol{L}[/латекс] и [латекс]\boldsymbol {A}[/latex] примерно на два порядка меньше, чем на [latex]\boldsymbol{\rho}[/latex].) Таким образом,
[латекс]\boldsymbol{R = R_0(1 + \alpha \Delta T)}[/латекс]
— зависимость сопротивления объекта от температуры, где [latex]\boldsymbol{R_0}[/latex] — исходное сопротивление, а [latex]\boldsymbol{R}[/latex] — сопротивление после изменения температуры [ латекс]\boldsymbol{\Delta T}[/латекс]. Многие термометры основаны на влиянии температуры на сопротивление. (См. рис. 3.) Одним из наиболее распространенных является термистор, полупроводниковый кристалл с сильной температурной зависимостью, сопротивление которого измеряется для получения его температуры. Устройство маленькое, поэтому быстро приходит в тепловое равновесие с той частью человека, к которой прикасается.
Рисунок 3. Эти известные термометры основаны на автоматизированном измерении сопротивления термистора в зависимости от температуры. (кредит: Biol, Wikimedia Commons)Пример 2: Расчет сопротивления: сопротивление горячей нити
Хотя следует соблюдать осторожность при применении [латекс]\boldsymbol{ \rho = \rho_0(1 + \alpha \Delta T)}[ /latex] и [latex]\boldsymbol{R = R_0(1 + \alpha \Delta T)}[/latex] для изменений температуры более 100ºC, для вольфрама уравнения работают достаточно хорошо при очень больших изменениях температуры. Каково же тогда сопротивление вольфрамовой нити в предыдущем примере, если ее температуру повысить с комнатной (20°С) до типичной рабочей температуры 2850°С? 9{\circ}C)]} \\[1em] & \boldsymbol{4.8 \;\Omega} \end{array}.[/latex]
Обсуждение
Это значение согласуется с примером сопротивления фары в Пример 1 Глава 20.2 Закон Ома: сопротивление и простые цепи.
Исследования PhET: сопротивление в проводе
Узнайте о физике сопротивления в проводе. Измените его удельное сопротивление, длину и площадь, чтобы увидеть, как они влияют на сопротивление провода. Размеры символов в уравнении меняются вместе со схемой провода.
Рис. 4. Сопротивление в проводе- Сопротивление [латекс]\boldsymbol{R}[/латекс] цилиндра длиной [латекс]\boldsymbol{L}[/латекс] и площадью поперечного сечения [латекс]\boldsymbol{A}[/латекс] [латекс]\boldsymbol{R = \frac{\rho L}{A}}[/latex], где [латекс]\boldsymbol{\rho}[/латекс] — удельное сопротивление материала.
- Значения [латекс]\жирныйсимвол{\rho}[/латекс] в таблице 1 показывают, что материалы делятся на три группы: проводники, полупроводники и изоляторы .
- Температура влияет на удельное сопротивление; для относительно небольших изменений температуры [латекс]\boldsymbol{\Delta T}[/latex], удельное сопротивление равно [латекс]\boldsymbol{\rho = \rho_0(1 + \alpha \Delta T)}[/latex], где [ латекс]\boldsymbol{\rho_0}[/латекс] — исходное удельное сопротивление, а αα — температурный коэффициент удельного сопротивления.
- В таблице 2 приведены значения [латекс]\жирныйсимвол{\альфа}[/латекс], температурный коэффициент удельного сопротивления.
- Сопротивление [латекс]\boldsymbol{R}[/латекс] объекта также зависит от температуры: [латекс]\жирный символ{R = R_0(1 + \alpha \Delta T)}[/латекс], где [латекс ]\boldsymbol{R_0}[/latex] — исходное сопротивление, а [latex]\boldsymbol{R}[/latex] — сопротивление после изменения температуры.
Задачи и упражнения
1: Чему равно сопротивление отрезка медной проволоки 12-го калибра диаметром 2,053 мм длиной 20,0 м?
2: Диаметр медной проволоки 0-го калибра 8,252 мм. Найти сопротивление такого провода длиной 1,00 км, по которому осуществляется передача электроэнергии.
3: Если вольфрамовая нить диаметром 0,100 мм в лампочке должна иметь сопротивление [латекс]\boldsymbol{0,200 \;\Омега}[/латекс] при 20,0ºC, какой длины она должна быть? 93 \;\textbf{V}}[/latex] применяется к нему? (Такой стержень можно использовать, например, для изготовления детекторов ядерных частиц). в габаритах? (б) Происходит ли это в бытовой электропроводке при обычных обстоятельствах?
7: Резистор из нихромовой проволоки используется в тех случаях, когда его сопротивление не может измениться более чем на 1,00% от его значения при 20,0ºC. В каком диапазоне температур его можно использовать?
8: Из какого материала изготовлен резистор, если его сопротивление при 100°С на 40,0% больше, чем при 20,0°С?
9: Электронное устройство, предназначенное для работы при любой температуре в диапазоне от –10,0ºC до 55,0ºC, содержит чисто углеродные резисторы. Во сколько раз увеличивается их сопротивление в этом диапазоне?
10: (а) Из какого материала изготовлена проволока, если она имеет длину 25,0 м, диаметр 0,100 мм и сопротивление [латекс]\boldsymbol{77,7 \;\Омега}[/латекс] при 20,0ºС? б) Каково его сопротивление при 150°С?
11: При постоянном температурном коэффициенте удельного сопротивления, каково максимальное уменьшение сопротивления константановой проволоки в процентах, начиная с 20,0ºC?
12: Проволоку протягивают через матрицу, растягивая ее в четыре раза по сравнению с первоначальной длиной. Во сколько раз увеличивается его сопротивление?
13: Медная проволока имеет сопротивление [латекс]\boldsymbol{0,500 \;\Омега}[/латекс] при 20,0ºC, а железная проволока имеет сопротивление [латекс]\boldsymbol{0,525 \; \Omega}[/latex] при той же температуре. При какой температуре их сопротивления равны? 9{\circ} \textbf{C}}[/latex]), когда он имеет ту же температуру, что и пациент. Какова температура тела пациента, если сопротивление термистора при этой температуре составляет 82,0% от его значения при 37,0°С (нормальная температура тела)? (b) Отрицательное значение для [латекс]\boldsymbol{\alpha}[/латекс] может не поддерживаться при очень низких температурах. Обсудите, почему и так ли это, здесь. (Подсказка: сопротивление не может стать отрицательным.)
15: Комплексные концепции
(a) Повторите упражнение 2 с учетом теплового расширения вольфрамовой нити. Вы можете принять коэффициент теплового расширения [латекс]\boldsymbol{12 \times 10^{-6}/^{\circ} \textbf{C}}[/латекс]. б) На сколько процентов ваш ответ отличается от ответа в примере?
16: Необоснованные результаты
(a) До какой температуры нужно нагреть резистор, сделанный из константана, чтобы удвоить его сопротивление при постоянном температурном коэффициенте удельного сопротивления? б) Разрезать пополам? в) Что неразумного в этих результатах? (d) Какие предположения неразумны, а какие предпосылки противоречивы?
Сноски
- 1 Значения сильно зависят от количества и типов примесей
- 2 Значения при 20°C.
Глоссарий
- Удельное сопротивление
- внутреннее свойство материала, независимое от его формы или размера, прямо пропорциональное сопротивлению, обозначаемому ρ
- температурный коэффициент удельного сопротивления
- эмпирическая величина, обозначаемая α , которая описывает изменение сопротивления или удельного сопротивления материала при изменении температуры
Стойкость к температурной зависимости – Стойкость различных материалов
Сопротивление — это препятствие потоку электронов в материале. Когда к проводнику прикладывается разность потенциалов, она способствует движению электронов, в то время как сопротивление препятствует движению электронов. Комбинация этих двух факторов представляет собой скорость, с которой заряд течет между двумя клеммами.
Когда к веществу прикладывается напряжение, возникает электрический ток. Напряжение, приложенное к веществу через него, прямо пропорционально току.
V∝I
Константа пропорциональности называется Удельным сопротивлением металлов.
V=RI
Следовательно, сопротивление определяется как отношение напряжения, приложенного к веществу, к току. Сопротивление измеряется в омах (Ом).
Единица сопротивления
Исходя из концепции сопротивления, можно сказать, что единицей электрического сопротивления является вольт на ампер. Одна единица сопротивления — это сопротивление, которое позволяет одной единице тока протекать через себя, когда к ней приложена одна единица разности потенциалов. Единица сопротивления на вольт на ампер называется ом (Ом).
Сопротивление различных материалов
Проводники: Материалы с очень низким сопротивлением потоку электронов. Серебро является хорошим проводником электричества, но из-за высокой стоимости редко используется в электрических системах. Алюминий является хорошим проводником и широко используется в качестве проводника из-за его низкой стоимости и доступности.
Полупроводники. Материалы с умеренным значением сопротивления (не очень высоким и не очень низким) при комнатной температуре называются полупроводниками. Есть несколько применений полупроводников, например, для изготовления электронных устройств. Кремний и германий — два материала, которые в основном используются в полупроводниках.
Изоляторы: Материалы с очень высоким сопротивлением потоку электронов. Эти материалы являются очень плохими проводниками электричества и в основном используются в электрических системах для предотвращения утечки тока. Слюда, фарфор, бумага, сухая древесина, минеральное масло, газообразный азот, воздух и т. д. являются хорошими примерами изоляторов.
Сопротивление в зависимости от температуры
Общее правило гласит, что сопротивление увеличивается в проводниках с повышением температуры и уменьшается с повышением температуры в изоляторах. В случае полупроводников, как правило, сопротивление полупроводника уменьшается с повышением температуры. Но нет простого математического соотношения для описания этой зависимости между сопротивлением и температурой для различных материалов с помощью графиков.
Для проводника: валентная зона и зона проводимости перекрываются друг с другом в случае проводника. Итак, зона проводимости проводника содержит избыточные электроны. Поглощая энергию, больше электронов перейдет из валентной зоны в зону проводимости, когда вы повысите температуру.
Для полупроводников: проводимость полупроводникового материала увеличивается с повышением температуры. По мере повышения температуры самые внешние электроны приобретают энергию, и, таким образом, получая энергию, самые внешние электроны покидают оболочку атома.
Что такое удельное сопротивление?
Удельное сопротивление — это в основном количественное значение сопротивления, обеспечиваемого любым материалом. Хотя материалы сопротивляются протеканию электрического тока, некоторые лучше проводят его, чем другие. Удельное сопротивление — это показатель, который позволяет сравнивать, как различные материалы пропускают или сопротивляются протеканию тока.
Единицей удельного сопротивления в системе СИ является ом⋅метр (Ом⋅м), обычно обозначаемый греческой буквой ρ, ро.
Удельное сопротивление материала может быть определено через сопротивление (R), длину (L) и площадь материала (A).
ρ=RA/L
Из уравнения видно, что сопротивление можно изменять, регулируя ряд параметров.
Удельное сопротивление в зависимости от температуры
Удельное сопротивление материалов зависит от температуры как ρt = ρ0 [1 + α (T – T0). Это уравнение, которое показывает зависимость между удельным сопротивлением и температурой.
ρt = ρ0 [1 + α (T – T0)
ρ0 – удельное сопротивление при стандартной температуре
ρt — удельное сопротивление при t0 C
T0 — эталонная температура
α — температурный коэффициент удельного сопротивления
Здесь и зависимость температуры от удельного сопротивления
Для проводников: Говорят, что проводники имеют положительную ко-температуру, эффективную для металлов или проводников. Положительное значение равно α. Для большинства металлов удельное сопротивление увеличивается линейно с повышением температуры примерно на 500 К9.0005
Для полупроводников: удельное сопротивление полупроводника уменьшается с повышением температуры. Говорят, что у них отрицательный температурный коэффициент. Таким образом, температурный коэффициент удельного сопротивления α отрицательный.
Изоляторы: Для изоляторов с повышением температуры увеличивается проводимость материала. Когда проводимость материала увеличивается, мы знаем, что удельное сопротивление уменьшается, и тем самым увеличивается ток. А некоторые изоляторы превращаются в проводники при высоких температурах при комнатной температуре. Имеют отрицательный температурный коэффициент.
Забавные факты
Основной причиной использования резистора в качестве электрического компонента является сопротивление электричеству.
Значение резистора легко измерить омметром или мультиметром.
Изучение электричества и мощности в физике является наиболее интересной главой, если хорошо поняты соответствующие понятия и формулы. Веб-сайт Vedantu очень красиво и естественно объясняет течение тока и его силу сопротивления, чтобы ученики могли легко их понять. Эксперты подготовили специальные видеоролики о том, как все это работает, и очень хорошо объяснили концепции. Студенты могут просто обратиться к этим материалам, доступным в Интернете, и хорошо подготовиться к экзаменам.
Сопротивление определяется как мера противодействия протеканию тока, вызванного напряжением в электрической цепи. Сопротивление измеряется в омах, что обозначается греческой буквой омега (Ом). Сила, например трение, действует против направления движения тела и имеет тенденцию предотвращать или замедлять движение тела. Простым примером сопротивления может быть ребенок, сражающийся с похитителем, или ветер с крыльями самолета.